R. Abdelmoula and J. Marigo, The effective behavior of a fiber bridged crack, Journal of the Mechanics and Physics of Solids, vol.48, issue.11, pp.2419-2444, 2000.
DOI : 10.1016/S0022-5096(00)00003-X

K. Aki and P. Richards, Quantitative Seismology: Theory and Methods, Freeman, 1980.

G. Allaire, Homogenization and Two-Scale Convergence, SIAM Journal on Mathematical Analysis, vol.23, issue.6, 1482.
DOI : 10.1137/0523084

URL : https://hal.archives-ouvertes.fr/hal-01111805

G. Allaire and C. Conca, Boundary Layers in the Homogenization of a Spectral Problem in Fluid--Solid Structures, SIAM Journal on Mathematical Analysis, vol.29, issue.2, pp.343-379, 1998.
DOI : 10.1137/S0036141096304328

G. Allaire, M. Palombaro, and J. Rauch, Diffractive behavior of the wave equation in periodic media: weak convergence analysis, Annali di Matematica Pura ed Applicata, vol.115, issue.3, pp.561-589, 2009.
DOI : 10.1007/s10231-008-0089-y

URL : https://hal.archives-ouvertes.fr/hal-00784060

J. Auriault and G. Bonnet, Dynamique des composites élastiques périodiques, Arch. Mech, vol.37, pp.4-5, 1985.

J. Auriault and E. Sanchez-palencia, Étude du comportement macroscopique d'un milieu poreux saturé déformable, J. Mécanique, vol.16, issue.4, pp.575-603, 1977.

G. Backus, Long-wave elastic anisotropy produced by horizontal layering, Journal of Geophysical Research, vol.27, issue.11, pp.4427-4440, 1962.
DOI : 10.1029/JZ067i011p04427

A. Bensoussan, J. Lions, and G. Papanicolaou, Asymptotic Analysis of Periodic Structures, 1978.

M. Briane, Homogenization of a nonperiodic material, J. Math. Pures Appl, vol.73, issue.91, pp.47-66, 1994.

Y. Capdeville, Méthode couplée éléments spectraux ? solution modale pour la propagation d'ondes dans la Terre à l'échelle globale, 2000.

Y. Capdeville, Procédé de détermination d'un modèle élastique effectif, 2009.

Y. Capdeville and J. J. Marigo, Second order homogenization of the elastic wave equation for non-periodic layered media, Geophysical Journal International, vol.170, issue.2, pp.823-838, 2007.
DOI : 10.1111/j.1365-246X.2007.03462.x

URL : https://hal.archives-ouvertes.fr/insu-01396917

Y. Capdeville and J. J. Marigo, Shallow layer correction for Spectral Element like methods, Geophysical Journal International, vol.172, issue.3, pp.1135-1150, 2008.
DOI : 10.1111/j.1365-246X.2007.03703.x

URL : https://hal.archives-ouvertes.fr/insu-01399903

E. Chaljub, D. Komatitsch, Y. Capdeville, J. Vilotte, B. Valette et al., Spectral-element analysis in seismology, Advances in Wave Propagation in Heterogeneous Media, pp.365-419, 2007.
DOI : 10.1016/S0065-2687(06)48007-9

URL : https://hal.archives-ouvertes.fr/insu-00345810

C. Chapman, Fundamentals of seismic wave propagation, pp.274-276, 2004.
DOI : 10.1017/CBO9780511616877

H. Dumontet, Study of a boundary layer problem in elastic composite materials, ESAIM: Mathematical Modelling and Numerical Analysis, vol.20, issue.2, pp.265-286, 1986.
DOI : 10.1051/m2an/1986200202651

J. Fish and W. Chen, Space???time multiscale model for wave propagation in heterogeneous media, Computer Methods in Applied Mechanics and Engineering, vol.193, issue.45-47, pp.4837-4856, 2004.
DOI : 10.1016/j.cma.2004.05.006

J. Fish, W. Chen, and G. Nagai, Non-local dispersive model for wave propagation in heterogeneous media: one-dimensional case, International Journal for Numerical Methods in Engineering, vol.IV, issue.3, pp.331-346, 2002.
DOI : 10.1002/nme.423

T. Fogarty and R. J. Leveque, High-resolution finite-volume methods for acoustic waves in periodic and random media, The Journal of the Acoustical Society of America, vol.106, issue.1, pp.17-28, 1999.
DOI : 10.1121/1.428038

G. A. Francfort and F. Murat, Homogenization and optimal bounds in linear elasticity, Archive for Rational Mechanics and Analysis, vol.34, issue.4, pp.307-334, 1986.
DOI : 10.1007/BF00280908

M. Haboussi, H. Dumontet, and J. Billoët, On the modelling of interfacial transition behaviour in composite materials, Computational Materials Science, vol.20, issue.2, pp.251-266, 2001.
DOI : 10.1016/S0927-0256(00)00183-X

M. Haboussi, H. Dumontet, and J. Billoët, Proposal of refined interface models and their application for free-edge effect, Composite Interfaces, vol.26, issue.1, pp.93-107, 2001.
DOI : 10.1163/15685540052543683

U. Hornung, Homogenization and Porous Media, 1996.
DOI : 10.1007/978-1-4612-1920-0

T. J. Hughes, The finite element method, linear static and dynamic finit element analysis, 1987.

D. Komatitsch, R. Martin, M. A. Tromp, J. Taylor, and B. A. Wingate, WAVE PROPAGATION IN 2-D ELASTIC MEDIA USING A SPECTRAL ELEMENT METHOD WITH TRIANGLES AND QUADRANGLES, Journal of Computational Acoustics, vol.09, issue.02, pp.703-718, 2001.
DOI : 10.1142/S0218396X01000796

URL : https://hal.archives-ouvertes.fr/inria-00528424

D. Komatitsch and J. P. Vilotte, The spectral element method: an effective tool to simulate the seismic response of 2D and 3D geological structures, Bull. Seism. Soc. Am, vol.88, pp.368-392, 1998.

M. Käser and M. Dumbser, An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes - I. The two-dimensional isotropic case with external source terms, Geophysical Journal International, vol.166, issue.2, pp.855-877, 2006.
DOI : 10.1111/j.1365-246X.2006.03051.x

K. A. Lurie, On homogenization of activated laminates in 1D-space and time, ZAMM, vol.314, issue.29, pp.333-340, 2009.
DOI : 10.1002/zamm.200800185

V. A. Marchenko and E. Y. Khruslov, Homogenization of Partial Differential Equations, of Progress in Mathematical Physics. Birkhäuser, 2005.

E. D. Mercerat, J. P. Vilotte, and F. J. Sánchez-sesma, Triangular Spectral Element simulation of two-dimensional elastic wave propagation using unstructured triangular grids, Geophysical Journal International, vol.166, issue.2, 2006.
DOI : 10.1111/j.1365-246X.2006.03006.x

G. W. Milton and J. R. Willis, On modifications of Newton's second law and linear continuum elastodynamics, Proc. R. Soc. A 463, pp.855-880, 2007.
DOI : 10.1098/rspa.2006.1795

P. Moczo, J. Kristek, V. Vavry?-cuk, R. J. Archuleta, and L. Halada, 3D Heterogeneous Staggered-Grid Finite-Difference Modeling of Seismic Motion with Volume Harmonic and Arithmetic Averaging of Elastic Moduli and Densities, Bulletin of the Seismological Society of America, vol.92, issue.8, pp.92-3042, 2002.
DOI : 10.1785/0120010167

S. Moskow and M. Vogelius, First-order corrections to the homogenised eigenvalues of a periodic composite medium. A convergence proof, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, vol.18, issue.06, pp.1263-1299, 1997.
DOI : 10.1007/BF01442554

F. Murat and L. Tartar, Calcul des variations et homogénéisation In Homogenization methods: theory and applications in physics (Bréau-sans-Nappe, 1983.

G. Nguetseng, Homogenization structures and applications I, Z. Anal. Anw, vol.22, pp.73-107, 2003.
DOI : 10.4171/zaa/1133

G. C. Papanicolaou and S. Varadhan, Boundary value problems with rapidly oscillating random coefficients, Proceedings of Conference on Random Fields, pp.835-873, 1979.

W. Parnell and I. Abrahams, Dynamic homogenization in periodic fibre reinforced media. Quasi-static limit for SH waves, Wave Motion, vol.43, issue.6, pp.474-498, 2006.
DOI : 10.1016/j.wavemoti.2006.03.003

E. Priolo, J. M. Carcione, and G. Seriani, Numerical simulation of interface waves by high???order spectral modeling techniques, The Journal of the Acoustical Society of America, vol.95, issue.2, pp.681-693, 1994.
DOI : 10.1121/1.408428

E. Sanchez-palencia, Non homogeneous media and vibration theory. Number 127 in Lecture Notes in Physics, 1980.

G. Seriani, A Parallel Spectral Element Method for Acoustic Wave Modeling, Journal of Computational Acoustics, vol.05, issue.01, pp.53-69, 1997.
DOI : 10.1142/S0218396X97000058

G. Seriani, 3-D large-scale wave propagation modeling by spectral element method on Cray T3E multiprocessor, Computer Methods in Applied Mechanics and Engineering, vol.164, issue.1-2, pp.235-247, 1998.
DOI : 10.1016/S0045-7825(98)00057-7

J. R. Willis, Variational principles for dynamic problems for inhomogeneous elastic media, Wave Motion, vol.3, issue.1, pp.1-11, 1981.
DOI : 10.1016/0165-2125(81)90008-1

C. Zhang and R. J. Leveque, The immersed interface method for acoustic wave equations with discontinuous coefficients, Wave Motion, vol.25, issue.3, pp.213-302, 1997.
DOI : 10.1016/S0165-2125(97)00046-2