Near-GeV Acceleration of Electrons by a Nonlinear Plasma Wave Driven by a Self-Guided Laser Pulse
S. Kneip
(1)
,
S. R. Nagel
(1)
,
S. F. Martins
(2)
,
S.P.D Mangles
(1)
,
C. Bellei
(1)
,
O. Chekhlov
(3)
,
R. J. Clarke
(3)
,
N. Delerue
(4)
,
E. J. Divall
(3)
,
G. Doucas
(4)
,
K. Ertel
(3)
,
F. Fiuza
(2)
,
R. G. Fonseca
(2)
,
P. Foster
(3)
,
S. J. Hawkes
(3)
,
C. J. Hooker
(3)
,
K. Krushelnick
(1, 5)
,
W. B. Mori
(6)
,
C. A. J. Palmer
(1)
,
Kim Ta Phuoc
(7)
,
P.P. Rajeev
(3)
,
J. Schreiber
(1)
,
M. J.V. Streeter
(3)
,
D. Urner
(4)
,
J. Vieira
(2)
,
L. O. Silva
(2)
,
Z. Najmudin
(1)
N. Delerue
- Function : Author
- PersonId : 742379
- IdHAL : nicolas-delerue
- ORCID : 0000-0002-1367-9900
- IdRef : 06782224X
Kim Ta Phuoc
- Function : Author
- PersonId : 4413
- IdHAL : kim-ta-phuoc
- IdRef : 076337030
Abstract
The acceleration of electrons to ≃0.8 GeV has been observed in a self-injecting laser wakefield accelerator driven at a plasma density of 5.5×10^18 cm^-3 by a 10 J, 55 fs, 800 nm laser pulse in the blowout regime. The laser pulse is found to be self-guided for 1 cm (>10zR), by measurement of a single filament containing >30% of the initial laser energy at this distance. Three-dimensional particle in cell simulations show that the intensity within the guided filament is amplified beyond its initial focused value to a normalized vector potential of a0>6, thus driving a highly nonlinear plasma wave.