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Abstract

In its numerical implementation, the variational approach to brittle fracture approximates the
crack evolution in an elastic solid through the use of gradient damage models. In the present
paper, we first formulate the quasi-static evolution problem for a general class of such dam-
age models. Then, we introduce a stability criterion in terms of the positivity of the second
derivative of the total energy under the unilateral constraint induced by the irreversibility of
damage. These concepts are applied in the particular setting of a one-dimensional traction test.
That allows us to construct homogeneous as well as localized damage solutions in a closed form
and to illustrate the concepts of loss of stability, of scale effects, of damage localization, and of
structural failure. Considering several specific constitutive models, stress-displacement curves,
stability diagrams, and energy dissipation provide identification criteria for the relevant mate-
rial parameters, such as limit stress and internal length. Finally, the one-dimensional analytical
results are compared with the numerical solution of the evolution problem in a two dimensional
setting.
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1. Introduction

Damage theory aims at modelling progressive degradation and failure in engineering materi-
als such as metal, concrete, or rocks. Some of these materials exhibit a stress softening behavior
that may lead to structural failure through damage localization in narrow bands. Damage local-
ization may be interpreted as a regularized description of cracks, i.e. surfaces of discontinuities
of the displacement field.

Local continuum models are not suitable to correctly predict damage localization processes.
From the mathematical point of view, softening local damage models are ill-posed, showing
lack of ellipticity and allowing for solutions with damage localization in band of null thickness
with vanishing energy dissipation (Benallal et al., 1993). In finite element numerical simula-
tions, the mesh size rules the thickness of the localization bands and thereby the energy stored
inside the crack (Bažant et al., 1984). This fact implies an unacceptable dependence of the
results on the discretization size. On the other hand, experimental evidences show that the
strength of a structure considerably varies towards its size. For example, in metal composites
with given volume fraction, the smaller is the size of a metal particle, the stronger is its response
(Lloyd, 1994). Again local approaches are unable to highlight these size effects since no char-
acteristic length-scale is involved in their formulation. To avoid these pathological localizations
and introduce scale effects, several regularization techniques have been developed, such integral
(Pijaudier-Cabot and Bazant, 1987) or gradient (Peerlings et al., 1996, 1998; Comi, 1999) ap-
proaches. Their common point is the enhancement of the description of the damage distribution
around a material point by giving additional information on its “neighborhood”. A consequence
is the necessary introduction of an additional material parameter, the internal length. Despite
of the large literature on the subject, the discussion on the effectiveness of the several possible
regularization techniques is still open (Lorentz and Andrieux, 2003). The main issue is that
even the regularized non-local strain-softening models continue to be ill-posed, showing complex
phenomena, such as infinite number of linearly independent solutions and continuous bifurca-
tions (Benallal and Marigo, 2007; Pijaudier-Cabot and Benallal, 1993), which strongly depend
on the specific constitute model under consideration.

Non-local damage models appear also as an elliptic approximation of the variational fracture
mechanics problem. The variational approach of brittle fracture recast the evolution problem
for the cracked state of a body as a minimality principle for an energy functional sum of the
elastic energy and the energy dissipated to create the crack (Francfort and Marigo, 1998). On
the basis of the results of the mathematical theory of image segmentation and free-discontinuity
problems (Mumford and Shah, 1989; Ambrosio et al., 2000), Bourdin et al. (2000) approximate
the minima of this energy functional through the minimization of a regularized elliptic functional
that may be mechanically interpreted as the energy of a gradient damage model with an internal
length. Mathematical results based on Gamma-Convergence theory show that when the internal
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length of a large class of gradient damage models tends to zero, the global minima of the dam-
age energy functional tend towards the global minima of the energy functional of Griffith brittle
fracture (Braides, 1998). The same is true for the corresponding quasi-static evolutions ruled by
a global minimality principle (Giacomini, 2005). However, the behavior of the regularized mod-
els with respect to local minima and their relation with the Griffith theory of fracture is less clear.

This work studies the solutions of non-local damage models with a gradient term on the
scalar damage variable. It constitutes essentially an extension of the work of Benallal and
Marigo (2007). One of its aim is to establish some properties with respect to a local minimality
condition of the solutions of the regularized models used in variational theory of brittle fracture.
It adopts a variational approach to equilibrium and stability based on an unilateral energy
minimality principle under the irreversibility condition on the damage field (Nguyen, 2000).
The framework is common to the work of Del Piero and Truskinovsky (2009) on the equilibrium
and stability of elastic bar with cohesive energies.

The paper is organized as follows. Section 2 is devoted to the formulation of gradient damage
models in a general context. In Section 3, we consider the homogeneous solutions of the evolution
problem for the 1D traction of a bar and study their stability. We compare several models on
the basis of two fundamental global properties: the force-displacement curve and the stability
diagram for homogenous solutions. This analysis provides useful criteria for the selection of
the constitutive laws and the identification of the internal length. In Section 4, we construct
solutions with damage localization. Section 5 describes the numerical strategy that may be
adopted to solve the damage evolution problem in a general setting. The numerical results
obtained for the 2D version of the traction test are compared to the analytical ones derived in
the 1D setting.

The summation convention on repeated indices is implicitly adopted in the sequel. The vec-
tors and second order tensors are indicated by boldface letters, like u and σ for the displacement
field and the stress field. Their components are denoted by italic letters, like ui and σij . The
third or fourth order tensors as well as their components are indicated by a sans serif letter, like
A or Aijkl for the stiffness tensor. Such tensors are considered as linear maps applying on vectors
or second order tensors and the application is denoted without dots, like Aε whose ij-component
is Aijklεkl. The inner product between two vectors or two tensors of the same order is indicated
by a dot, like a · b which stands for aibi or σ · ε for σijεij .
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2. Variational formulation of isotropic damage models

2.1. Constitutive assumptions

We consider a gradient damage model in which the damage variable α is a real number
growing from 0 to 1, α = 0 being the undamaged state and α = 1 being the fully damaged state.
The behavior of the material is characterized by the state function Wℓ which gives the energy
density at each point x. It depends on the local strain ε(u)(x) (u and ε(u) denotes respectively
the displacement and the linearized strain), the local damage value α(x) and the local gradient
∇α(x) of the damage field at x. Specifically, we assume that Wℓ takes the following form

Wℓ(ε(u), α,∇α) :=
1

2
A(α)ε(u) · ε(u) + w(α) +

1

2
w1ℓ

2
∇α · ∇α (1)

where w1 = w(1) represents the specific fracture energy of the brittle damage material defined
in Comi and Perego (2001) (see Ramtani et al. (1992) for its experimental determination), A(α)
the rigidity of the material in the damage state α. The function w(α) can be interpreted as the
density of the energy dissipated by the material during a homogeneous damage process (such
that ∇α(x) = 0), where the damage variable of the material point grows from 0 to α.

The last term in the right hand side of (1) is the non local part of the energy which plays
a regularizing role by limiting the possibilities of localization of the damage field. For reasons
of physical dimension, it involves a material characteristic length ℓ that will control the thick-
ness of the damage localization zones. The strain energy density of the underlying local model
is obtained by setting ℓ = 0. The local model with the strain energy W0(ε(u), α) is not well
suited for the modeling of softening material behavior, because, as explicitly shown on various
examples in Pham and Marigo (2009b), localization can be obtained without any cost of energy.

The qualitative properties of the damage model strongly depend on the properties of the
stiffness function α 7→ A(α), the dissipation function α 7→ w(α), the compliance function α 7→
S(α) = A−1(α) and their derivatives. From now on, we will adopt the following hypotheses that
characterize the material behavior:

Hypothesis 1 (Constitutive assumptions). The functions α 7→ A(α), α 7→ S(α) = A−1(α) and
α 7→ w(α) are continuously differentiable on [0, 1) and fulfill the following conditions

Positive elasticity : A(α) > 0, S(α) > 0 with A(1) = 0. (2a)

Decreasing stiffness : A
′(α) < 0, S

′(α) > 0. (2b)

Dissipation : w(0) = 0, w(α 6= 0) > 0, w′(α) ≥ 0. (2c)

Remark 1. The present model is a brittle damage model without any residual strains and
plasticity-like effects. Including plastic behaviors in our formulation is not a major difficulty. It
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would require to change the form of the strain energy by replacing the total strains by the elastic
strains in the elastic energy part, and by adding a plastic dissipated energy (possibly damage
dependent). More generally, as far as rate independent behaviors are concerned, one can develop
a variational approach like the present one. Such formulations are a generalization of the concept
of Standard Materials, see Nguyen (2000), Mielke (2005) and Pham and Marigo (2010a). On
the other hand, the modeling of rate dependent behaviors by such a variational approach is less
developed, because of fundamental theoretical difficulties. Specifically, the difference between
rate independent and rate dependent behaviors is that the dissipated energy (or more precisely,
the dissipation potential in the language of Generalized Standard Materials) is homogeneous of
degree 1 in the former case, but not in the latter. This lack of one homogeneity induces serious
difficulties from a theoretical viewpoint, cf Bourdin et al. (2007).

2.2. Energy functional

We consider a homogeneous body Ω ⊂ R
n made of the non-local damaging material char-

acterized by the state function (1). Let us denote respectively by ut, Ft, and ft the imposed
displacement on the boundary part ∂ΩU , the surface forces on the complementary boundary
part ∂ΩF , and the volume forces over Ω. We define the space of kinematically admissible dis-
placement fields at time t as:

C(Ut) =
{

v ∈ (H1(Ω))n : v = ut on ∂UΩ
}

, (3)

H1(Ω) being the usual Sobolev space of functions defined on Ω which are square integrable
and have square integrable first derivative. The set of admissible damage fields is the following
convex subset of the Sobolev space H1(Ω)

D1 =
{

β ∈ H1(Ω) : β(x) ∈ [0, 1] for almost all x
}

(4)

Then for any admissible pair (u, α) in C(Ut) × D1 at time t, we define the total energy of the
bar

Pt(u, α) := E(u, α) −
∫

Ω
f t · u dΩ −

∫

∂F Ω
F t · u dΓ (5)

where E(u, α) stands for the total strain energy (see Clapeyron’s theorem below for a justification
of this terminology)

E(u, α) =

∫

Ω
Wℓ(ε(u)(x), α(x),∇α(x)) dΩ. (6)

Remark 2. In the definition (4) of the admissible damage fields, the damage is left free on the
boundary of Ω, without specifying any boundary condition of the Dirichlet type. The complemen-
tary Neumann boundary conditions will automatically appear through the variational approach,
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as it is shown in the following equation (12d). Other types of boundary conditions are possible,
but, for sake of conciseness, this is the only one considered in the analytical study. The nu-
merical simulations of Section 4 will illustrate the case where the damage is set to zero on the
boundary.

2.3. First-order optimality conditions: evolution problem, equilibrium, and damage criterion

In the variational approach, the quasi-static evolution problem for the displacement and the
damage fields is formulated as a first-order unilateral minimality condition on the functional
(5) under the irreversibility condition that the damage can only increase, that is α̇ ≥ 0 (here
and henceforth the superimposed dot denotes the derivative with respect to t). Considering an
initial undamaged state at t = 0, that leads to the following variational evolution problem (see
Marigo (1989); Nguyen (1987); Benallal and Marigo (2007)):

For each t > 0, find (ut, αt) in C(ut) ×D1 such that

(u̇t, α̇t) ∈ C(u̇t) ×D and for all (v, β) ∈ C(U̇t) ×D,

DP(ut, αt)(v − u̇t, β − α̇t) ≥ 0, (7)

with the initial condition α0(x) = 0. In (7), D denotes the convex cone of positive damage rate

D =
{

β ∈ H1(Ω) : β(x) ≥ 0 for almost all x
}

(8)

whereas DP(u, α)(v, β) denotes the Gâteaux derivative of P at (u, α) in the direction (v, β):

DP(u, α)(v, β) =

∫

Ω
A(α)ε(u) · ε(u) dΩ +

+

∫

Ω

(

1

2
A
′(α)ε(u) · ε(u) + w′(α)

)

βdΩ +

∫

Ω
w1ℓ

2
∇α · ∇β dΩ.

(9)

From this global variational formulation, we can deduce the standard local formulation of the
damage model by integration by parts and classical localization arguments.

The equilibrium equation for the stress σt = A(α)ε(ut) is obtained by testing the variational
inequality (7) for β = α̇t and v ∈ C(u̇t). This gives the standard equilibrium equations

divσt + ft = 0 in Ω, σt · n = Ft on ∂F Ω. (10)

The damage problem is obtained testing (7) for arbitrary β in the convex cone D with v = u̇t.
That leads to the variational inequality governing the evolution of the damage

∫

Ω
w1ℓ

2
∇αt · ∇β dΩ +

∫

Ω

1

2
A
′(αt)ε(ut) · ε(ut)β dΩ +

∫

Ω
w′(αt)β dΩ ≥ 0 (11)
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which must hold for all β ∈ D, the inequality becoming an equality when β = α̇t. After an
integration by parts and using classical tools of the calculus of variations, we find the strong
formulation for the damage evolution problem in the form of the Kuhn-Tucker conditions for
unilateral constrained variational problems:

Irreversibility : α̇t ≥ 0 on Ω (12a)

Damage criterion :
1

2
A
′(αt)ε(ut) · ε(ut) + w′(αt) − w1ℓ

2∆αt ≥ 0 on Ω (12b)

Energy balance : α̇t

(1

2
A
′(αt)ε(ut) · ε(ut) + w′(αt) − w1ℓ

2∆αt

)

= 0 on Ω (12c)

Boundary cond. :
∂αt

∂n
≥ 0 and α̇t

∂αt

∂n
= 0 on ∂Ω. (12d)

Equation (12c) states that, at each point, the damage level can increase only if the damage yield
criterion is attained, i.e. if the damage criterion (12b) is an equality.

The two local problems (10) and (12) are implicitly linked and must be satisfied simultane-
ously to get a solution of the evolution problem (7).

2.4. The stability criterion

In softening materials, when the yield criterion of damage is reached somewhere in the body,
a multiplicity of solutions can appear for the same loading history (Benallal and Marigo, 2007;
Pham and Marigo, 2009a). This possible loss of uniqueness, which depends in particular on the
size of the body, requires a criterion to select the stable states. We adopt here an energetic point
of view by defining the stable states at a given time t as those which are Unilateral Local Minima
of the total energy Pt. Specifically, for a given couple (u, α) of admissible fields in Ct ×D1, the
stability condition can be written formally as

∃r > 0, ∀(v, β) ∈ C(0) ×D : ‖(v, β)‖ = 1, ∀h ∈ [0, r]

Pt(u, α) ≤ Pt(u + hv, α + hβ) (13)

where ‖ · ‖ stands for the H1 norm.

Let us emphasize that the stability of a state is only tested in the positive direction β of
damage. This restriction is due to the irreversibility of damage. Indeed, even if there exists
in the neighborhood of the tested state (u, α) another state (u∗, α∗) with a smaller energy but
with α∗(x) < α(x) somewhere in the body, because of the irreversibility of the damage, it is not
possible that the body evolves to this state, see also (Nguyen, 1987, 2000).
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In practice, we test the stability of any state (u, α) (not necessarily associated with an
evolution path) by doing a Taylor expansion of the total energy (26) for a given loading around
this state in the admissible direction (v, β) ∈ C(0) ×D

P(u + hv, α + hβ) = P(u, α) + h DP(u, α)(v, β) +
h2

2
D2P(u, α)(v, β) + o(h2). (14)

Suppose that the displacement field u is the one satisfying the equilibrium (10) at the damage
state α. Then, we can then distinguish two cases:

(i) if the damage criterion (12b) at the state (u, α) is a strict inequality everywhere in the
structure, then, for any non-zero damage field direction β ∈ D, the first derivative (9) is
strictly positive and the state (u, α) is stable;

(ii) if there exists a non-zero measure subset ΩD(α) ⊂ Ω over which the damage criterion
(12b) is an equality, then the first derivative of the energy is not sufficient to conclude and
the stability of the state is given by the sign of the second derivative of the energy over
the convex subset D(α) of D,

D(α) = {β ∈ D, Supp(β) ⊂ ΩD(α)} , (15)

see Benallal and Marigo (2007), Pham and Marigo (2009b), Pham and Marigo (2010b).

2.5. Strain hardening and stress softening

For a homogeneous damage distribution α, let us respectively define the elastic domain in
the strain and stress spaces as

A(α) =
{

ε ∈ Sym, −A
′(α)ε · ε ≤ 2w′(α)

}

, (16)

A∗(α) =
{

σ ∈ Sym, S
′(α)σ · σ ≤ 2w′(α)

}

, (17)

where Sym is the space of symmetric tensors. Depending on the behavior of the quadratic forms
defining these domains, the material is said to be

– strain hardening when α 7→ (−A′(α)/w′(α)) is decreasing with respect to α, i.e.:

w′(α)A′′(α) − w′′(α)A′(α) > 0. (18)

This means that the domain of admissible strains in the elastic regime is increasing for
increasing damage.
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– stress hardening (resp. softening) when α 7→ (S′(α)/w′(α)) is decreasing (resp. increasing)
with respect to α, i.e.:

w′(α)S′′(α) − w′′(α)S′(α) < (resp. >)0, (19)

then the domain of admissible stress in the elastic regime is increasing (resp. decreasing)
for increasing damage.

The importance of these definitions will appear in the study of the solutions of the variational
problem.

2.6. A Clapeyron’s theorem for the evolution problem

In linear elasticity, Clapeyron’s theorem states that the total strain energy of a body in
equilibrium under a prescribed loading, is equal to one-half of the work done by the external
forces in the displacement solution field. In the case of our damage problem, we can formulate
an analog Clapeyron’s theorem. Indeed we have the following property.

Property 1. Let (ut, αt) be a displacement-damage path parametrized by a increasing loading
parameter t ∈ [0, 1] with (u0, α0) = (0, 0) and (u1, α1) = (ũ, α̃), and satisfying the evolution
problem (7) at each time. Then the total strain energy of its final state (ũ, α̃) is given by

E(ũ, α̃) =

∫

Ω

1

2
w1ℓ

2
∇α̃ · ∇α̃ dΩ +

∫

Ω

1

2
A(α̃)ε(ũ) · ε(ũ) dΩ +

∫

Ω
w(α̃) dΩ =

∫ 1

0
Pe(u̇t)dt, (20)

where Pe(u̇t) is the power of the external forces in the displacement rate u̇t

Pe(u̇t) =

∫

Ω
ft · u̇t dΩ +

∫

∂F Ω
Ft · u̇t dΓ +

∫

∂UΩ
σtn · u̇d

t dΓ. (21)

This means that the total energy at time t is equal to the work of the external forces up to t.
Moreover, since the work of the external forces is equal to the strain work up to time t, this latter
one is a state function and equal to the total strain energy:

∫ 1

0

∫

Ω
σt · ε(u̇t) dΩ dt = E(ũ, α̃). (22)

The proof is detailed in the Appendix.
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2.7. Approximation of variational brittle fracture

In fracture mechanics approaches, material failure is modeled by the nucleation and prop-
agation of surfaces of discontinuity of the displacement field. Considering a solid Ω ⊂ Rn, the
cracks, say Γ, are surfaces of dimension n − 1. The quasi-static problem of fracture mechan-
ics requires to determine the evolution of the displacement field u and the crack set Γ as a
function of the loading. The variational approach to brittle fracture formulates this evolution
problem as a global minimization condition on the following Griffith energy functional, under
an irreversibility condition for the crack set Γ (Francfort and Marigo, 1998):

F(u,Γ) =

∫

Ω\Γ

1

2
A0ε(u) · ε(u)dΩ + Gc Hn−1(Γ) (23)

The energy is the sum of the elastic energy stored in the cracked body Ω \ Γ and the surface
energy required to create the crack, Hn−1 being the surface measure of Γ, i.e. the total crack
length for n = 2 or the total crack surface for n = 3. The constant Gc is the material toughness,
i.e. the energy required to create a unit crack surface according to Griffith theory.

The functional (23) has a close analogy with the damage energy functional in the form
(6). Both of them are the sum of an elastic energy term and a dissipated energy term, the
dissipated energy being a volume integral for the damage model and a surface integral for the
fracture model. Indeed, the damage functional is a regularized version of the Griffith functional.
Gamma-Convergence results (Braides, 1998) show that, under some constitutive requirements,
the global minimum of the damage functional (6) converges toward the global minimum of the
Griffith functional (23) when the internal length ℓ goes to zero, provided that the dissipated
energy function w(α) is related to the toughness Gc and the internal length ℓ by

Gc = 2ℓ
√

2

∫ 1

0

√

w1 w(β)dβ. (24)

3. Application to the 1D tension test

3.1. The 1D problem

In the following, we illustrate the solution of the evolution problem for the traction of a
one-dimensional bar made of a homogeneous material with stress softening. The end x = 0 is
blocked while the end x = L has a displacement Ut = t L imposed by a hard device (see Figure
1). Hence, the admissible displacement field u must satisfy the boundary conditions

u(x = 0) = 0, u(x = L) = Ut, U0 = 0. (25)
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U  t 

Figure 1: 1D traction problem with imposed end-displacement.

The total energy (5) reads now as

P(u, α) =

∫ L

0

(

1

2
E(α)u′2 dx + w(α) +

1

2
w1ℓ

2α′2

)

dx, (26)

where E(α) is the one-dimensional axial stiffness and (·)′ = ∂(·)/∂x. The equilibrium equation
(10) reads as:

σ′
t(x) = 0, σt(x) = E(αt(x))u′

t(x), ∀x ∈ (0, L). (27)

Then, the stress σt along the bar is necessarily constant. Using the boundary conditions (25),
we get

σt =
Ut

∫ L
0 S(αt(x))dx

, (28)

with S(α) = 1/E(α). Then the damage problem (12) becomes

Irreversibility : α̇t ≥ 0, α0 = 0, (29a)

Damage criterion : − w1ℓ
2α′′

t +
1

2
E′(αt)u

′
t
2
+ w′(αt) ≥ 0, (29b)

Energy balance : α̇t

(

−w1ℓ
2α′′

t +
1

2
E′(αt)u

′
t
2
+ w′(αt)

)

= 0, (29c)

Boundary conditions : α′
t(0) ≥ 0, α′

t(L) ≥ 0. (29d)

Depending on the ratio L/ℓ between the length of the bar and the internal length, this problem
can admit a unique solution or, on the contrary, an infinite number of solutions. In the latter
case, the different solutions depend on the zone where the damage criterion (29b) and the
boundary conditions (29d) become an equality. The following sections are devoted to the analysis
of the problem (29).

3.2. Homogeneous solutions

We consider only the case of strain hardening materials, in the sense of equation (18). We
focus here on the study of homogeneous solutions (tx, αt) of the evolution problem, i.e. solutions
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for which the damage and the strain fields are uniform throughout the structure. Hence, for the
given boundary conditions, the solution of the elastic problem (27) takes the form:

u′
t(x) = t, ut(x) = t x, σt = t E(αt). (30)

The damage criterion is also uniform in the bar and reads as

t2

2
E′(αt) + w′(αt) ≥ 0, α̇t

(

t2

2
E′(αt) + w′(αt)

)

= 0. (31)

Since the bar is undamaged at the beginning of the loading (α0 = 0), the solution of the evolution
problem is characterized by an elastic phase and a damaging phase, as detailed below.

3.2.1. Elastic phase

For t increasing from 0, the damage criterion (29b) is a strict inequality if the end displace-
ment Ut is smaller than the elastic limit

Ue = L

√

−2w′(0)

E′(0)
, with σe = L

√

2w′(0)

S′(0)
, (32)

The stress value σe can be interpreted as the yield stress. If w′(0) > 0, then Ue > 0 and the
material has a genuine elastic phase: as long as Ut lies in the interval [0, Ue], the material remains
sound (αt = 0) with a stiffness E0 = E(0) and the stress is given by σt = E0Ut/L. On the other
hand, if w′(0) = 0, then the damage criterion becomes an equality at the onset of the loading
and we cannot observe an elastic phase.

3.2.2. Damaging phase

For Ut ≥ Ue the damage criterion (31) becomes an equality and the damage can grow.
Hence, (31) gives the following implicit relation between the prescribed displacement Ut and the
associated homogeneous damage αt:

Ut

L
=

√

−2w′(αt)

E′(αt)
. (33)

Owing to the strain hardening assumption, (−w′/E′) is a monotonic increasing function.
Thus, there is a unique solution αt for a given Ut. In other words, the strain hardening hypothesis
rules out snap-back phenomena during the evolution in time of homogeneous solutions. The
corresponding stress is

σt = E(αt)t =

√

2w′(αt)

S′(αt)
. (34)
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Equation (34) clearly shows that the stress decrease (resp. grows) with the displacement if the
material is stress softening (resp. stress hardening) at the damage level αt.

Remark 3 (Peak Stress). From the constitutive assumptions (2), w′ and S′ are positive con-
tinuous functions on α ∈ [0, 1). Hence, we can define the peak stress in homogeneous solutions
as

σM = sup
α∈[0,1)

√

2w′(α)

S′(α)
. (35)

When σM < +∞, then σM is the maximal stress that the material can sustain. In particular,
in the case of stress softening laws, the peak stress (35) is attained for α = 0.

3.2.3. Stability and role of the internal length

Although the homogeneous strain-damage solution (tx, αt)t≥0 verifies the set of the equi-
librium equations and the damage criterion, it could be not observable during a tensile test.
Indeed, some states (tx, αt) may be unstable. A stability analysis is then necessary to select
interesting solutions from the physical point of view. It consists in studying the sign of the first
and second derivative of the total energy at the state (tx, αt) (see Section 2.4). These derivatives
read as:

DP(tx, αt)(v, β) =
∫ L
0

(

1
2E′(αt)t

2 + w′(αt)
)

βdx (36a)

D2P(tx, αt)(v, β) =
∫ L
0

(

w1ℓ
2β′2 + 2E′(αt)tv

′β +
(

E′(αt)
2 v′2 + w′′(αt)

)

β2
)

dx. (36b)

As discussed in section 2.4, the states of the elastic phase are stable. Indeed, the inequality
is strict in (31-a) and since the first derivative of the energy is positive in each direction β 6= 0,
these states are stable. Beyond the elastic phase, i.e. for Ut ≥ Ue, the damage criterion (31-a)
becomes an equality and the first derivative of the energy vanishes. The second derivative reads
as

D2P(tx, αt)(v, β) =
∫ L

0
w1ℓ

2β′2 dx+

∫ L

0
E(αt)

(

v′ +
E′(αt)

E(αt)
tβ

)2

dx −
∫ L

0

(

1

2
S′′(αt)σ

2
t − w′′(α)

)

β2 dx.
(37)

The first two terms are positive. The last term of (37) is positive if and only if the behavior is
with stress hardening (see (19)). Indeed, combining (34) with (19) leads to

0 < w′′(αt)S
′(αt) − w′(αt)S

′′(αt) = −S′(αt)

(

1

2
S′′(αt)σ

2
t − w′′(αt)

)

, (38)

where S′(αt) > 0 by virtue of (2b). In this case, we deduce that the state is necessarily stable.
On the other hand, if the material is stress softening, the last term of (37) is negative and may
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induce an instability. In this case, the sign of the second derivative may be assessed through the
study of the following Rayleigh ratio

Rt(v, β) =

∫ L
0 w1ℓ

2β′2 dx +
∫ L
0 E(αt)

(

v′ + E′(αt)
E(αt)

tβ
)2

dx
∫ L
0

(

1
2S′′(αt)σ2

t − w′′(αt)
)

β2 dx
. (39)

Specifically, a sufficient (resp. necessary) condition for stability is that

ρ = min
(v,β)∈C0×D

Rt(v, β) > (resp. ≥)1. (40)

After some calculations which are not reproduced here, the infimum of the Rayleigh ratio (39)
is given by

ρ =

min

{

E(αt)S
′(αt)

2σ2
t ;
(

π2w1
ℓ2

L2 E(αt)
2S′(αt)

4σ4
t

)1/3
}

1
2S′′(αt)σ2

t − w′′(αt)
. (41)

We may finally summarize the results on the stability of homogeneous states in the following
proposition.

Property 2 (Stability of homogeneous states). In the elastic phase, Ut < Ue, the homogeneous
state of strain-damage (Utx/L, 0) is stable. For Ut ≥ Ue, if the material has a stress hardening
behavior (19), then the state is stable. In the case of stress softening behavior (19), the state
(Utx/L, αt) with αt given by (33) is stable if and only if the length of the bar L satisfies the
inequality

L2

ℓ2
≤ π2w1E(αt)

2S′(αt)
4σ4

t
(

1
2S′′(αt)σ2

t − w′′(αt)
)3 , (42)

where σt = E(αt)Ut/L is the stress at the equilibrium.

Remark 4. The Property 2 points out a size effect in the stability result due to the presence of the
internal length. Indeed, the value αt of the homogeneous damage given by (33) does not depend
on the length of the bar. Accordingly, small or large bars give the same stress-strain diagram for
homogeneous responses. However, according to (42), for large ratio L/ℓ, the homogeneous state
will be unstable and will not be observable during an experiment. On the contrary, small bars
allow homogeneous stable states.

To illustrate the previous stability analysis, we consider three examples of damage laws.

3.2.4. Example 1: a model with an elastic phase

We consider the following damage law

E(α) = E0(1 − α)2, w(α) = w1α, (43)
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This law satisfies the Hypothesis (2a)–(2c) and both the strain hardening (18) and stress soft-
ening (19) conditions for any α. Therefore the evolution problem admits a unique homogeneous
strain-damage solution. Since w′(0) > 0, there exists an elastic phase in the evolution problem
(Section 3.2.1). Hence, using (32) and (35), the displacement and the stress at the elastic limit
read

σe = σM =
√

w1E0, Ue =

√

w1

E0
L =

σM

E0
L. (44)

Using (33) with (43) we deduce the value of the damage at each time

αt = max

(

0, 1 −
(

Ue

Ut

)2
)

. (45)

The associated stress-strain relation reads

σt =















σM
Ut

Ue
if Ut ≤ Ue,

σM

(

Ue

Ut

)3

otherwise.
(46)

We notice that the peak stress σM and the yield stress σe given by (32) are identical for this
law. Figure 2(a) reports the stress in the bar versus the normalized end displacement Ut/Ue,
which is proportional to the homogeneous strain t = Ut/L. After the elastic phase, the stress
decreases asymptotically to 0, a distinctive feature of stress softening.

0 1 2
0

1

Ut�Ue

Σ
t�
Σ

M

(a) Stress vs strain response

0 1 2 3
0

Λc

Ut�Ue

L
�{

Stable

Unstable

(b) Stability diagram

Figure 2: Properties of the homogeneous solutions for example 1.

Let us now discuss the stability of the homogeneous solutions. For Ut < Ue the state (tx, 0)
is stable. For Ut ≥ Ue, inserting (45)–(46) into (42), we deduce that the homogeneous state
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(tx, αt) is stable if and only if the length of the bar L satisfies the following condition:

L

ℓ
≤ λc

Ue

Ut
, with λc =

4π

3
√

3
. (47)

Figure 2(b) resumes these conditions on a stability diagram in the Ut/Ue−L/ℓ plane. Depending
on the length of the bar, two different behaviors occur:

• For L > λcℓ, the homogeneous state is unstable for any Ut ≥ Ue and a damage localization
necessarily arises at the end of the elastic phase;

• For L < λcℓ, after the elastic phase (Ut > Ue), there exists a finite interval [Ue, λcUeℓ/L)
of the prescribed displacement for which the homogeneous state is still stable. However,
the homogeneous state becomes unstable for Ut ≥ λcUeℓ/L.

3.2.5. Example 2: a model without an elastic phase

We consider the following damage law

E(α) = E0(1 − α)2, w(α) = w1α
2, (48)

This law satisfies the Hypothesis (2a)–(2c) and the strain hardening condition (18) for any
α. However the stress softening condition (19) is ensured only for α ≥ 1/4. Moreover since
w′(0) = 0, this damage law does not have an elastic phase (σe = 0). Hence, using (35), the peak
stress is

σM =
3
√

3

8
√

2

√

w1E0. (49)

From (33), we deduce that the evolution of the homogeneous damage level is given by

αt =
U2

t

U2
t + 3U2

M

with UM =
16σM

9E0
L. (50)

Therefore the relation between the stress of the homogeneous solution and the prescribed dis-
placement at x = L is given by

σt = E0
9U4

M

(U2
t + 3U2

M )2
Ut

L
. (51)

The material becomes stress softening for Ut ≥ UM . The peak stress is σM and is reached for
Ut = UM . Figure 3(a) shows the stress in the bar versus the homogeneous strain.

In this case, the stability of the state is ruled by second derivative of the energy. Indeed, there
is not an elastic phase, and the first derivative of the potential energy is always zero. During
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Figure 3: Properties of the homogeneous solutions for example 2.

the stress hardening phase (Ut < UM ), the homogeneous state is stable no matter the length of
the bar. Beyond UM , the bar is in a stress softening regime and we can apply Property 2: the
state is stable if the length of the bar verifies the following condition

L

ℓ
≤ π

√
3

4

U2
t /U2

M

(U2
t /U2

M − 1)3/2
. (52)

The stability diagram is plotted on Figure 3(b). Beyond the stress hardening regime (Ut ≥ UM ),
whatever the choice of the length ratio L/ℓ, size effects rule the stability of the solution. For
sufficient large displacements (the critical value depending on the bar length), the homogeneous
state becomes unstable and a localization arises somewhere in the bar.

3.2.6. Example 3: a family of models with the same homogeneous strain-stress response

We consider the following family of damage models indexed by the parameter p > 0:

E(α) = E0(1 − α)p, w(α) = w1

(

1 − (1 − α)p/2
)

. (53)

This case is a generalization of the law (43) which is recovered for p = 2. It satisfies the
Hypothesis (2a)–(2c) and both the strain hardening (18) and stress softening (19) conditions
for any α ∈ [0, 1) and any p > 0. Since w′(0) > 0, the damage evolution contains an elastic
phase (Section 3.2.1) and there exists a unique homogeneous strain-damage solution. Hence,
using (32) and (35), the displacement and the stress at the elastic limit read

σe = σM =
√

w1E0, Ue =

√

w1

E0
L =

σM

E0
L. (54)
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Figure 4: Stability diagram for Example 3 with p = 2, 4, 8.

Using (33) with (53) we deduce the value of the damage at each time

αt = max

(

0, 1 −
(

Ue

Ut

)4/p
)

. (55)

The corresponding stress is

σt =















σM
Ut

Ue
if Ut ≤ Ue,

σM

(

Ue

Ut

)3

otherwise.
(56)

Therefore, this family of damage laws, indexed by p, leads to the same strain-stress diagram
whatever the value of p.

This example points out that a force-displacement diagram obtained from a tensile test is not
sufficient to identify the damage model. Indeed, the force-displacement response only involves
one combination of the two state functions (E(α) and w(α)). At least another experimental
curve is necessary. We claim that the stability analysis provides the missing information. Indeed,
even if the homogeneous (elastic) states are stable for U < Ue, for U ≥ Ue the stability of an
homogeneous state depends both on the length of the bar and on p. Specifically, the homogeneous
state (tx, αt) is stable when Ut ≥ Ue if and only if

L

ℓ
≤ λ(p)

c

(

Ue

Ut

)4/p−1

, with λ(p)
c =

8π

3
√

3p
. (57)

Therefore the stability diagram depends on p, cf Figure 4:
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• When p < 4, for sufficient large displacements (the critical value depending on the bar
length) the homogeneous state becomes unstable.

• When p > 4, if L > λp
cℓ, all homogeneous states (Utx/L, αt) with Ut in the interval

[Ue, U
(p)
c ) being

U (p)
c =

(

λ
(p)
c ℓ

L

)

p

4 − p
Ue.

are unstable. However, the homogeneous states are stable again for Ut ≥ U
(p)
c .

This example underlines the relevance of the stability properties in the identification the damage
laws E(α) and w(α).

3.3. Localized solutions

When a homogeneous state looses its stability, the damage field localizes on zones whose size
is controlled by the internal length ℓ. We study here the properties of solutions with damage
localized by focusing on the class of stress-softening material with an elastic phase. We only
indicate the main lines of the construction of the localized solutions. The interested reader
should refer to Pham and Marigo (2009a) for the proofs and the details of the calculations.

3.3.1. Optimal damage profile

Let σ ∈ (0, σM ) be the equilibrium stress of the bar and S = (x0 −D,x0 + D) be a putative
localization zone, where the thickness D has to be determined and x0 is an arbitrary point of
the bar. To construct the damage profile in the localization zone, we suppose that the damage
criterion (29b) is an equality only on S and that the damage is zero on the remaining part of
the bar. Accordingly, the damage field α satisfies

−σ2S′(α) + 2w′(α) − 2w1ℓ
2α′′ = 0 on S, α = 0 on (0, L)/S. (58)

Since α and α′ must be continuous1 at x0 ± D, we have

α(x0 ± D) = α′(x0 ± D) = 0. (59)

Multiplying (58) by α′ and integrating with respect to x, we obtain the first integral

−σ2S(α) + 2w(α) − w1ℓ
2α′2 = C in S, (60)

1The continuity of α′ at x0 ± D is obtained as a first order optimality condition on P(u, α).
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Figure 5: The damage profile α(x) centered at x0 for σ = 0 when considering the damage law (43), see equation
(72).

where C is a constant. Evaluating (60) at x0 ± D, the conditions (59) and Hypothesis 1 give
C = −σ2/E0. Hence the first integral may be written in the form

ℓ2α′(x)2 = H(σ, α(x)) in S, (61)

where

H(σ, β) :=
2 w(β)

w1
− σ2

w1E0
(E0 S(β) − 1) , with β ∈ [0, 1). (62)

The localized damage profile is the cusp-shaped curve reported in Figure 5. We define ᾱ(σ)
as the maximal value of the damage along the bar at the given stress value σ, which is attained
at x0, the center of the localization zone. This maximal value depends only on σ. When σ
decreases from σM to 0, ᾱ(σ) increases from 0 to 1.

The size D0 of the localization zone is deduced from (61) by integration. It is a function of
the stress σ:

D(σ) = ℓ

∫ ᾱ(σ)

0

dβ
√

H(σ, β)
. (63)

For the assumed constitutive behavior, the integral above is well defined and always exists.
The position x0 of the center of the localized solution can be chosen arbitrarily in the interval
[D(σ), L − D(σ)]. We finally deduce from (61) that, in the localization zone, the damage field
is given by the following implicit relation between x and α:

|x − x0| = ℓ

∫ ᾱ(σ)

α

dβ
√

H(σ, β)
. (64)
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It is easy to see that the damage field is symmetric with respect to the center of the localization
zone, decreasing continuously from ᾱ(σ) at the center to 0 at the boundary (see Figure 5).

3.3.2. Energy of localized solutions

The total strain energy of the bar is given by

E =

∫ L

0

(

1

2
w1ℓ

2α′2 +
1

2
S(α)σ2 + w(α)

)

dx. (65)

Assuming that a single localization zone exists and that it is surrounded by an elastic zone, we
deduce from the first integral (60) that the total strain energy reads as

E =
1

2

σ2

E0
L +

∫ L

0
2w(α(x)) dx. (66)

Since α is equal to 0 on (0, L)/S and w(0) = 0, the integral in (66) can be reduced to the
subdomain S. Finally, using the symmetry of the profile α over S and performing the change
of variable y = α(x), we obtain

E =
1

2

σ2

E0
L + 4ℓ

∫ ᾱ(σ)

0

w(β)dβ
√

H(σ, β)
. (67)

3.3.3. Cracks as localized damage zones with zero stress

In our damage context, a crack can be viewed as a damage localization whose corresponding
equilibrium stress σ is 0. In this limit case, we deduce from previous analysis that

ᾱ(0) = 1, ℓ2α′(x)2 =
2 w(α)

w1
, D0 := D(0) = ℓ

∫ 1

0

√

w1

2 w(β)
dβ. (68)

As far as the total strain energy (67) is concerned, the first term vanishes, whereas the second
gives

Gc = 2 ℓ

∫ 1

0

√

2 w1 w(β) dβ. (69)

This energy corresponds to the energy dissipated in the creation of a single crack and can be
identified with the fracture toughness of the material.

3.3.4. Fracture, damage and internal length

The analytical results of this section show that the properties of the homogeneous and
localized solutions of the gradient damage models with stress softening are characterized by
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several parameters, as E0, σM , Gc, D0, and w1. These parameters may be regarded as material
constants to identify by carefully designed experimental procedures. The Young modulus E0

and the peak stress σM are easily obtained through classical uniaxial tensile tests. The fracture
toughness Gc is another classical parameter found in material databases. In a uniaxial traction
test, it may be calculated as the ratio of the total dissipated energy when breaking the bar in two
parts and the bar cross sectional area. With field measurements (displacement, thermal) and
analysis of cracked specimens, it is also possible to estimate the thickness 2D0 of the localization
zone around the crack. The specific fracture energy w1 corresponds to the total dissipated energy
to damage up to failure a bar in a homogeneous traction test2, divided by the volume of the
specimen. Differently from the fracture toughness Gc, which is a measure of the energy dissipated
in a localized fracture mode, w1 is a measure of the energy dissipated in homogeneous damage
processes.

On the other hand, the gradient damage models introduced in Section 2 are characterized
by two constitutive functions, the damaged stiffness α 7→ E(α) and the density of dissipated
energy α 7→ w(α), and an additional material parameter, the internal length ℓ.

The present analytical study of the homogeneous and localized solutions of the gradient
damage models rigorously establishes several explicit relations between the material and the
model parameters. Because of their relevance, they are resumed below (recall also that E0 =
E(0) and w1 = w(1)):

σM = sup
α∈[0,1)

√

2w′(α)

S′(α)
; (70a)

Gc = 2 ℓ

∫ 1

0

√

2 w1 w(β) dβ; (70b)

D0 = ℓ

∫ 1

0

√

w1

2 w(β)
dβ. (70c)

The equations above include a precise relation between the fracture toughness Gc defined
in brittle fracture models (Bourdin et al. (2007)), the peak stress σM , the specific fracture
energy w1, and the internal length defined in damage models (Comi and Perego (2001)). In this
sense, they establish an explicit correspondence between brittle fracture and localized solutions
of damage models. These properties are closely related to the Gamma-convergence results
available for regularized approaches to brittle fracture à la Ambrosio-Tortorelli (see Bourdin

2Ramtani et al. (1992) designed a specific experimental apparatus to perform homogenous uniaxial test pre-
venting damage localization, the so-called PIED (Pour Identifier l’Endommagement Diffus) test. It allows for the
experimental measure of a homogeneous stress-strain field of concrete by sticking aluminium plates on the lateral
faces of the specimen. The aluminium reinforcements stabilize the diffuse damaged response (microcracks) and
prevents the appearance of transverse macrocracks.

22



et al., 2007; Braides, 1998).

3.3.5. Example

We consider the model characterized by the constitutive functions (43). A straight calculus
of (68)-(69) gives

Gc =
4
√

2

3
w1 ℓ, D0 =

√
2ℓ, σM =

√

w1E0. (71)

Therefore, the knowledge of the fracture toughness Gc, the yield elastic stress σM , and the
Young modulus E0, allows us to compute the value of the internal length ℓ (for given constitutive
functions). In addition, the damage profile in the zone where the bar is broken is

α(x) =

(

1 − |x − x0|√
2ℓ

)2

, x ∈ [x0 − D0, x0 + D0], (72)

α being zero elsewhere (see Figure 5).

For concrete, a brittle material, the typical values for the material parameters are (see e.g.
Bazant and Pijaudier-Cabot (1989) and Comi and Perego (2001)):

E0 = 29GPa, σM = 4.5 MPa, Gc = 70N/m. (73)

Using the relations (71), we find

2D0 = 106mm, ℓ = 38mm, w1 = 698N/m3. (74)

The value of the thickness crack band in uniaxial tension test is fairly reasonable and can be
compared to the phenomenological law used in the literature as a function of average aggre-
gate size da. As a rule of thumb, it is commonly considered that a typical value for 2D0 is
approximatively 3da, where, for concrete, da ∼ 10 ÷ 40mm.

4. Numerical implementation and examples

This section reports on the numerical solution of the damage evolution problem (7) for the
2D version of the uniaxial traction problem. We consider the damage model of Example 1 in
Section 3.2.4, where:

A(α) = E0(1 − α)2, w(α) = w1α. (75)

There are two main reasons to select this model: (i) the model has a non-vanishing elastic
phase; (ii) the associated functional P(u, α) turns out to be quadratic in the damage variable,
a valuable feature for its numerical minimization.
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4.1. Time-discrete evolution and solution algorithm

Section 2.3 formulates the variational evolution problem with a continuous time variable t.
For the numerical work, the time line is discretized in a set of N +1 time instants {ti}N

i=0 with a
uniform time step ∆t. The time-discrete counterpart of (7) states that, given the displacement
and the damage field (ui−1, αi−1) at time step ti−1, the solution at time step ti is obtained by
solving the following bound-constrained minimization problem

inf{Pti(u, α) : u ∈ C(ti), α ∈ Di}, (76)

where Di = {α ∈ H1(Ω) : α(x) ≥ αi−1 a.e.}. The unilateral constraint α(x) ≥ αi−1 is the
time-discrete version of the irreversibility of damage.

The functional to be minimized at each time step, Pt(u, α), is not convex in the pair (u, α).
However, it is convex (and even quadratic for the model (75)) in each of the two variables
u and α, once the other is fixed. Accordingly, the adopted numerical strategy consists in a
series of alternate minimizations, that is minimization with respect to u at a fixed α and then
minimization with respect to α at a fixed u, until convergence. Considering the displacement
loading (3) with ut(x) = ti ue(x) imposed on a part of the boundary ∂uΩ, the corresponding
algorithm reads as follows:

• Initialization : Set (u(0), α(0)) := (ui−1, αi−1)

• Iteration p :

1. Compute, under the constraint u(x) = ti ue(x) on ∂uΩ,

u(p) := arg min
u

Pti(u, α(p−1)) (77)

2. Compute, under the constraint αi−1 ≤ α ≤ 1 on Ω,

α(p) := arg min
α

Pti(u
(p), α) (78)

• End : Repeat until ‖α(p) − α(p−1)‖∞ ≤ δ1. Set (ui, αi) := (u(p), α(p)).

The problem is discretized in space with standard finite elements. The finite element code is
implemented in Matlab using compiled fortran and C functions for matrix assembly. Standard
linear solvers are used to solve the displacement minimization (77). The damage minimization
(78) with the irreversibility constraint is solved by the large-scale bound-constrained quadratic
optimization solver included in the Matlab Optimization Toolbox. With a similar implementa-
tion we solved problem with up to 200 000 degrees of freedom. A much more efficient, massively
parallelized, numerical implementation relying on High Performance Computing tools is being
developed (Bourdin, 2007).
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Remark The numerical algorithm, and even the numerical code itself, is the same as the one
used in the simulation of crack evolution in the variational approach to brittle fracture and it was
firstly developed by Bourdin et al. (2000) and Bourdin (2007). Adopting the regularized version
of brittle fracture proposed by Ambrosio and Tortorelli (1990), the work of Bourdin et al. imple-
ments the damage model of Equation (48), which does not have a purely elastic phase. Moreover,
it avoids the unilateral constrained minimization of equation (78) by imposing irreversibility only
on fully developed cracks as bilateral constraints on the damage variable. For further details on
the numerical applications of the variational approach to brittle fracture and its extensions, the
reader may refer to Del Piero et al. (2007), Amor et al. (2009), and Lancioni and Royer-Carfagni
(2009).

4.2. Discretization and mesh independency

To obtain a discretized formulation of the minimization problem, we use standard linear
triangular finite elements. In two-dimensional elasticity, each element has three nodal degrees
of freedom: the two components of the displacement vector and α. Differing from most of
numerical approaches to damage, the damage field is here treated as a nodal variable. The main
goal of the gradient damage term is to render the numerical results independent of the mesh.
However, to obtain this independency, the finite element meshes must be kept unstructured,
uniform and fine enough.

Indeed, as pointed out by Negri (1999), structured meshes cause a misestimation of the
surface energy by introducing anisotropic effects which can favor some particular damage ori-
entations. Similarly, non-uniform meshes can induce artificial inhomogeneities and favor the
nucleation of cracks (in the sense of damage localizations) in refined zone. As far as the choice
of the mesh size is concerned, an accurate estimation of the discretized dissipated energy requires
the element size, say h, to be (much) smaller than the thickness of the localization zone (say,
D0 in our 1D analysis). Numerical experiments show that setting h ∼ E0ℓ/σM still gives quali-
tatively reasonable results. However, the computed dissipated energy will be overestimated, see
Bourdin et al. (2007) and Bourdin (2007) for details.

Even when these three conditions on the meshes (unstructured, uniform, fine enough) are
fulfilled, it is not ensured that the numerical solution is independent of the mesh. Indeed,
there is none general result of uniqueness and, more, there exist many situations where the
number of solutions are infinite (see for example Benallal and Marigo (2007)). In such a case,
the numerical solution will depend on the mesh (and also on the algorithm), because small
imperfections (due to physics and/or numerical errors) may greatly affect the final result. A
key issue is to introduce in the numerical treatment the concept of stability of state in order
to select the physically meaningful solutions3. This is a very fundamental but difficult task to

3The present alternate minimization algorithm does not explicitly test stability. However, we rarely observed
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which future works will be devoted. However, this type of mesh dependency is fundamentally
different from the one obtained using non regularized models. For gradient damage models,
it is closely related to the imperfection sensitivity of the physical system. On the other hand,
for local damage models with stress-softening, mesh dependency is a pure consequence of the
mathematical inconsistency of the modeling approach.

4.3. Numerical results for the 2D uniaxial traction test

We solve numerically the time-discrete evolution problem for the 2D version of the uniaxial
traction test studied analytically in the previous sections. We consider a bar in plane-stress
condition with an aspect ratio L/H = 10. Figure 6 illustrates the geometry and the boundary
conditions. We consider the damage model (75), which has a finite elastic yield stress σM reached
for the end-displacement Ue = L σM/E0. The numerical simulations refer to dimensionless
variables. Scaling the displacement with Ue, the only relevant dimensionless parameter affecting
the result of the simulation is the ratio:

λ =
L

ℓ
. (79)

Following the stability diagram in figure 2(b), we distinguish short bars with L < λcℓ and long
bars with L > λcℓ, being λc = 4π/3

√
3 ≃ 2.41. In the case of short bars, the homogeneous

solution remains stable beyond the elastic limit Ue. On the contrary, in the case of long bars,
the homogeneous solution becomes unstable at the elastic limit U = Ue, in a state with null
damage field. We perform numerical simulations for long bars with L = 2λcℓ and short bar
with L = λcℓ/2. In the case of a bar made of concrete with an internal length ℓ = 38 mm, as
estimated in Section 3.3.5, this would correspond to bars of length L = 2λcℓ ≈ 180 mm and
L = λcℓ/2 ≈ 46 mm. It would be almost impossible to perform experimentally the test on the
short bar. This is the reason why Ramtani et al. (1992) resorted to the PIED test (including
aluminum reinforcements) to perform experiments with homogenous damage fields. The time
step for loading increment is set to ∆T = 0.01. A uniform finite element mesh with a typical
element size h = 0.01 is used.

4.4. Case of a long bar: L = 2λcℓ

For t < 1 all the material points are in an elastic regime. The alternate minimization
algorithm gives a quasi-static evolution characterized by an elastic response (α = 0) with uniform
deformation. For t > 1 we know that the elastic solution is unstable and the numerical algorithm
gives a localized solution. Figure 7 shows the localized solution obtained for two types of
boundary conditions on the damage field: (BC1) without Dirichlet boundary conditions on the

its convergence toward unstable solutions.
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Figure 6: 2D uniaxial traction test with imposed displacements.

damage field, (BC2) with α = 0 on x = ±L/2. In the first case, the damage localization appears
at the boundary. In the second case, the boundary conditions force the localization to appear
inside the bar. Its precise location is energetically indifferent. Because of mesh imperfections
and numerical errors, this location may vary from one simulation to another even if the initial
data are identical (see the comments on mesh dependency in Section 4.2). As expected the
response is essentially 1D, the field distribution being independent of y. The damage field
profile versus x coincides to that obtained analytically in Section 3.3 (see Figure 5), where only
the boundary conditions (BC1) were considered. In this case, only one half of the damage profile
is sufficient to break the bar. It may be indifferently located at the left or the right end of the
specimen. Its actual location in a numerical (and physical!) tests is ruled by imperfections and
numerical errors. This type of solutions requires only one half of the energy of the full damage
profile. Hence, it is a better candidate for energy minimization. Figure 8 reports the elastic and
dissipated energies versus time, and the global force versus the imposed displacement at the end
of the bar for the boundary conditions (BC1). Using Clayperon’s theorem (20), the global force
is calculated as being the time derivative of the total energy. The force-displacement diagram
is linear until t = 1, then the force drops to zero. The dashed line of Figure 8(b) represents
the homogeneous solution of equation (46). This homogeneous solution is stable only until the
elastic limit t = 1. For t < 1, the elastic energy is quadratic in t and the dissipated energy
is zero. For t > 1 the elastic energy vanishes and the dissipated energy is equal to GcH/2, in
agreement with the analytical result of equation (69). For the boundary conditions (BC2), the
diagrams are identical, except that the final dissipated energy is GcH.

4.5. Case of a short bar: L = λcℓ/2

The numerical results show that the response of short bars is characterized by three phases:
(i) elastic response with null damage for t < 1; (ii) progressive damage, with homogeneous
damage distribution increasing with the loading for 1 < t < t∗; (iii) failure at a finite loading,
say t∗. Figure 9 compares the time-evolution of the damage field distribution along the central
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Figure 7: Damage field distribution in a long bar (L = 2 λcℓ) for t > 1. We report the solutions obtained for the
damage field free at the boundary (BC1) and the damage field imposed to be zero on x = ±L/2 (BC2).

(a) Energies



(b) Force-displacement diagram

Figure 8: Numerical results for the 2D traction of a long bar (L = 2 λcℓ) with damage free at the boundary
(BC1). The dashed line in the force-displacement diagram reports the 1D homogeneous solution in equation (46),
coinciding with the numerical response for t < 1.
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(a) Long bar (L = 2 λcℓ) (b) Short bar L = λcℓ /2

Figure 9: Damage field distribution along the central line y = 0 of the bar versus time, showing a clear scale
effect. Long bars brutally break at the elastic limit t = 1. Short bars allows for homogeneous damage evolutions
after the elastic limit. The size of the localization zone is in agreement to the theoretical value of equation (71),
being D0 ≃ 0.29 for long bar and D0 ≃ 1.17 for long bars.

line (y = 0) obtained for long (L = 2 λcℓ) and short (L = λcℓ/2) bars. It emphasizes the
qualitatively different responses and the scale effects following the size of the bar. Figure 10
reports the energy diagram and the force-displacement relationship for L = λcℓ/2. For this
case complete failure is obtained at t∗ = 1.65. The dissipated energy at the end of the test is
close to Gc H/2. The presence of the phase of progressive homogeneous damage is in agreement
with the analytical result of Section 3.2.4, which predicts that homogeneous states are stable
beyond the elastic limit when L < λcℓ. In particular the numerical force-displacement diagram
in Figure 10(b) coincides with the one in figure 2(a) for t < t∗. However, according to the
analytical results of equation (47), the homogeneous solution is expected to be stable until a
limit loading ts = λcℓ/L = 2. The numerical solution switches from the homogeneous state to a
non-homogeneous one with vanishing residual stress at the smaller loading t∗ = 1.65. Applying
the bifurcation analysis of Benallal and Marigo (2007), it may be shown that t∗ is close to the
loading for which a bifurcation from the homogeneous response occurs. (But the proof of that
is beyond the scope of this paper.) Hence we may argue that, due to numerical errors and
mesh inhomogeneities, the adopted numerical algorithm leaves the stable homogeneous solution
branch as soon as a bifurcated non-homogeneous solution is available. A precise assessment
of this point and of the bifurcation and stability loss phenomena in the numerical response is
currently under investigation.
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(a) Energy



(b) force-displacement diagram

Figure 10: Numerical results for the 2D traction of a short bar (L = 2 λcℓ) with damage free at the boundary
(BC1). The dashed line in the force-displacement diagram reports the 1D homogeneous solution in equation (46),
coinciding with the numerical response for t < t∗ = 1.65.

5. Concluding remarks

We have shown in this paper that gradient damage models are good candidates to approxi-
mate the fracture of materials. Inserting them in a variational setting allows to formulate the non
local damage evolution problem in a very elegant and concise manner. Moreover, the concept
of stability of states rises immediately from this variational approach. Thanks to the presence
a characteristic material length, we can account both for size effects and for the stability of the
homogeneous states for sufficiently small bodies. The determination of the size beyond which
an homogeneous state is no more stable is one of the main step in the analysis of the properties
of a given model. That gives an additional information to the stress-strain curve which is fun-
damental to identify the state functions entering in the model. Even if the major part of the
results have been obtained here in a one-dimensional context, all these concepts can be easily
extended to a full three-dimensional setting. These theoretical extensions will be the aim of
future works. From a numerical viewpoint, computations of very complex geometry are already
available and the interested reader can refer to Bourdin et al. (2000), Bourdin et al. (2007) or
Amor et al. (2009).
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Appendix: Proof of the Clayperon Theorem (20)

As the couple (ut, αt) is solution of the evolution problem, it verifies in particular the balance
energy (12c) at each time t

α̇t

(

−w1ℓ
2∆αt +

1

2
A
′(αt)ε(ut) · ε(ut) + w′(αt)

)

= 0 (80)

which after integrating by parts and using the boundary conditions

α̇t∇αt · n = 0 on ∂Ω (81)

reads
∫

Ω
w1ℓ

2
∇αt · ∇ (α̇t) dΩ +

∫

Ω

(

1

2
A
′(αt)ε(ut) · ε(ut) + w′(αt)

)

α̇t dΩ = 0. (82)

Inserting into the time derivative of the total energy, we obtain

d

dt

(
∫

Ω

1

2
w1ℓ

2
∇αt · ∇αt dΩ +

∫

Ω

1

2
A(αt)ε(ut) · ε(ut) dΩ +

∫

Ω
w(αt) dΩ

)

=

∫

Ω
A(αt)ε(u̇t) · ε(ut) dΩ.

(83)

Using the equilibrium equations (10) and the displacement boundary conditions, the right hand
side of (83) becomes

∫

Ω
A(αt)ε(u̇t) · ε(ut) dΩ =

∫

Ω
ft · u̇t dΩ +

∫

∂F Ω
Ft · u̇t dΓ +

∫

∂UΩ
(σtn) · u̇d

t dΓ (84)

Hence
dE
dt

(ut, αt) =

∫

Ω
ft · u̇t dΩ +

∫

∂F Ω
Ft · u̇t dΓ +

∫

∂UΩ
(σtn) · u̇d

t dΓ (85)

Integrating in time the above relation and using the initial condition α0(x) = 0 lead to equation
(20). The equality (22) is a simple consequence of (84).
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Bažant, Z. P., Belytschko, T., Chang, T. P., 1984. Continuum theory for strain-softening. Journal
of Engineering Mechanics 110, 1666–1692.

Bazant, Z., Pijaudier-Cabot, G., 1989. Measurement of characteristic length of nonlocal contin-
uum. Journal of Engineering Mechanics 115 (4), 755–767.

Benallal, A., Billardon, R., Geymonat, G., 1993. Bifurcation and localization in rate indepen-
dent materials. In: Nguyen, Q. (Ed.), C.I.S.M Lecture Notes on Bifurcation and Stability of
Dissipative Systems. Springer-Verlag.

Benallal, A., Marigo, J.-J., 2007. Bifurcation and stability issues in gradient theories with soft-
ening. Modelling and Simulation in Material Science and Engineering 15, S283–S295.

Bourdin, B., 2007. Numerical implementation of the variational formulation of quasi-static brittle
fracture. Interfaces and Free Boundaries 9, 411–430.

Bourdin, B., Francfort, G., Marigo, J.-J., 2000. Numerical experiments in revisited brittle frac-
ture. Journal of the Mechanics and Physics of Solids 48, 797–826.

Bourdin, B., Francfort, G., Marigo, J.-J., 2007. The variational approach to fracture. Journal of
Elasticity 91, 1–148.

Braides, A., 1998. Approximation of Free-Discontinuity Problems. Vol. 1694 of Lecture Notes in
Mathematics. Springer.

Comi, C., 1999. Computational modelling of gradient-enhanced damage in quasi-brittle materi-
als. Mechanics of Cohesive-frictional Materials 4 (1), 17–36.

Comi, C., Perego, U., 2001. Fracture energy based bi-dissipative damage model for concrete.
International Journal of Solids and Structures 38 (36-37), 6427–6454.

Del Piero, G., Lancioni, G., March, R., 2007. A variational model for fracture mechanics: nu-
merical experiments. Journal of the Mechanics and Physics of Solids 55, 2513–2537.

32



Del Piero, G., Truskinovsky, L., July 2009. Elastic bars with cohesive energy. Continuum Me-
chanics and Thermodynamics 21 (2), 141–171.

Francfort, G., Marigo, J.-J., 1998. Revisiting brittle fracture as an energy minimization problem.
Journal of the Mechanics and Physics of Solids 46 (8), 1319–1342.

Giacomini, A., 2005. Ambrosio-Tortorelli approximation of quasi-static evolution of brittle frac-
tures. Calculus of Variations and Partial Differential Equations 22, 129–172.

Lancioni, G., Royer-Carfagni, G., 2009. The variational approach to fracture mechanics. A
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