D. Larcher and J. M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage, Nature Chemistry, vol.7, issue.1, pp.19-29, 2014.

V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review, Energy & Environmental Science, vol.4, issue.9, p.3243, 2011.

J. M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, vol.414, issue.6861, pp.359-367, 2001.

C. L. Campion, W. T. Li, and B. L. Lucht, Thermal Decomposition of LiPF[sub 6]-Based Electrolytes for Lithium-Ion Batteries, Journal of The Electrochemical Society, vol.152, issue.12, p.A2327, 2005.

K. Xu, Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries, Chemical Reviews, vol.104, issue.10, pp.4303-4418, 2004.

M. T. Armand and J. Tarascon, Building better batteries, Nature, vol.451, issue.7179, pp.652-657, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00258391

H. Wu and Y. Cui, Designing nanostructured Si anodes for high energy lithium ion batteries, Nano Today, vol.7, issue.5, pp.414-429, 2012.

M. N. Obrovac and L. Christensen, Structural Changes in Silicon Anodes during Lithium Insertion/Extraction, Electrochemical and Solid-State Letters, vol.7, issue.5, p.A93, 2004.

A. Wang, S. Kadam, H. Li, S. Shi, and Y. Qi, Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries, npj Computational Materials, vol.4, issue.1, p.15, 2018.

H. Kim, B. Han, J. Choo, and J. Cho, Three-Dimensional Porous Silicon Particles for Use in High-Performance Lithium Secondary Batteries, Angewandte Chemie International Edition, vol.47, issue.52, pp.10151-10154, 2008.

A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala et al., High-performance lithium-ion anodes using a hierarchical bottom-up approach, Nature Materials, vol.9, issue.4, pp.353-358, 2010.

M. Ge, X. Fang, J. Rong, and C. Zhou, Review of porous silicon preparation and its application for lithium-ion battery anodes, Nanotechnology, vol.24, issue.42, p.422001, 2013.

W. Xu, S. S. Vegunta, and J. C. Flake, Surface-modified silicon nanowire anodes for lithium-ion batteries, Journal of Power Sources, vol.196, issue.20, pp.8583-8589, 2011.

S. Zhang, M. He, C. Su, and Z. Zhang, Advanced electrolyte/additive for lithium-ion batteries with silicon anode, Current Opinion in Chemical Engineering, vol.13, pp.24-35, 2016.

K. Feng, M. Li, W. Liu, A. G. Kashkooli, X. Xiao et al., Silicon-Based Anodes for Lithium-Ion Batteries: From Fundamentals to Practical Applications, Small, vol.14, issue.8, p.1702737, 2018.

V. Etacheri, O. Haik, Y. Goffer, G. A. Roberts, I. C. Stefan et al., Effect of Fluoroethylene Carbonate (FEC) on the Performance and Surface Chemistry of Si-Nanowire Li-Ion Battery Anodes, Langmuir, vol.28, issue.1, pp.965-976, 2011.

C. C. Nguyen and B. L. Lucht, Comparative Study of Fluoroethylene Carbonate and Vinylene Carbonate for Silicon Anodes in Lithium Ion Batteries, Journal of The Electrochemical Society, vol.161, issue.12, pp.A1933-A1938, 2014.

B. T. Young, D. R. Heskett, C. C. Nguyen, M. Nie, J. C. Woicik et al., Hard X-ray Photoelectron Spectroscopy (HAXPES) Investigation of the Silicon Solid Electrolyte Interphase (SEI) in Lithium-Ion Batteries, ACS Applied Materials & Interfaces, vol.7, issue.36, pp.20004-20011, 2015.

L. Hard, X-Ray Photoelectron Spectroscopy (HAXPES) Investigation of the Silicon Solid Electrolyte Interphase (SEI) in Lithium-Ion Batteries, ACS Appl. Mater. Interfaces, vol.7, 2015.

D. Ortiz, V. Steinmetz, D. Durand, S. Legand, V. Dauvois et al., Radiolysis as a solution for accelerated ageing studies of electrolytes in Lithium-ion batteries, Nature Communications, vol.6, issue.1, p.6950, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01228649

D. Ortiz, I. Jiménez?gordon, J. Baltaze, O. Hernandez-alba, S. Legand et al., Electrolytes Ageing in Lithium-ion Batteries: A Mechanistic Study from Picosecond to Long Timescales, ChemSusChem, vol.8, issue.21, pp.3605-3616, 2015.

D. Ortiz, I. Jiménez?gordon, J. Baltaze, O. Hernandez-alba, S. Legand et al., Electrolytes Ageing in Lithium-ion Batteries: A Mechanistic Study from Picosecond to Long Timescales, ChemSusChem, vol.8, issue.21, pp.3605-3616, 2015.

D. Ortiz, I. Jimenez-gordon, S. Legand, V. Dauvois, J. Baltaze et al., Role of PF6? in the radiolytical and electrochemical degradation of propylene carbonate solutions, Journal of Power Sources, vol.326, pp.285-295, 2016.
URL : https://hal.archives-ouvertes.fr/cea-01355278

D. Ortiz, I. Jimenez-gordon, S. Legand, V. Dauvois, J. Baltaze et al., Role of PF6? in the radiolytical and electrochemical degradation of propylene carbonate solutions, Journal of Power Sources, vol.326, pp.285-295, 2016.
URL : https://hal.archives-ouvertes.fr/cea-01355278

F. Wang, F. Varenne, D. Ortiz, V. Pinzio, M. Mostafavi et al., Degradation of an Ethylene Carbonate/Diethyl Carbonate Mixture by Using Ionizing Radiation, ChemPhysChem, vol.18, issue.19, pp.2799-2806, 2017.

F. Varenne, J. P. Alper, F. Miserque, C. S. Bongu, A. Boulineau et al., Ex situ solid electrolyte interphase synthesis via radiolysis of Li-ion battery anode?electrolyte system for improved coulombic efficiency, Sustainable Energy & Fuels, vol.2, issue.9, pp.2100-2108, 2018.
URL : https://hal.archives-ouvertes.fr/cea-02327868

J. Sourice, A. Quinsac, Y. Leconte, O. Sublemontier, W. Porcher et al., One-Step Synthesis of Si@C Nanoparticles by Laser Pyrolysis: High-Capacity Anode Material for Lithium-Ion Batteries, ACS Applied Materials & Interfaces, vol.7, issue.12, pp.6637-6644, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01157521

J. Sourice, A. Bordes, A. Boulineau, J. P. Alper, S. Franger et al., Core-shell amorphous silicon-carbon nanoparticles for high performance anodes in lithium ion batteries, Journal of Power Sources, vol.328, pp.527-535, 2016.
URL : https://hal.archives-ouvertes.fr/cea-01355645

H. Fricke and E. J. Hart, In Radiation Dosimetry, vol.2, pp.167-232, 1966.

H. Khodja, E. Berthoumieux, L. Daudin, and J. P. Gallien, The Pierre Süe Laboratory nuclear microprobe as a multi-disciplinary analysis tool, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.181, issue.1-4, pp.83-86, 2001.

N. Choi, K. H. Yew, K. Y. Lee, M. Sung, H. Kim et al., Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode, Journal of Power Sources, vol.161, issue.2, pp.1254-1259, 2006.

B. Fortunato, P. Mirone, and G. Fini, Infrared and Raman spectra and vibrational assignment of ethylene carbonate, Spectrochimica Acta Part A: Molecular Spectroscopy, vol.27, issue.9, pp.1917-1927, 1971.

Y. B. Yohannes, S. D. Lin, and N. Wu, In Situ DRIFTS Analysis of Solid Electrolyte Interphase of Si-Based Anode with and without Fluoroethylene Carbonate Additive, Journal of The Electrochemical Society, vol.164, issue.14, pp.A3641-A3648, 2017.

N. Saqib, C. M. Ganim, A. E. Shelton, and J. M. Porter, On the Decomposition of Carbonate-Based Lithium-Ion Battery Electrolytes Studied Using Operando Infrared Spectroscopy, Journal of The Electrochemical Society, vol.165, issue.16, pp.A4051-A4057, 2018.

M. Masia, M. Probst, and R. E. Rey, Ethylene Carbonate?Li+: A Theoretical Study of Structural and Vibrational Properties in Gas and Liquid Phases, The Journal of Physical Chemistry B, vol.108, issue.6, pp.2016-2027, 2004.

J. Chai, Z. Liu, J. Ma, J. Wang, X. Liu et al., In Situ Generation of Poly (Vinylene Carbonate) Based Solid Electrolyte with Interfacial Stability for LiCoO2 Lithium Batteries, Advanced Science, vol.4, issue.2, p.1600377, 2016.

I. A. Shkrob, Y. Zhu, T. W. Marin, and D. Abraham, Reduction of Carbonate Electrolytes and the Formation of Solid-Electrolyte Interface (SEI) in Lithium-Ion Batteries. 2. Radiolytically Induced Polymerization of Ethylene Carbonate, The Journal of Physical Chemistry C, vol.117, issue.38, pp.19270-19279, 2013.

I. A. Shkrob, Y. Zhu, T. W. Marin, and D. Abraham, Reduction of Carbonate Electrolytes and the Formation of Solid-Electrolyte Interface (SEI) in Lithium-Ion Batteries. 2. Radiolytically Induced Polymerization of Ethylene Carbonate, The Journal of Physical Chemistry C, vol.117, issue.38, pp.19270-19279, 2013.

A. L. Michan, B. S. Parimalam, M. Leskes, R. N. Kerber, T. Yoon et al., Fluoroethylene Carbonate and Vinylene Carbonate Reduction: Understanding Lithium-Ion Battery Electrolyte Additives and Solid Electrolyte Interphase Formation, Chemistry of Materials, vol.28, issue.22, pp.8149-8159, 2016.

L. Gireaud, S. Grugeon, S. Laruelle, S. Pilard, and J. M. Tarascon, Identification of Li Battery Electrolyte Degradation Products Through Direct Synthesis and Characterization of Alkyl Carbonate Salts, Journal of The Electrochemical Society, vol.152, issue.5, p.A850, 2005.

I. Puci? and T. Jurkin, FTIR assessment of poly(ethylene oxide) irradiated in solid state, melt and aqeuous solution, Radiation Physics and Chemistry, vol.81, issue.9, pp.1426-1429, 2012.

D. Alves-dalla-corte, G. Caillon, C. Jordy, J. Chazalviel, M. Rosso et al., Spectroscopic Insight into Li-Ion Batteries during Operation: An Alternative Infrared Approach, Advanced Energy Materials, vol.6, issue.2, p.1501768, 2015.

I. A. Shkrob, J. F. Wishart, and D. P. Abraham, What Makes Fluoroethylene Carbonate Different?, The Journal of Physical Chemistry C, vol.119, issue.27, pp.14954-14964, 2015.

D. Yoon, M. Marinaro, P. Axmann, and M. Wohlfahrt-mehrens, Communication?Quantitative Analysis of Consumption of Fluoroethylene Carbonate Additives on Silicon Alloy Anodes, Journal of The Electrochemical Society, vol.165, issue.11, pp.A2467-A2469, 2018.

M. H. Brooker and J. Wang, Raman and infrared studies of lithium and cesium carbonates, Spectrochimica Acta Part A: Molecular Spectroscopy, vol.48, issue.7, pp.999-1008, 1992.

C. C. Nguyen and B. L. Lucht, Comparative Study of Fluoroethylene Carbonate and Vinylene Carbonate for Silicon Anodes in Lithium Ion Batteries, Journal of The Electrochemical Society, vol.161, issue.12, pp.A1933-A1938, 2014.

S. J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure et al., The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling, Carbon, vol.105, pp.52-76, 2016.

R. Marom, O. Haik, D. Aurbach, and I. C. Halalay, Revisiting LiClO[sub 4] as an Electrolyte for Rechargeable Lithium-Ion Batteries, Journal of The Electrochemical Society, vol.157, issue.8, p.A972, 2010.

N. Leifer, M. C. Smart, G. K. Prakash, L. Gonzalez, L. Sanchez et al., 13C Solid State NMR Suggests Unusual Breakdown Products in SEI Formation on Lithium Ion Electrodes, Journal of The Electrochemical Society, vol.158, issue.5, p.A471, 2011.

Y. Jin, N. H. Kneusels, L. E. Marbella, E. Castillo-martínez, P. C. Magusin et al., Understanding Fluoroethylene Carbonate and Vinylene Carbonate Based Electrolytes for Si Anodes in Lithium Ion Batteries with NMR Spectroscopy, Journal of the American Chemical Society, vol.140, issue.31, pp.9854-9867, 2018.

M. Weatherup, R. S. Jonsson, E. Liu, T. Paul, S. Grey et al., Understanding Fluoroethylene Carbonate and Vinylene Carbonate Based Electrolytes for Si Anodes in Lithium Ion Batteries with NMR Spectroscopy, J. Am. Chem. Soc, vol.140, issue.47, pp.3237-3245