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Abstract: This paper considers interval time-varying delay systems. The time-delay interval is
divided into several zones and the systems switch among the different zones. Based on Lyapunov-
Krasovskii functional methods and linear matrix inequality (LMI) techniques, Exponential
stability is exploited for every time-delay zone. The global stability of the switched system
is guaranteed if some minimum average dwell time conditions are satisfied. Some numerical
examples and comparisons with other works show that the methods greatly enlarge the value
of maximum upper-bound of time-delay for the systems.
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1. INTRODUCTION

A variety of stability and control techniques have been
developed for general time delay systems (Niculescu S.-
I., 2001; Richard J.-P., 2003; Chiasson J. and Loiseau
J.J., 2007). Of course, when a delay is introduced into
a system, the achievable performance (speed, robustness)
highly depends on the delay. In the case of a time-varying
delay, the guaranteed performance generally depends on
the interval of variation of the delay. To give an example,
controlling a system through a communication network
induces variable time delays and the resulting performance
depends on the quality of service (QoS) the network can
offer (Jiang W.-J. et al., 2008; Seuret A. et al., 2006).

In order to reduce the conservatism, some authors used
the piecewise analysis method which consist in study
the system for smaller delay intervals with a common
Lyapunov-Krasovskii Functional (LKF) (Yue D. et al.,
2008). Another approach is consider the system as a
switching system in which each subsystem has a different
delay. These delays belong to smaller intervals.

Switched systems are dynamical hybrid systems consisting
of a family of continuous-time subsystems and a logical
rule that orchestrates the switching between them (Liber-
zon D., 2003; Hirche S. et al., 2006). In general, the stabil-
ity of the subsystems themselves are not sufficient for the
stability of the overall system. A lot of studies have dealt

with the stability analysis and design of switched systems
(Liberzon D. et al., 1999; Hespanha J.P. and Morse A.S.,
1999; Xie G. and Wang L., 2005; Chen C.-C. et al., 2006).

Single (Sun Y.G. and Wang L., 2006; Jiang W.-J. et al.,
2008) and multiple LKF analysis methods are the most
frequently applied in the stabilization of the whole system.
A common LKF can ensure the stability with arbitrary
switching but it does not always exist. As an alternative,
dwell-time based switching is considered in (Hespanha J.P.
and Morse A.S., 1999) but time delay is not considered,

while in (Yan P. and Özbay H., 2008; Chen C.-C. et al.,
2006), the time delay is a constant one.

In this paper, a linear switched time-delay system is con-
sidered. Multiple LKF are used in the stability analysis.
The time-delay interval is divided into several ones to re-
duce conservativeness. In this means, the maximum time-
delay can be enlarged. The minimum average dwell time is
considered to guarantee the global stability of the switched
system. The LMI (Linear Matrix Inequalities) conditions
are derived following the idea of (Park P.G. and Ko. J.W.,
2007) (using the convex approach). The first part intro-
duces some sufficient conditions for exponential stability of
linear systems with interval time-varying delay. Our main
results are presented in the second part , where the linear
time-delay system is analyzed as a switched system and
where sufficient condition for the global stability are given



by using average dwelling time. The last part gives some
examples and comparisons with other works.

Notation: Throughout the paper the superscript ‘𝑇 ’
stands for matrix transposition, ℛ𝑛 denotes the 𝑛 di-
mensional Euclidean space with vector norm ∥ ⋅ ∥, ℛ𝑛×𝑚

is the set of all 𝑛 × 𝑚 real matrices, and the notation
𝑃 > 0, for 𝑃 ∈ ℛ𝑛×𝑛 means that 𝑃 is symmetric and
positive definite. The symmetric elements of the symmetric
matrix will be denoted by ∗. 𝐿2 is the space of square
integrable functions 𝑣 : [0,∞) → 𝑅𝑛 with the norm
∥𝑣∥𝐿2 = [

∫∞
0

∥𝑣(𝑡)∥2𝑑𝑡]1/2.

2. EXPONENTIAL STABILITY OF INTERVAL
TIME-DELAY SYSTEMS

For the sake of simplicity, the LMI conditions are first
derived for exponential stability of a linear time-delay
system without switches.

Consider a linear time-delay system:

𝑥̇(𝑡) = 𝐴𝑥(𝑡) +𝐴1𝑥(𝑡− 𝜏(𝑡)) (1)

with 𝐴 stable and 𝜏(𝑡), a fast varying interval delay with
the bounds as [ℎ1, ℎ2].
In the following, the notation 𝑥𝑡 stands for 𝑥(𝑡). Applying
the following LKFs (Fridman E. and Yury Orlov, 2009):

𝑉 (𝑡, 𝑥𝑡,𝑥̇𝑡) = 𝑥𝑇 (𝑡)𝑃𝑥(𝑡)

+

1∑
𝑖=0

𝑡−ℎ𝑖∫
𝑡−ℎ𝑖+1

𝑒2𝛼(𝑠−𝑡)𝑥𝑇 (𝑠)𝑆𝑖𝑥(𝑠)𝑑𝑠

+

1∑
𝑖=0

(ℎ𝑖+1 − ℎ𝑖)

−ℎ𝑖∫
−ℎ𝑖+1

𝑡∫
𝑡+𝜃

𝑒2𝛼(𝑠−𝑡)𝑥̇𝑇 (𝑠)𝑅𝑖𝑥̇(𝑠)𝑑𝑠𝑑𝜃

(2)

where ℎ0 = 0, 𝑃 > 0 and 𝑅𝑖, 𝑆𝑖 ≥ 0. Saying that the
system (1) is exponentially stable means that there exist
a positive function 𝑊 (𝑡, 𝑥(𝑡),𝑥̇(𝑡)) such that:

𝑊 (𝑡, 𝑥𝑡,𝑥̇𝑡) ≤ 𝑒−2𝛼(𝑡−𝑡0)𝑊 (𝑡, 𝑥𝑡0 ,𝑥̇𝑡0) (3)

It can be ensured by using the LKFs (2) and by checking
if:

𝑉̇ (𝑡, 𝑥𝑡, 𝑥̇𝑡) + 2𝛼𝑉 (𝑡, 𝑥𝑡, 𝑥̇𝑡) < 0 (4)

After the differentiation of the function (2), the system is
exponentially stable if:

𝑉̇ (𝑡, 𝑥𝑡, 𝑥̇𝑡) + 2𝛼𝑉 (𝑡, 𝑥𝑡, 𝑥̇𝑡) ≤ 2𝑥𝑇 (𝑡)𝑃 𝑥̇(𝑡)

+2𝛼𝑥𝑇 (𝑡)𝑃𝑥(𝑡) + 𝑥̇𝑇 (𝑡)[

1∑
𝑖=0

(ℎ𝑖+1 − ℎ𝑖)
2𝑅𝑖]𝑥̇(𝑡)

−
1∑

𝑖=0

(ℎ𝑖+1 − ℎ𝑖)𝑒
−2𝛼ℎ𝑖+1

𝑡−ℎ𝑖∫
𝑡−ℎ𝑖+1

𝑥̇𝑇 (𝑠)𝑅𝑖𝑥̇(𝑠)𝑑𝑠

+

1∑
𝑖=0

𝑥(𝑡− ℎ𝑖)
𝑇 𝑒−2𝛼ℎ𝑖𝑆𝑖𝑥(𝑡− ℎ𝑖)

−
1∑

𝑖=0

𝑒−2𝛼ℎ𝑖+1𝑥𝑇 (𝑡− ℎ𝑖+1)𝑆𝑖𝑥(𝑡− ℎ𝑖+1).

(5)

Noticing that:

𝑡−ℎ0∫
𝑡−ℎ1

𝑥̇𝑇 (𝑠)𝑅𝑖𝑥̇(𝑠)𝑑𝑠 =

𝑡−𝜏(𝑡)∫
𝑡−ℎ1

𝑥̇𝑇 (𝑠)𝑅0𝑥̇(𝑠)𝑑𝑠

+

𝑡−ℎ0∫
𝑡−𝜏(𝑡)

𝑥̇𝑇 (𝑠)𝑅0𝑥̇(𝑠)𝑑𝑠

and applying the Jensen’s inequality (Gu K. et al., 2003)

𝑡−ℎ0∫
𝑡−ℎ1

𝑥̇𝑇 (𝑠)[(ℎ2 − ℎ1)𝑅0]𝑥̇(𝑠)𝑑𝑠

≥
𝑡−ℎ0∫

𝑡−ℎ1

𝑥̇𝑇 (𝑠)𝑑𝑠𝑅0

𝑡−ℎ0∫
𝑡−ℎ1

𝑥̇(𝑠)𝑑𝑠,

𝑡−ℎ1∫
𝑡−𝜏(𝑡)

𝑥̇𝑇 (𝑠)(ℎ2 − ℎ1)𝑅𝑗 𝑥̇(𝑠)𝑑𝑠

≥ ℎ2 − ℎ1
𝜏 − ℎ1

𝑡−ℎ1∫
𝑡−𝜏(𝑡)

𝑥̇𝑇 (𝑠)𝑑𝑠𝑅1

𝑡−ℎ1∫
𝑡−𝜏(𝑡)

𝑥̇(𝑠)𝑑𝑠,

𝑡−𝜏(𝑡)∫
𝑡−ℎ2

𝑥̇𝑇 (𝑠)[(ℎ2 − ℎ1)𝑅1]𝑥̇(𝑠)𝑑𝑠

≥ ℎ2 − ℎ1
ℎ2 − 𝜏

𝑡−𝜏(𝑡)∫
𝑡−ℎ2

𝑥̇𝑇 (𝑠)𝑑𝑠𝑅1

𝑡−𝜏(𝑡)∫
𝑡−ℎ2

𝑥̇(𝑠)𝑑𝑠.

(6)

Here for 𝜏 → ℎ1 we understand by

1

𝜏(𝑡)− ℎ1

𝑡−ℎ1∫
𝑡−𝜏(𝑡)

𝑥̇(𝑠)𝑑𝑠 = lim
𝜏→ℎ1

1

𝜏(𝑡)− ℎ1

𝑡−ℎ1∫
𝑡−𝜏(𝑡)

𝑥̇(𝑠)𝑑𝑠

= 𝑥̇(𝑡− ℎ1).

For ℎ2 − 𝜏(𝑡) → 0 the vector 1
ℎ2−𝜏(𝑡)

∫ 𝑡−𝜏(𝑡)

𝑡−ℎ2
𝑥̇(𝑠)𝑑𝑠 is

defined similarly as 𝑥̇(𝑡− ℎ2).

Denoting

𝑣1 =
1

𝜏 − ℎ1

𝑡−ℎ1∫
𝑡−𝜏(𝑡)

𝑥̇(𝑠)𝑑𝑠,

𝑣2 =
1

ℎ2 − 𝜏

𝑡−𝜏(𝑡)∫
𝑡−ℎ2

𝑥̇(𝑠)𝑑𝑠,

(7)

we obtain



𝑉̇ (𝑡, 𝑥𝑡, 𝑥̇𝑡) + 2𝛼𝑉 (𝑡, 𝑥𝑡, 𝑥̇𝑡) ≤ 2𝑥𝑇 (𝑡)𝑃 𝑥̇(𝑡)

+2𝛼𝑥𝑇 (𝑡)𝑃𝑥(𝑡) + 𝑥̇𝑇 (𝑡)
1∑

𝑖=0

(ℎ𝑖+1 − ℎ𝑖)
2𝑅𝑖)𝑥̇(𝑡)

+

1∑
𝑖=0

𝑒−2𝛼ℎ𝑖𝑥𝑇 (𝑡− ℎ𝑖)𝑆𝑖𝑥(𝑡− ℎ𝑖)

−
1∑

𝑖=0

𝑒−2𝛼ℎ𝑖+1𝑥𝑇 (𝑡− ℎ𝑖+1)𝑆𝑖𝑥(𝑡− ℎ𝑖+1)

−[𝑥(𝑡)− 𝑥(𝑡− ℎ1)]
𝑇 𝑒−2𝛼ℎ1𝑅0[𝑥(𝑡) − 𝑥(𝑡− ℎ1)]

−(𝜏 − ℎ1)(ℎ2 − ℎ1)𝑣
𝑇
1 𝑒

−2𝛼ℎ2𝑅1𝑣1
−(ℎ2 − 𝜏)(ℎ2 − ℎ1)𝑣

𝑇
2 𝑒

−2𝛼ℎ2𝑅1𝑣2.

(8)

We note that in the latter bound we can substitute for 𝜏
its upper bound ℎ2.

We insert free-weighting 𝑛×𝑛-matrices (He Y. et al., 2004,

2007) by adding the following expressions to 𝑉̇ :

0 = 2[𝑥𝑇 (𝑡)𝑌 𝑇
1 + 𝑥̇𝑇 (𝑡)𝑌 𝑇

2 + 𝑥𝑇 (𝑡− 𝜏)𝑇 𝑇
1 ][−𝑥(𝑡− ℎ1)

+𝑥(𝑡− 𝜏) + (𝜏 − ℎ1)𝑣1],
0 = 2[𝑥𝑇 (𝑡)𝑍𝑇

1 + 𝑥̇𝑇 (𝑡)𝑍𝑇
2 ][𝑥(𝑡− ℎ2)

+(ℎ2 − 𝜏)𝑣2 − 𝑥(𝑡− 𝜏)].

(9)

We use further the descriptor method (Fridman E., 2001),
where the right-hand side of the expression

0 = 2[𝑥𝑇 (𝑡)𝑃𝑇
2 + 𝑥̇𝑇 (𝑡)𝑃𝑇

3 ][𝐴𝑥(𝑡) + 𝐴1𝑥(𝑡− 𝜏(𝑡)) − 𝑥̇(𝑡)], (10)

with some 𝑛 × 𝑛-matrices 𝑃2, 𝑃3 is added into the right-
hand side of (8).

Setting 𝜂(𝑡) = 𝑐𝑜𝑙{𝑥(𝑡), 𝑥̇(𝑡), 𝑥(𝑡−ℎ1), 𝑥(𝑡−ℎ2), 𝑣1, 𝑣2, 𝑥(𝑡−
𝜏)}, we obtain that along the time-delay system (1)

𝑉̇ (𝑡, 𝑥𝑡, 𝑥̇𝑡) + 2𝛼𝑉 (𝑡, 𝑥𝑡, 𝑥̇𝑡) ≤ 𝜂𝑇 (𝑡)Φ𝜂(𝑡) < 0, (11)

if the LMI (12) is feasible,

where 𝜏 = ℎ2 and

𝑅̃𝑖 = 𝑒−2𝛼ℎ𝑖+1𝑅𝑖, 𝑆𝑖 = 𝑒−2𝛼ℎ𝑖+1𝑆𝑖, 𝑆𝑖 = 𝑒−2𝛼ℎ𝑖𝑆𝑖,
Φ11 = 𝐴𝑇𝑃2 + 𝑃𝑇

2 𝐴+ 𝑆0 − 𝑒−2𝛼ℎ1𝑅0 + 2𝛼𝑃,
Φ12 = 𝑃 − 𝑃𝑇

2 +𝐴𝑇𝑃3,

Φ22 = −𝑃3 − 𝑃𝑇
3 +

1∑
𝑖=0

(ℎ𝑖+1 − ℎ𝑖)
2𝑅𝑖,

Φ16 = 𝑃𝑇
2 𝐴1,Φ26 = 𝑃𝑇

3 𝐴1, 𝜙3 = −(𝑆0 + 𝑅̃0 − 𝑆1),
𝜙4 = −𝑆1, 𝜙5 = −(ℎ2 − ℎ1)(𝜏 − ℎ1)𝑅̃1,

𝜙6 = −(ℎ2 − ℎ1)(ℎ2 − 𝜏)𝑅̃1.

(15)

The latter condition leads for 𝜏 → ℎ1 and for 𝜏 → ℎ2
to the following LMIs (13) and (14), where we deleted
the zero column and the zero row: Denote by 𝜂𝑖(𝑡) =
𝑐𝑜𝑙{𝑥(𝑡), 𝑥̇(𝑡), 𝑥(𝑡− ℎ1), 𝑥(𝑡 − ℎ2), 𝑣𝑖, 𝑥(𝑡− 𝜏)}, 𝑖 = 1, 2.

Then (13), (14) imply (11) because

ℎ2 − 𝜏

ℎ2 − ℎ1
𝜂𝑇2 (𝑡)Ψ1𝜂2(𝑡) +

𝜏 − ℎ1
ℎ2 − ℎ1

𝜂𝑇1 (𝑡)Ψ2𝜂1(𝑡)

= 𝜂𝑇 (𝑡)Ψ𝜂(𝑡) < 0.

Thus, Ψ is convex in 𝜏 ∈ [ℎ1, ℎ2] (Park P.G. and Ko. J.W.,
2007).

if the four LMIs (13) and (14) are feasible, thus, the
following result is obtained.

Lemma 1. Let there exist 𝑛 × 𝑛-matrices 𝑃 > 0, 𝑅𝑖 >
0, 𝑆𝑖 > 0, 𝑖 = 0, 1, 𝑃2,𝑃3, 𝑌1, 𝑌2, 𝑇1, 𝑇2, 𝑍1 and 𝑍2 such that
the four LMIs (13) and (14) with notations given in (15)
are feasible. Then the switched system (1) is exponentially
stable for delay 𝜏 ∈ [ℎ1, ℎ2] with a decay rate 𝛼.

3. AVERAGE DWELL-TIME FOR SWITCHED
TIME-DELAY INTERVALS

In order to reduce the conservatism, one would like to use
multiple LKF on smaller delay intervals. To achieves this,
the system (1) is rewritten as a switching system:

𝑥̇(𝑡) = 𝐴𝑥(𝑡) +
𝑁∑
𝑖=0

𝛽𝑖𝐴1𝑥(𝑡− 𝜏𝑖(𝑡)), (16)

where 𝛽𝑖 ∈ {0, 1} and
∑𝑁

𝑖=0 𝛽𝑖 = 1, 𝑁 corresponds to the
number of the time-delay intervals.

As multiple LKF are used for different delay intervals, ar-
bitrary switching cannot be obtained. So a certain criteria
of minimum dwell time will be considered to guarantee the
global stability(Liberzon D., 2003).

Here, to simplify the problem, the time-delay interval
is equally divided into 𝑁 smaller intervals. Each one is
considered for a mode of the switched system. Then, the
bounds of the intervals can be written as [𝜈𝑖, 𝜈𝑖+1], 𝑖 ∈
{1, ..., 𝑁}, with 𝜈0 = 0, 𝜈1 = ℎ1, 𝜈𝑁+1 = ℎ2 and∪𝑁

𝑖=1[𝜈𝑖, 𝜈𝑖+1] = [ℎ1, ℎ2].

The stability of the system (1) equals to the global stability
of the one of (16). Two methods are usually applied for
verifying stability of switched systems: one is to find the
common LKF and the other is to use different LKFs but
with minimum dwell time for each mode. The common
LKF cannot always be found, and in case of exponential
stability, only the same value of 𝛼 can be obtained, i.e., the
performance in each mode cannot be taken into account
and the performance cannot be better in the case of
small time-delay. Not using a common LKF reduces the
conservatism as each mode can have a completely different
behavior. This reduction allows, in most cases, getting
better performances or robustness. So, here the latter
method is applied.

The stability analysis is performed by using different LKFs
for each time-delay interval. In order to make the LKFs
comparable, their structure are chosen as follows:

𝑉𝑖(𝑡, 𝑥𝑡,𝑥̇𝑡) = 𝑥𝑇 (𝑡)𝑃𝑖𝑥(𝑡)

+

𝑁∑
𝑗=0

𝑡−𝜈𝑗∫
𝑡−𝜈𝑗+1

𝑒2𝛼𝑖(𝑠−𝑡)𝑥𝑇 (𝑠)𝑆𝑗𝑖𝑥(𝑠)𝑑𝑠

+

𝑁∑
𝑗=0

(𝜈𝑗+1 − 𝜈𝑗)

−𝜈𝑗∫
−𝜈𝑗+1

𝑡∫
𝑡+𝜃

𝑒2𝛼𝑖(𝑠−𝑡)𝑥̇𝑇 (𝑠)𝑅𝑗𝑖𝑥̇(𝑠)𝑑𝑠𝑑𝜃

(17)

where 𝑖 represents the mode, 𝑉𝑖 for 𝜏𝑖 ∈ [𝜈𝑖, 𝜈𝑖 + 𝑟].

These LKFs consider the delay over 𝑁 zones. Note that
if set 𝜈1 = ℎ1, 𝑁 = 1, then the previous LKFs (2) are
recovered for a time-delay in 𝜏(𝑡) ∈ [ℎ1, ℎ2].

Therefore, to verify the stability of system (1) can be
divided into the following two small problems:



Ψ =

⎡
⎢⎢⎢⎢⎣

Φ11 − (1 − 𝜏̇)𝑋 Φ12 𝑅̃0 − 𝑌
𝑇
1 𝑍

𝑇
1 (𝜏 − ℎ1)𝑌

𝑇
1 (ℎ2 − 𝜏)𝑍

𝑇
1 𝑌

𝑇
1 − 𝑍

𝑇
1 + Φ16

∗ Φ22 −𝑌 𝑇
2 𝑍𝑇

2 (𝜏 − ℎ1)𝑌
𝑇
2 (ℎ2 − 𝜏)𝑍𝑇

2 𝑌 𝑇
2 − 𝑍𝑇

2 + Φ26

∗ ∗ 𝜙3 0 0 0 −𝑇1

∗ ∗ ∗ 𝜙4 0 0 0

∗ ∗ ∗ ∗ 𝜙5 0 (𝜏 − ℎ1)𝑇1

∗ ∗ ∗ ∗ ∗ 𝜙6 0

∗ ∗ ∗ ∗ ∗ ∗ 𝑇1 + 𝑇𝑇
1

⎤
⎥⎥⎥⎥⎦ < 0, (12)

Ψ1 =

⎡
⎢⎢⎢⎣

Φ11 Φ12 𝑅̃0 − 𝑌 𝑇
1 𝑍𝑇

1 (ℎ2 − ℎ1)𝑍
𝑇
1 𝑌 𝑇

1 − 𝑍𝑇
1 + Φ16

∗ Φ22∣𝜏=ℎ1
−𝑌 𝑇

2 𝑍𝑇
2 (ℎ2 − ℎ1)𝑍

𝑇
2 𝑌 𝑇

2 − 𝑍𝑇
2 + Φ26

∗ ∗ 𝜙3 0 0 −𝑇1

∗ ∗ ∗ 𝜙4 0 0

∗ ∗ ∗ ∗ 𝜙6∣𝜏=ℎ1
0

∗ ∗ ∗ ∗ ∗ 𝑇1 + 𝑇
𝑇
1

⎤
⎥⎥⎥⎦ < 0, (13)

Ψ2 =

⎡
⎢⎢⎢⎣

Φ11 Φ12 𝑅̃0 − 𝑌
𝑇
1 𝑍

𝑇
1 (ℎ2 − ℎ1)𝑌

𝑇
1 𝑌

𝑇
1 − 𝑍

𝑇
1 + Φ16

∗ Φ22∣𝜏=ℎ2
−𝑌 𝑇

2 𝑍𝑇
2 (ℎ2 − ℎ1)𝑌

𝑇
2 𝑌 𝑇

2 − 𝑍𝑇
2 + Φ26

∗ ∗ 𝜙3 0 0 −𝑇1

∗ ∗ ∗ 𝜙4 0 0

∗ ∗ ∗ ∗ 𝜙5∣𝜏=ℎ2
(ℎ2 − ℎ1)𝑇1

∗ ∗ ∗ ∗ ∗ 𝑇1 + 𝑇𝑇
1

⎤
⎥⎥⎥⎦ < 0. (14)

(1)Guarantee the stability of the system in each time-delay
interval. Apply the Theorem 1 to each time-delay interval,
the maximum value of exponential decrease decay, i.e. 𝛼𝑖,
of each mode can be obtained.
(2)According to the theory of (Hespanha J.P. and Morse
A.S., 1999) and (Zhai G. et al., 2001), an average dwell
time has to be calculated to guarantee the global system
stability.

Consider during a period of time as 𝑡𝑎 as showed in the
Fig. 1, 𝑁 ′ denotes the number of switching over the time
of 𝑡𝑎. For generalizing the problem, we consider 𝑁 ′ ≥ 𝑁 .

t

𝑉

𝑉1
𝑉2

𝑉3
𝑉𝑁 ′−1

𝑉𝑁 ′

𝑡0 𝑡1 𝑡2 𝑡3 𝑡𝑁 ′−1 𝑡𝑁 ′ 𝑡𝑎

Fig. 1. Switching time-delay intervals

Decreasing sequence in Fig. 1 implies that there exits
𝜇𝑖, 𝑖 ∈ {1, ..., 𝑁 ′}, the smaller positive real such that:

𝑉𝑖+1(𝑡, 𝑥𝑡,𝑥̇𝑡) ≤ 𝜇𝑖𝑉𝑖(𝑡, 𝑥𝑡,𝑥̇𝑡). (18)

This is implied by the following conditions:

𝑃𝑖+1 ≤ 𝜇𝑖𝑃𝑖,
𝑒−2𝛼𝑖+1𝜈𝑗𝑆𝑗(𝑖+1) ≤ 𝜇𝑖𝑒

−2𝛼𝑖𝜈𝑗𝑆𝑗𝑖,
𝑒−2𝛼𝑖+1𝜈𝑗𝑅𝑗(𝑖+1) ≤ 𝜇𝑖𝑒

−2𝛼𝑖𝜈𝑗𝑅𝑗𝑖,
(19)

with 𝑗 ∈ {1, 2, ..., 𝑁 ′}.
If the LMIs conditions above are satisfied, one have:
𝑉𝑖(𝑡, 𝑥𝑡, 𝑡𝑡) ≤ 𝑒−2𝛼𝑖(𝑡−𝑡0)𝑉𝑖(𝑡0, 𝑥𝑡0 , 𝑥̇𝑡0) for each interval
of time-delay. According to these conditions, the smaller
positive 𝜇𝑖 can be calculated.

Notice that:

𝑉𝑁 ′(𝑡𝑎, 𝑥𝑡𝑎 ,𝑥̇𝑡𝑎) ≤ 𝑒−2𝛼𝑁′(𝑡𝑎−𝑡𝑁′)𝑉𝑁 ′(𝑡𝑁 ′ , 𝑥𝑡𝑁′ ,𝑥̇𝑡𝑁′ )

≤ 𝜇𝑁 ′𝑒−2𝛼𝑁′(𝑡𝑎−𝑡𝑁′)𝑉𝑁 ′−1(𝑡𝑁 ′ , 𝑥𝑡𝑁′ ,𝑥̇𝑡𝑁′ )
≤ ⋅ ⋅ ⋅
≤ 𝜇1𝜇2 ⋅ ⋅ ⋅𝜇𝑁 ′𝑒−2𝛼1𝑡1𝑒−2𝛼2(𝑡2−𝑡1) ⋅ ⋅ ⋅ 𝑒−2𝛼𝑁′(𝑡𝑎−𝑡𝑁′)

𝑉1(𝑡0, 𝑥𝑡0 ,𝑥̇𝑡0)

(20)

𝜇1𝜇2 ⋅ ⋅ ⋅𝜇𝑁 ′𝑒−2𝛼1𝑡1𝑒−2𝛼2(𝑡2−𝑡1) ⋅ ⋅ ⋅ 𝑒−2𝛼𝑁′(𝑡𝑎−𝑡𝑁′) ≤ 1 is
sufficient to prove the switching stability for a given period
of time 𝑡𝑎 showed in Fig. 1, so the minimum average dwell
time for the system has to satisfy the following condition:

(𝛼1 − 𝛼2)𝑡1 + (𝛼2 − 𝛼3)𝑡2 + ⋅ ⋅ ⋅+ 𝛼𝑁 ′𝑡𝑎
≥ 0.5𝑙𝑛(𝜇1𝜇2 ⋅ ⋅ ⋅𝜇𝑁 ′).

(21)

4. NUMERICAL EXAMPLES

In this section, we use two numerical examples as the
same as in (He Y. et al., 2004) to show our results. To
compare with other methods, we here consider the stability
conditions, i.e., in lemma (1), 𝛼 = 0.

Example 1. Consider the system (1) with

𝐴 =

[−2 0
0 −0.9

]
, 𝐴1 =

[−1 0
−1 −1

]
. (22)

As listed in the table Fig. 4, when ℎ1 = 0, our result greatly
enlarge the value of maximum upper-bound of time-delay
for the system. While considering for the case of interval
variable time-delay, the comparison with the methods of
(Jiang X. and Han Q. L., 2005) and (He Y. et al., 2007)
shows the merits of our methods. Note that when ℎ1 = 0,
the result coincides with (Park P.G. and Ko. J.W., 2007).

To show the merits of using several intervals of time-
delay, we take the same example with two intervals as
suggested in (Yue D. et al., 2008). For simplicity, two
intervals here are considered, i.e., the total interval is
averaged divided into two smaller ones. Then the result in
table 4 can be obtained. It is obvious that using multiple
LKF reduces conservatism compared with common LKF
(Yue D. et al., 2008), but a certain minimum dwell time
has to be considered. So, for calculating the minimum
dwell time, we divide the interval into two smaller ones. As
showed in the equation 21, there is a compromise between
the value of 𝛼 and 𝜇. For this example, we consider the
time-delay interval as [ℎ1, ℎ2] = [0, 2.0], the best solution



Method ℎ1 0 1 2 3 4 4.4697
(Jiang X. and Han Q. L., 2005) ℎ2 1.01 1.64 2.39 3.20 4.06 –

(He Y. et al., 2007) ℎ2 1.34 1.74 2.43 3.22 4.07 4.47
(Park P.G. and Ko. J.W., 2007) ℎ2 1.86 - - - - -

Lemma 1 ℎ2 1.86 2.06 2.61 3.31 4.09 4.47

Fig. 2. Allowable upper bound of ℎ2 with given ℎ1

Method 𝜈1 0 0.5 1.0 1.5 2.0
(Yue D. et al., 2008) 𝜈3 1.98 2.05 2.16 2.37 2.64

our result 𝜈3 2.08 2.34 2.58 2.81 3.05

Fig. 3. Allowable upper bound with switching delays

Method ℎ1 0 0.3 0.5 0.8 1 2
(Jiang X. and Han Q. L., 2005) ℎ2 0.67 0.91 1.07 1.33 1.50 2.39

(He Y. et al., 2007) ℎ2 0.77 0.94 1.09 1.34 1.51 2.40
Lemma 1 ℎ2 1.06 1.24 1.38 1.6 1.75 2.58

Fig. 4. Allowable upper bound of ℎ2 with given ℎ1

is 𝛼1 = 0.46, 𝛼2 = 0.01, 𝜇1 = 𝜇2 = 15. According to
the equation 21, the minimum average dwell time can be
calculated for a given period of time.

Example 2. Consider the system (1) with

𝐴 =

[
0 1
−1 −2

]
, 𝐴1 =

[
0 0
−1 1

]
. (23)

In the table Fig. 4, for given lower bounds ℎ1 of variable
time-delay, the corresponding maximum values of upper
bounds ℎ2 are given by considering different methods to
guarantee the stability of the system. The comparison
shows that our results are much less conservative than the
other methods.

As we can find in the two examples, when the upper bound
of time-delay becomes bigger, considering an unique inter-
val, it becomes very difficult to find a LKF to guarantee the
stability for the system. Even that Lemma 1 has greatly
removed the conservation for the result, but for the greater
delay, the result is not satisfied. The method of dividing
the one interval into several ones enlarges the bounds of
time-delays.

5. CONCLUSION

In this paper, the delay-dependent stability condition is
given for interval LTI time-delay system based on the
piecewise analysis method and LKF method. The time-
delay interval is divided into several smaller ones and the
system switches according to the bounds of each interval.
Using multiple LKF, exponential stability of each mode is
obtain and the global stability is guaranteed by the average
dwell time. For sake of simplicity, the delay interval is
equally divided, but for some special cases when the time-
delay varies much around the bounds of the intervals,
an oscillation will be brought to the system. So, some
techniques for dividing the time-delay interval can be
further developed.
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