T. Arens, Linear sampling methods for 2D inverse elastic wave scattering, Inverse Problems, vol.17, issue.5, pp.1445-1464, 2001.
DOI : 10.1088/0266-5611/17/5/314

K. Baganas, B. B. Guzina, A. Charalambopoulos, and G. D. Manolis, A linear sampling method for the inverse transmission problem in near-field elastodynamics, Inverse Problems, vol.22, issue.5, pp.1835-1853, 2006.
DOI : 10.1088/0266-5611/22/5/018

M. Bonnet and B. B. Guzina, Sounding of finite solid bodies by way of topological derivative, International Journal for Numerical Methods in Engineering, vol.55, issue.13, pp.2344-2373, 2004.
DOI : 10.1002/nme.1153

URL : https://hal.archives-ouvertes.fr/hal-00111263

A. J. Burton and G. F. Miller, The Application of Integral Equation Methods to the Numerical Solution of Some Exterior Boundary-Value Problems, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.323, issue.1553, pp.201-210, 1971.
DOI : 10.1098/rspa.1971.0097

F. Cakoni and D. Colton, Qualitative methods in inverse scattering theory, 2006.

F. Cakoni, D. Colton, and H. Haddar, The linear sampling method for anisotropic media, Journal of Computational and Applied Mathematics, vol.146, issue.2, pp.285-299, 2002.
DOI : 10.1016/S0377-0427(02)00361-8

URL : https://hal.archives-ouvertes.fr/hal-00744175

F. Cakoni and H. Haddar, The linear sampling method for anisotropic media, Journal of Computational and Applied Mathematics, vol.146, issue.2, 2001.
DOI : 10.1016/S0377-0427(02)00361-8

URL : https://hal.archives-ouvertes.fr/hal-00744175

F. Cakoni and H. Haddar, A variational approach for the solution of the electromagnetic interior transmission problem for anisotropic media, Inverse Problems and Imaging, vol.1, pp.443-456, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00744011

J. M. Carcione and F. Cavallini, Energy balance and fundamental relations in anisotropic-viscoelastic media, Wave Motion, vol.18, issue.1, pp.11-20, 1993.
DOI : 10.1016/0165-2125(93)90057-M

A. Charalambopoulos, On the interior transmission problem in nondissipative, inhomogeneous, anisotropic elasticity, Journal of Elasticity, vol.67, issue.2, pp.149-170, 2002.
DOI : 10.1023/A:1023958030304

A. Charalambopoulos and K. A. Anagnostopoulos, On the Spectrum of the Interior Transmission Problem in Isotropic Elasticity, Journal of Elasticity, vol.22, issue.3, p.295313, 2008.
DOI : 10.1007/s10659-007-9146-9

A. Charalambopoulos, D. Gintides, and K. Kiriaki, The linear sampling method for the transmission problem in three-dimensional linear elasticity, Inverse Problems, vol.18, issue.3, p.547558, 2002.
DOI : 10.1088/0266-5611/18/3/303

A. Charalambopoulos, A. Kirsch, K. A. Anagnostopoulos, D. Gintides, and K. Kiriaki, The factorization method in inverse elastic scattering from penetrable bodies, Inverse Problems, vol.23, issue.1, pp.27-51, 2007.
DOI : 10.1088/0266-5611/23/1/002

D. Colton, J. Coyle, and P. Monk, Recent Developments in Inverse Acoustic Scattering Theory, SIAM Review, vol.42, issue.3, pp.369-414, 2000.
DOI : 10.1137/S0036144500367337

D. Colton and A. Kirsch, A simple method for solving inverse scattering problems in the resonance region, Inverse Problems, vol.12, issue.4, pp.383-393, 1996.
DOI : 10.1088/0266-5611/12/4/003

D. Colton, A. Kirsch, and L. Päivärinta, Far-Field Patterns for Acoustic Waves in an Inhomogeneous Medium, SIAM Journal on Mathematical Analysis, vol.20, issue.6, pp.1472-1483, 1989.
DOI : 10.1137/0520096

D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering theory, 1998.

D. Colton and R. Kress, Using fundamental solutions in inverse scattering, Inverse Problems, vol.22, issue.3, pp.49-66, 2006.
DOI : 10.1088/0266-5611/22/3/R01

D. Colton, L. Paivarinta, and J. Sylvester, The interior transmission problem, Inverse Problems and Imaging, vol.1, issue.1, pp.13-28, 2007.
DOI : 10.3934/ipi.2007.1.13

URL : https://hal.archives-ouvertes.fr/hal-00739143

W. N. Findley, J. S. Lai, and K. Onaran, Creep and Relaxation of Nonlinear Viscoelastic Materials, 1989.

B. B. Guzina and A. I. Madyarov, A linear sampling approach to inverse elastic scattering in piecewise-homogeneous domains, Inverse Problems, vol.23, issue.4, pp.1467-1493, 2007.
DOI : 10.1088/0266-5611/23/4/007

H. Haddar, The interior transmission problem for anisotropic Maxwell's equations and its applications to the inverse problem, Mathematical Methods in the Applied Sciences, vol.27, issue.18, pp.2111-2129, 2004.
DOI : 10.1002/mma.465

P. Hähner, On the uniqueness of the shape of a penetrable, anisotropic obstacle, Journal of Computational and Applied Mathematics, vol.116, issue.1, pp.167-180, 2000.
DOI : 10.1016/S0377-0427(99)00323-4

A. Kirsch, An integral equation approach and the interior transmission problem for Maxwell's equations, Inverse Problems and Imaging, vol.1, issue.1, pp.107-127, 2007.
DOI : 10.3934/ipi.2007.1.159

A. Kirsch, On the existence of transmission eigenvalues, Inverse Problems and Imaging, vol.3, issue.2, pp.155-172, 2009.
DOI : 10.3934/ipi.2009.3.155

A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems, 2008.
DOI : 10.1093/acprof:oso/9780199213535.001.0001

J. K. Knowles, On the representation of the elasticity tensor for isotropic materials, Journal of Elasticity, vol.8, issue.2, pp.175-180, 1995.
DOI : 10.1007/BF00043415

V. D. Kupradze, Potential methods in the theory of elasticity. Israel Program for Scientific Translations, 1965.

Y. Liu and F. J. Rizzo, Hypersingular boundary integral equations for radiation and scattering of elastic waves in three dimensions, Computer Methods in Applied Mechanics and Engineering, vol.107, issue.1-2, pp.131-144, 1993.
DOI : 10.1016/0045-7825(93)90171-S

A. I. Madyarov and B. B. Guzina, A Radiation Condition for Layered Elastic Media, Journal of Elasticity, vol.31, issue.4, pp.73-98, 2006.
DOI : 10.1007/s10659-005-9027-z

L. E. Malvern, Introduction to the Mechanics of a Continuous Medium, 1969.

J. E. Marsden and T. J. Hughes, Mathematical Foundations of Elasticity, Journal of Applied Mechanics, vol.51, issue.4, 1994.
DOI : 10.1115/1.3167757

G. Mataraezo, Irreversibility of time and symmetry property of relaxation function in linear viscoelasticity, Mechanics Research Communications, vol.28, issue.4, pp.373-380, 2001.
DOI : 10.1016/S0093-6413(01)00186-0

W. Mclean, Strongly elliptic systems and boundary integral equations, 2000.

M. M. Mehrabadi, S. C. Cowin, and C. O. Horgan, Strain energy density bounds for linear anisotropic elastic materials, Journal of Elasticity, vol.6, issue.2, pp.191-196, 1993.
DOI : 10.1007/BF00041853

J. Ne?as and I. Hlavá?ek, Mathematical theory of elastic and elasto-plastic bodies: an introduction, 1981.

S. , N. Fata, and B. B. Guzina, Elastic scatterer reconstruction via the adjoint sampling method, SIAM J. Appl. Math, vol.67, pp.1330-1352, 2004.

S. , N. Fata, and B. B. Guzina, A linear sampling method for near-field inverse problems in elastodynamics, Inverse problems, vol.20, pp.713-736, 2004.

L. Päivärinta and J. Sylvester, Transmission Eigenvalues, SIAM Journal on Mathematical Analysis, vol.40, issue.2, pp.738-753, 2008.
DOI : 10.1137/070697525

R. Potthast, A survey on sampling and probe methods for inverse problems, Inverse Problems, vol.22, issue.2, pp.1-47, 2006.
DOI : 10.1088/0266-5611/22/2/R01

T. Pritz, The Poisson's loss factor of solid viscoelastic materials, Journal of Sound and Vibration, vol.306, issue.3-5, pp.790-802, 2007.
DOI : 10.1016/j.jsv.2007.06.016

L. Pyl, D. Clouteau, and G. Degrande, A weakly singular boundary integral equation in elastodynamics for heterogeneous domains mitigating fictitious eigenfrequencies, Engineering Analysis with Boundary Elements, vol.28, issue.12, pp.1493-1513, 2004.
DOI : 10.1016/j.enganabound.2004.08.001

URL : https://hal.archives-ouvertes.fr/hal-00273474

B. P. Rynne and B. D. Sleeman, The Interior Transmission Problem and Inverse Scattering from Inhomogeneous Media, SIAM Journal on Mathematical Analysis, vol.22, issue.6, pp.1755-1762, 1991.
DOI : 10.1137/0522109

I. M. Shter, Generalization of Onsager's principle and its application, Journal of Engineering Physics, vol.25, issue.4, pp.1319-1323, 1973.
DOI : 10.1007/BF00834780

J. Wloka, Partial differential equations, 1992.
DOI : 10.1017/CBO9781139171755

K. Yosida, Functional Analysis, 1980.