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ABSTRACT

An experimental study has been conducted on a transitioatdrwet at a Reynolds number of
Re= 5000 Flow elds have been obtained by means of time-resolved gnayhic particle image
velocimetry (TR-TOMO PIV) capturing all relevant spatiaicatemporal scales. The measured
three-dimensional ow elds have then been postprocessgdhle dynamic mode decomposition
(DMD) which identi es coherent structures that contribgigni cantly to the dynamics of the jet.
Where the jet exhibits a primary axisymmetric instabilitldwed by a pairing of the vortex rings,
dominant dynamic modes have been extracted together waih aimplitude distribution. These
modes represent a basis for the low-dimensional desanipfithe dominant ow features.

1. Introduction

The description of dominant and coherent ow features amd #xtraction from experimental data is
the goal of many scienti c studies of uid ow. Dominant colnent structures are de ned as organized
uid elements that capture the overall dynamics of the owdaare responsible for the bulk of mass,
momentum and energy transfer. Despite this attempt to ibesocoherence in uid ow, no de nitive
consensus has been reached, and various notions, mostly dastatistical means, are in common
use. Descriptions by probability density functions as vaslspatial covariances are among the more
popular and successful classi cations of uid elements #melimportance of their role in the overall
ow dynamics.

As varied as the de nition of coherence is the range of nuoatralgorithms to extract pertinent

information from the ow. In experimental settings, condital averaging (biasing statistics towards
speci ¢ events in the ow) as well as quadrant analysis (easihg the occurrence and frequency
of speci ¢ sign-con gurations in the velocity elds) werenaong the early techniques to explore
recurring or persistent features of the ow. A less subjeetiechniques is based on the spatial



correlation tensor of the ow whose eigenvalues decompbge ¢w into mutually decorrelated
structures. This technique, known as the proper orthogbe@mposition (POD), reorders the ow
into a hierarchy of energy-weighted structures which optiyncapture the total kinetic energy of
the ow when used as a Galerkin basis. It still enjoys gregbuarity among experimental and
computational uid dynamicists which is due to its versafil its ease of implementation and its
convergence properties based on an energy norm.

Computational uid dynamicists faced the same issues oéoafit feature extraction when analyzing
the ow elds computed by direct numerical simulations othet techniques. The wealth of data
generated by simulations had to be postprocessed to diitlea important dynamic structures
from the incoherent featureless noise. In contrast to éx@atalists, however, they could rely
on a set of model equations that built the foundation of teenulations, and ef cient algorithms
could be developed that exploited this fact. Among theserdlgns, the Arnoldi method and its
variants dominate the quantitative analysis of uid ow. &Mrnoldi method, an iterative Krylov
subspace technique to compute eigenvalues of large-saleces, has rapidly become a standard
tool to compute stability information of ows in complex geetries. When coupled with numerical
simulations it produces global stability modes togethéhwheir frequency and growth/decay rates.
Various modi cations have been developed over the yearmfwove overall performance, to direct
convergence towards speci c eigenvalues and to add roessin Central to the algorithm is the
construction of an orthogonal set of vectors (ow elds) onwhich the dynamics is projected. This
construction depends on the availability of model inforiorat as it requires the evaluation of the
underlying equations using a given ow eld. While this algihnmic step is easily accomplished by
numericists, it constitutes an obstacle for a straightéodiapplication to experimentally generated
ow eld data. For this very reason, many iterative techngguthat are routinely applied within a
computational framework are not available to the expertalests. It is thus fair to say, that the
range of options for a quantitative analysis of experimienid data considerably lags behind the
possibilities available to computational uid dynami@st

The past years have seen remarkable advances in experim@tatacquisition and image analysis,
and ow data from experiments rival data from large-scaleneucal simulations in spatial and
temporal resolution as well as in complexity. The analy$isrsteady three-dimensional ow elds

is no longer the domain of computational uid dynamicist agito the development of time-resolved
tomographic PIV techniques [2]. Algorithms for the anadysf these data are now needed to allow
the same depth of exploration that is customary in a comipuntat setting. The dynamic mode
decomposition (DMD) is such a technique as it is solely basedata and does not depend on access
to an underlying set of equations. Itis related to the Arnmidthod mentioned above but replaces the
projection onto an orthogonal basis by a projection ontaegpshot sequence. In this manner, spectral
information about the ow can be extracted from the meas@m®is

After describing the experimental setup and the principfebe dynamic mode decomposition, a set
of time-resolved tomographic PIV-measurements of a watenijll be processed and analyzed. The
obtained results will be presented in form of their speatharacteristics (frequencies, growth/decay
rates, wavenumbers and amplitudes) and modal shapes. ésdisn of the presented material and
an outlook of future applications will conclude this aréicl



2. Experimental setup and data decomposition

2.1 Experimental setup

The experiments have been performed in the water jet faatithe Aerodynamic Laboratories of
the TU Delft [1]. The jet exits from a round nozzle of diameller 10mminto an octogonal water
tank of 600 mm diameter and 800 mm height whose Plexyglass siltbw full optical access to the
illumination and tomographic imaging. For a Reynolds numifeRe= 5000 a jet exit velocity of
U = 0:5m=shas been chosen. Neutrally buoyant polyamide particlésdahdiameter) together with
a solid-state Nd:YAG laser provide light-scatter images #ire recorded by the tomographic system
consisting of four CMOS cameras. Image sequences are adduwyrthis system at a kilo-hertz rate
over athree-dimensional measurement domain ofre0 50mm 32mm Three such domains (phase
matched across the overlap volumes) cover an extent agh8flong the jet axis. Results from the
domain closest to the jet nozzle will be reported below; lissiiom the remaining two domains
will be included in the full conference contribution. Thelwmetric light intensity is reconstructed
using a volume-self-calibration procedure and a MART rataction algorithm. Three-dimensional
velocity elds are then computed based on a spatial croseladion of two subsequent volumes with
LaVision Davis7.4, and data post-processing using a space-time regneggioa 5pt 5pt 5pt

5pt kernel reduces velocity uctuations due to measurementacgssing noise [2]. A representative
snapshot from the experiment is shown in gure 2(a), viszedi by velocity vectors in the axial
center-plane.

2.2 Principles of the dynamic mode decomposition

The dynamic mode decomposition (DMD) is a data-based deositipn technique that identi es the
dominant coherent motionina ow eld by constructing andossequently analyzing an approximate
linear mapping between time-resolved measurements [3j4¢n a sequence of measured ow elds,
denoted by and separated by a constant time-intefal.e.,

VY = fvg;va; g (1)
with N as the total number of ow elds, we assume a linear mappfyg between each of the
snapshots (assumed to be constant over the snapshot segWadhavesj+ 1 = Apvj: Applying the
mappingAp to the entire sequendé}' results in

ApV) = vi*L 2)

For a suf ciently long sequence of snapshots from an expenimit appears reasonable to assume
that the ow elds become linearly dependent. When this lkinsi reached, it is possible to express
any further snapshots by a linear combination of the pre/ames; mathematically, this amounts to

AxVY= vt viisy (3)

whereSy contains the coef cients of the above-mentioned linear boration. In this last equation,
the action ofAp on the snapshot sequemt% has been approximated by a combination (expressed



by S) of the members of/?: Spectral information about the high-dimensional makix is thus
contained in the matrisy which can be thought of as a projectionAd; onto the snapshot bas'lé\i‘:
This projection is reminiscent of the Arnoldi method whére original large-scale matrix is replaced
by a lower-dimensional Hessenberg matrix whose eigengapproximate some of the eigenvalues
of the original matrix. The orthogonalization step of thex8idi method, however, is absent.

The matrixSy can be computed from the above equation by a least-squgres<apation based on
the two data setg) andVv)**: We obtain

So=R Q3" (4)

whereQ andR stand for the QR-decompostion of the data\sgéithat is,QR= VQ‘: The eigenvalues

of Sy approximate some of the eigenvaluesAy, and the corresponding eigenvectorsfofare
determined by\/?W wherew is an eigenvector o$p.: We will refer to the quantitieS/?W as the
dynamic mode of the snapshot series. Due to the nature obthesdquence, the eigenvallies Sy
describe the inter-snapshot dynamics. For a suf cienthgldata sequence sampled from a nonlinear
process (experiment), they approach the unit-disk aneésepit a neutrally stable, oscillatory process.
We often map the eigenvalue®f Sy via the transfornw = log(l )=Dt; unstable eigenvaluesappear
then in the right half-plane.

The reliance on data allows a great deal of exibility for thgnamic mode decomposition. The
inclusion of only parts of the measured ow eld in the dateqﬂence\/}I enables the exploration of
subdomains where localized instabilities or ow phenomanmaexpected or observed. In addition,
images from high-speed cameras can be as straightforwardtessed as data from time-resolved
PIV measurements; the data may even be of a composite nebanbjning, for example, PI1V-velocity
measurements with time-synchronous acoustic pressumalsifom a microphone array in typical
aero-acoustic applications. Even more signi cantly, thgrament of the snapshots in time represents
only one of many options. For example, the data elgscould represent measurements at spatial
positionsx; separated bydx: By forming and processing this spatially aligned data seqegthe
resulting matrixSpx will contain spectral information about trspatial evolution of the ow. For a
more detailed description of DMD, the reader is referre@id]

The critical parameters of the dynamic mode decompositietie lengthiN of the snapshot sequence
and the (temporal or spatial) separatldnDx between consecutive snapshots. The former parameter
can be determined by observing the residual of the leasireqistep above. The latter parameter
has to be chosen to approximately match the characteristezdpace scale of the uid ow under
investigation, while simultaneously complying with thed\yst frequency criterion.

DMD represents an approximation of a time-resolved sequ@&oen a nonlinear process by a linear
mapping between the samples. Mathematically, it is rel&desl Koopman analysis of a nonlinear
dynamical system; an application of Koopman analysis td wws has recently been presented [5].

3. Results

A sequence of snapshots has been recorded at a samplingricgopf kHz Each ow eld consists



of 107 62 62three-dimensional velocity vectors. With= 40 snapshots in time, the full data array
contains more than 1610° entries for each of the three uid velocity components. Tdrisy will be
processed by the dynamic mode decomposition to extractenhstructures of dynamic relevance.

3.1 Temporal analysis

In a rst step, a temporal analysis will be attempted. Fos ttase, the ow elds at each of the forty
time-step will be reshaped into the columns of a data mMﬁB( A mapping between the snapshots
(expressed in the snapshot basis) will then be computealdflg the procedure described above.
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Figure 1: Decomposition of a three-dimensional low-Mach number getRe = 5000 from
time-resolved tomographic PIV measurements. (a) Eigeegabf the matrixSy representing the
inter-snapshot dynamics. (b) Dynamic mode spectrum, ithgaically mapped (see text). (c)
Amplitude distribution of the dynamic modes versus thainperal frequencyy;:

A Spi-matrix of dimension 39 39 results whose eigenvalueare shown in gure 1(a). An eigenvalue
near(1;0) signifying the mean ow (i.e. the temporally-averaged oveld of the data sequence)
has been omitted in the gure. The size and color (from redltepof the eigenvalues indicate
the amplitude of the respective structure in the data sexguef transformedv-spectrum is shown
in gure 1(b). In both spectra, we observe stable eigenvaliiieside the unit disk and in the left
half-plane, respectively). The different scale of the imagy and real axis in gure 1(b) should
be noted which indicates the convergence of the eigenvabvesrds a linear representation of a
saturated nonlinear process. For a longer data-sequéercsigenvalues are expected to tend towards
the unit disk (in gure 1(a)) and the imaginary axis (in gutgb)). Due to real input data, the
spectra are symmetric with respect to the real axis. A domimeode (in red) is clearly visible whose
Stouhal number, based on the jet diameter and the jet velaah be determined &t= 0:374

A second signi cant eigenvalue corresponds to a Strouhahbver of St= 0:671 The amplitude
distribution shownin gure 1(c) has been computed by projerthe data sequence onto the identi ed
dynamic modes. The coef cients of this projection indictite presence of speci ¢ dynamic modes
in the original data sequence and thus determine their sarie; again, the mean ow atv, =

0 has been omitted. A pronounced peak at two frequenciesit&itr numbers can be observed.
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Figure 2: Decomposition of a three-dimensional low-Mach number gétRe = 500Q (a)
Representative snapshot from the time-resolved tomograplV measurements. (b-d) Three
most dominant dynamic modes (DM): mean ow (b) and two dynamiodes with a signi cant
contribution in the original data sequence.

Higher-frequency modes contribute less and less to thesgagaence, re ected in the decay of their
respective amplitudes.

Figure 2 (b,c,d) shows the dynamic modes correspondingeo#igsely, to the mean ow and the
two frequencies/Strouhal numbers indicated in red andgireéhe amplitude plot ( gure 1(c)). All
modes are visualized by velocity vectors in the axial ceptene. Small inhomogeneities near the
edge of the jet are observed, which would gradually vanisteanore snapshots were taken into
account in the analysis. The next most dominant dynamic nfiodécated in red in the amplitude
plot) is displayed in gure 2(c). It shows strong vorticalsttures near the edge of the jet about
four diameters downstream from the nozzle, correspondingpttex rings. The tendency toward
an axisymmetric nature of the instability is clearly deddde and con rmed by a radial cut (not
shown). The next-most dominant dynamic mode (indicatedeeriyin the amplitude plot) is depicted
in gure 2(d). It again features nearly axisymmetric, sgamortex rings, however, concentrated closer
to the nozzle, with a reduced axial spacing and correspghdimgher Strouhal numbeB¢= 0:691).

A superposition of the three displayed dynamic modes, eaibhted by their temporal exponential



dynamics exfiwt) and initialized by a representative ow eld, would captutiee bulk of the jet
dynamics and reproduce the principal features of the alglata sequence.

The temporal dynamic mode decomposition has identi ed tvatinct Strouhal numbers in the data
sequence; the corresponding structures are charactdayzedarly axisymmetric vortical structures
superimposed on the cylindrical mean vortex sheet of the jet

3.2 Spatial analysis

The previous analysis, detecting a periodic uid motionwatistinct frequencies, suggests to revisit
the problem within a spatial framework. As mentioned prasig, since the DMD does not depend on
a particular model, a simple re-organization of the datayesuf ces to perform a spatial rather than a
temporal analysis. To this end, we align the data elds inmatrixv? in the axial direction, i.e., each
column inVY consists of a time-record of the three-dimensional ow @fthe cross-sectional plane
at a given axial location. The number of snapshots is aceglgiN = 107, and the computed matrix
Spx Is of size 106 106 and contains spatial spectral information. The timerdimate becomes an
independent variable of the resulting dynamic modes; apresatly, the extractedpatial dynamic
modes will contain a temporal dependency.
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Figure 3: Spatial dynamic mode decomposition of a three-dimensitmvaMach number jet at
Re= 5000 (a) Spatial inter-snapshot spectrum, i.e., eigenvalu&sof(b) spatial DMD-spectrum,
logarithmically mapped (see text). (c) Amplitude distiiba of the spatial dynamic modes versus
their streamwise wavenumbey:

Processing the spatially-aligned data matrix results engpectra displayed in gure 3(a,b), again
in the inter-snapshot format ( gure 3(a)) and the more feéemimapped format according @ =
log(l )=Dx: As in the temporal case, we notice a clustering of the eidaaganear the unit disk and
the neutral line, respectively. The “mean- ow eigenvalinels been excluded as before. The spatial
DMD detects a marked spatial wavenumber, indicated by ttheigenvalues in either spectrum. The
importance and prevalence of this spatial structures tedéuicon rmed in the amplitude distribution
(see gure 3(c)) which identi es a peak near the spatial wawabera, 9: On both sides of
this peak, the amplitude of other detected wavenumbersdses notably. The dynamic modes












