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Abstract | The Cartier-Perrin theorem, which was published in 1995
and is expressed in the language of nonstandard analysis , permits,
for the �rst time perhaps, a clear-cut mathematical de�niti on of the
volatility of a �nancial asset. It yields as a byproduct a new under-
standing of the means of returns, of the beta coe�cient, and o f the
Sharpe and Treynor ratios. New estimation techniques from a uto-
matic control and signal processing, which were already suc cessfully
applied in quantitative �nance, lead to several computer ex periments
with some quite convincing forecasts.
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I. Introduction

Although volatility , which reects the price uctuations,
is ubiquitous in quantitative �nance (see, e.g., [3], [18], [22],
[28], [32], [37], and the references therein), Paul Wilmott
writes rightly ([37], chap. 49, p. 813):
Quite frankly, we do not know what volatility currently is,
never mind what it may be in the future.
Our title is explained by sentences like the following one in
Tsay's book ([35], p. 98):
. . . volatility is not directly observable . . .
The lack moreover of any precise mathematical de�nition
leads to multiple ways for computing volatility which are by
no means equivalent and might even be sometimes mislead-
ing (see,e.g., [20]). Our theoretical formalism and the cor-
responding computer simulations will con�rm what most
practitioners already know. It is well expressed by Gunn
([21], p. 49):
Volatility is not only referring to something that uctuate s
sharply up and down but is also referring to something that
moves sharply in a sustained direction.

The existence of trends [11] for time series, which should
be viewed as themeans, or averages, of those series, yields
� a natural and straightforward model-free de�nition of the
variance (resp. covariance) of one (resp. two) time series,
� simple forecasting techniques which are based on similar
techniques to those in [11], [12], [13], [14].
Exploiting the above approach to volatility for the return
of some �nancial asset necessitates some care due to the
highly uctuating character of returns. This is accom-
plished by considering the means of the time series asso-
ciated to the prices logarithms. The following results are
derived as byproducts:

1. We complete [13] with a new de�nition of the classic
beta coe�cient for returns. It should bypass most of the
existing criticisms.
2. The Sharpe ([30], [31]) and Treynor ratios, which are
famous performance measures for trading strategies (see,
e.g., [3], [28], [34], [37], and the references therein), are
connected to a quite arbitrary �nancial time series. They
might lead to new and useful trading indicators.

Remark 1 : The graphical representation of all the above
quantities boils down to the drawing of means which has
been already successfully achieved in [11], [12], [13], [14].

Our paper is organized as follows. After recalling the
Cartier-Perrin theorem [6], Section II de�nes (co)variances
and volatility. In order to apply this setting to �nancial
returns, Section III de�nes the means of returns and sug-
gests de�nitions of the beta coe�cient, and of the Sharpe
and Treynor ratios. Numerous quite convincing computer
experiments are shown in Section IV, which displays also
excellent forecasts for the volatility. Some short discussions
on the concept of volatility may be found in Section V.

II. Mean, variance and covariance revisited

A. Time series via nonstandard analysis

A.1 In�nitesimal sampling

Take the time interval [0; 1] � R and introduce as often
in nonstandard analysis the in�nitesimal sampling

T = f 0 = t0 < t 1 < � � � < t � = 1 g

where t i +1 � t i , 0 � i < � , is in�nitesimal , i.e., \very
small".1 A time series X (t) is a function X : T ! R.

A.2 S-integrability

The Lebesgue measureon T is the function m de�ned on
Tnf 1g by m(t i ) = t i +1 � t i . The measure of any interval
[c; d[� I , c � d, is its length d � c. The integral over [c; d[
of the time seriesX (t) is the sum

Z

[c;d [
Xdm =

X

t 2 [c;d [

X (t)m(t)

1See, e.g., [7], [8] for basics in nonstandard analysis.



X is said to beS-integrable if, and only if, for any interval
[c; d[ the integral

R
[c;d [ jX jdm is limited 2 and, if d � c is

in�nitesimal, also in�nitesimal.

A.3 Continuity and Lebesgue integrability

X is S-continuous at t � 2 T if, and only if, f (t � ) ' f (� )
when t � ' � .3 X is said to bealmost continuousif, and only
if, it is S-continuous on T n R, where R is a rare subset.4

X is Lebesgue integrableif, and only if, it is S-integrable
and almost continuous.

A.4 Quick uctuations

A time seriesX : T ! R is said to bequickly uctuating ,
or oscillating, if, and only if, it is S-integrable and

R
A X dm

is in�nitesimal for any quadrablesubset.5

A.5 The Cartier-Perrin theorem

Let X : T ! R be a S-integrable time series. Then,
according to the Cartier-Perrin theorem [6],6 the additive
decomposition

X (t) = E(X )( t) + X uctuation (t) (1)

holds where
� the mean, or average, E(X )( t) is Lebesgue integrable,7

� X uctuation (t) is quickly uctuating.
The decomposition (1) is unique up to an in�nitesimal.

Remark 2 : E(X )( t), which is \smoother" than X (t),
provides a mathematical justi�cation [11] of the trends in
technical analysis (see,e.g., [2], [25]).

Remark 3 : Calculations of the means and of its deriva-
tives, if they exist, are deduced, via new estimation tech-
niques, from the denoising results in [17], [27] (see also
[19]), which extend the familiar moving averages, which
are classic in technical analysis (see,e.g., [2], [25]).

B. Variances and covariances

B.1 Squares and products

Take two S-integrable time seriesX (t), Y (t), such that
their squares and the squares ofE(X )( t) and E(Y )( t) are
also S-integrable. The Cauchy-Schwarz inequality shows
that the products
� X (t)Y (t), E (X )( t)E (Y )( t),
� E(X )( t)Yuctuation (t), X uctuation (t)E (Y )( t),
� X uctuation (t)Yuctuation (t)
are all S-integrable.

B.2 Di�erentiability

Assume moreover thatE(X )( t) and E(Y )( t) are di�er-
entiable in the following sense: there exist two Lebesgue
integrable time seriesf; g : T ! R, such that, 8 t 2 T,

2A real number is limited if, and only if, it is not in�nitely large.
3a ' b means that a � b is in�nitesimal.
4The set R is said to be rare [6] if, for any standard real number

� > 0, there exists an internal set B � A such that m(B ) � � .
5A set is quadrable [6] if its boundary is rare.
6Remember that this result led to a new foundation [9] of the an al-

ysis of noises in automatic control and in signal processing . A more
down to earth exposition may be found in [26].

7E (X )( t) was called trend in our previous publications [11], [12],
[13], [14].

with the possible exception of a limited number of val-
ues of t, E (X )( t) = E(X )(0) +

Rt
0 f (� )d� , E (Y )( t) =

E(Y )(0) +
Rt

0 g(� )d� . Integrating by parts shows that the
products E(X )( t)Yuctuation (t) and X uctuation (t)E (Y )( t)
are quickly uctuating [9].

Remark 4 : Let us emphasize that the product

X uctuation (t)Yuctuation (t)

is not necessarily quickly uctuating.

B.3 De�nitions

1. The covariance of two time seriesX (t) and Y (t) is

cov(XY )( t) = E ((X � E(X ))( Y � E(Y ))) ( t)

' E (XY )( t) � E (X )( t) � E (Y )( t)

2. The variance of the time seriesX (t) is

var(X )( t) = E
�
(X � E(X ))2�

(t)

' E (X 2)( t) � (E (X )( t)) 2

3. The volatility of X (t) is the corresponding standard de-
viation

vol(X )( t) =
p

var(X )( t) (2)

The volatility of a quite arbitrary time series seems to be
precisely de�ned here for the �rst time.

Remark 5 : Another possible de�nition of the volatility
(see [20]), which is not equivalent to Equation (2), is the
following one

E (jX � E(X )j) ( t)

It will not be exploited here.

III. Returns

A. De�nition

Assume from now on that, for any t 2 T,

0 < m < X (t) < M

where m, M are appreciable.8 This is a realistic assump-
tion if X (t) is the price of some �nancial assetA. The log-
arithmic return , or log-return,9 of X with respect to some
limited time interval � T > 0 is the time seriesR� T de�ned
by

R� T (X )( t) = ln
�

X (t)
X (t � � T )

�
= ln X (t) � ln X (t � � T )

From X (t )
X ( t � � T ) = 1 + X (t ) � X ( t � � T )

X ( t � � T ) , we know that

R� T (X )( t) '
X (t) � X (t � � T )

X (t � � T )
(3)

if X (t) � X (t � � T ) is in�nitesimal. The right handside of
Equation (3) is the arithmetic return.

The normalized logarithmic return is

r � T (X )( t) =
R� T (t)

� T
(4)

8A real number is appreciable if, and only if, it is neither in�nitely
small nor in�nitely large.

9The terminology continuously compounded return is also used.
See, e.g., [5] for more details.



B. Mean

B.1 De�nition

ReplaceX : T ! R by

ln X : T ! R; t 7! ln (X (t))

where the logarithms of the prices are taken into account.
Apply the Cartier-Perrin theorem to ln X . The mean, or
average, of r � T (t) given by Equation (4) is

�r � T (X )( t) =
E(ln X )( t) � E (ln X )( t � � T )

� T
(5)

As a matter of fact r � T (X ) and �r � T (X ) are related by

r � T (X )( t) = �r � T (X )( t) + quick uctuations

Assume that E(X ) and E(ln X ) are di�erentiable accord-
ing to Section II-B.2. Call the derivative of E(ln X )
the normalized mean logarithmic instantaneous returnand
write

�r (X )( t) =
d
dt

E(ln X )( t) (6)

Note that E(ln X )( t) ' ln (E (X )( t)) if in Equation (1)

X uctuation (t) ' 0. Then �r (X )( t) '
d

dt E (X )( t )
E (X )( t ) .

B.2 Application to beta

Take two assetsA and B such that their normalized
logarithmic returns r � T (A)( t) and r � T (B )( t), de�ned by
Equation (4), exist.10 Following Equation (5), consider the
space curvet; �r � T (A)( t); �r � T (B )( t) in the Euclidean space
with coordinates t; x; y . Its projection on the x; y plane is
the plane curveC de�ned by

xC(t) = �r � T (A)( t); yC(t) = �r � T (B )( t)

The tangent of C at a regular point, which is de�ned by
dx C ( t )

dt ; dy C ( t )
dt , yields, if dx C ( t )

dt 6= 0,

� yC � � (t)� xC (7)

where
� � xC = xC(t + h) � xC(t), � yC = yC(t + h) � yC(t);
� h 2 R is \small";
�

� (t) =
dy C ( t )

dt
dx C ( t )

dt

(8)

When yC(t) may be viewed locally as a smooth function of
xC(t), Equation (8) becomes

� (t) =
dyC

dxC

B.3 The Treynor ratio of an asset

Let � M (A)( t) be the beta coe�cient de�ned in Section
III-B.2 for A with respect to the market portfolio M . De-
�ne the Treynor ratio and the instantaneous Treynor ratio
of A with respect to M respectively by

TR M ;� T (A)( t) =
�r � T (A)( t)
� M (A)( t)

; TR M (A)( t) =
�r (A)( t)

� M (A)( t)

10 This Section is adapting for returns the presentation in [13 ].

C. Volatility

Formulae (2), (4), (5), (6) yield the following mathemat-
ical de�nition of the volatility of the assetA:

vol � T (A)( t) =
p

E(r � T � �r � T )2(t) (9)

which yields

vol � T (A)( t) '
q

E(r 2
� T )( t) � (�r � T (t))2

The value at time t of vol � T (A) may be viewed as the
actual volatility (see, e.g., [37], chap. 49, pp. 813-814).

Remark 6 : A crucial di�erence between Formula (9)
and the usual historical, or realized, volatilities (see, e.g.,
[37], chap. 49, pp. 813-814) lies in the presence of a non-
constant mean. It is often assumed to be 0 in the existing
literature.

Remark 7 : There is no connection with
� the implied volatility, which is connected to the Black-
Scholes modeling (see,e.g., [37], chap. 49, pp. 813-814),
� the recent model-free implied volatility (see [4], and [23],
[29]), although the origin of our viewpoint may be partly
traced back to our model-free control strategy ([10], [24]).

D. The Sharpe ratio of an asset

De�ne the Sharpe ratio of the assetA by

SR� T (A)( t) =
�r � T (A)( t)

vol � T (A)( t)
(10)

According to [1], p. 52, it is quite close to some utilization
of the Sharpe ratio in high-frequency trading.

IV. Computer experiments

We have utilized the following three listed shares:
1. IBM from 1962-01-02 to 2009-07-21 (11776 days) (Fig-
ures 1 and 2),
2. JPMORGAN CHASE (JPM) from 1983-12-30 until
2009-07-21 (6267 days) (Figures 3),
3. COCA COLA (CCE) from 1986-11-24 until 2009-07-21
(5519 days) (Figures 4).
Figures 1 and 3 show a \better" behavior for the normal-
ized mean logarithmic return (6), i.e., �r (t) is less a�ected
by an abrupt short price variation. Such variations are
nevertheless causing important variations on our volatility,
with only a \slow mean return". We suggest an adap-
tive threshold for attenuating this annoying feature, which
does not reect well the price behavior. Note the excellent
volatility forecasts which are obtained via elementary nu-
merical recipes as in [11], [12], [13], [14]. Our forecasting
results, which are easily computable, seem to be more re-
liable than those obtained via the celebrated ARCH type
techniques, which go back to Engle (see [36] and the refer-
ences therein).11

The beta coe�cients is computed with respect to the
S&P 500 (see Figures 5). The results displayed in Figures
6 are obtained via the numerical techniques of [13].

11 Those comparisons need to be further investigated.



0 2000 4000 6000 8000 10000 12000
0

100

200

300

400

500

600

700

Time

(a)Daily price

0 2000 4000 6000 8000 10000 12000
-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Time

(b)Normalized logarithmic return r (t)

0 2000 4000 6000 8000 10000 12000
-5

-4

-3

-2

-1

0

1

2

3
x 10

-3

Time

(c)Normalized mean logarithmic return � r (t )

0 2000 4000 6000 8000 10000 12000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Time

(d) vol (IBM )( t) ({) and 5 days forecasting (- -)

0 2000 4000 6000 8000 10000 12000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Time

(e)vol (IBM )( t) ({) and 20 days forecasting (- -)
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Fig. 4. COCA COLA (CCE)

Figure 7 displays the Sharpe ratio of S&P 500. With
� t = 10 a trend is di�cult to guess in Figure 7-(a). Figure
7-(b) on the other hand, where � t = 100, exhibits a well-
de�ned trend which yields a quite accurate forecasting of
10 days.

V. Conclusion

Although we have proposed a precise and elegant math-
ematical de�nition of volatility, which
� yields e�cient and easily implementable computations,
� will soon be exploited for a dynamic portfolio manage-
ment [15],
the harsh criticisms against its importance in �nancial en-
gineering should certainly not be dismissed (see,e.g., [33]).
Note for instance that we have not tried here to forecast ex-
treme events,i.e., abrupt changes (see [16]) with this tool.
This aim has been already quite successfully achieved in
[11], [12], [13], [14], not via volatility but by taking ad-
vantage of indicators that are related to prices and not to
returns.
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