C. Bardos, R. Caflisch, and B. Nicolaenko, The milne and kramers problems for the boltzmann equation of a hard sphere gas, Communications on Pure and Applied Mathematics, vol.165, issue.3, pp.323-352, 1986.
DOI : 10.1002/cpa.3160390304

C. Bardos, F. Golse, and Y. Sone, Half-Space Problems for the Boltzmann Equation: A Survey, Journal of Statistical Physics, vol.7, issue.2-4, pp.275-300, 2006.
DOI : 10.1007/s10955-006-9077-z

H. Brézis, Analyse fonctionnelle Théorie et applications, Collection Mathématiques Appliquées pour la Ma??triseMa??trise, 1983.

R. Caflisch, The Boltzmann equation with a soft potential, Part I: Linear, spatially homogeneous, Commun. Math. Phys, pp.74-71, 1980.

R. Caflisch, The Boltzmann equation with a soft potential, Part II: Nonlinear, spatially-periodic, Commun. Math. Phys, pp.74-97, 1980.

R. Caflisch and B. Nicolaenko, Shock profile solutions of the Boltzmann equation, Communications in Mathematical Physics, vol.34, issue.2, pp.161-194, 1982.
DOI : 10.1007/BF01206009

C. Cercignani, Half-space problems in the kinetic theory of gases, Lecture Notes in Phys, vol.249, pp.35-50, 1985.
DOI : 10.1007/BFb0016381

F. Coron, F. Golse, and C. Sulem, A classification of well-posed kinetic layer problems, Communications on Pure and Applied Mathematics, vol.35, issue.4, pp.41-409, 1988.
DOI : 10.1002/cpa.3160410403

L. Desvillettes and F. Golse, A REMARK CONCERNING THE CHAPMAN-ENSKOG ASYMPTOTICS, Adv. Math. Appl. Sci. World Sci. Publishing, River Edge NJ Arch. Ration. Mech. Anal, vol.22, issue.103, pp.191-203, 1988.
DOI : 10.1142/9789814354165_0007

H. Grad, Asymptotic theory of the Boltzmann equation. II, Rarefied Gas Dynamics (Proc. 3rd Internat. Sympos.. D. Hilbert, Begründung der kinetischen Gastheorie, pp.26-59, 1912.

T. Liu and S. Yu, Boltzmann Equation: Micro-Macro Decompositions and Positivity of Shock Profiles, Communications in Mathematical Physics, vol.246, issue.1, pp.133-179, 2004.
DOI : 10.1007/s00220-003-1030-2

B. Nicolaenko, Shock wave solutions of the Boltzmann equation as a nonlinear bifurcation problem from the essential spectrum, Théories cinétiques classiques et relativistes (Colloq. Internat. Centre Nat, pp.127-150, 1974.

C. R. Nat and . Sci, 17. B. Nicolaenko, A general class of nonlinear bifurcation problems from a point in the essential spectrum Application to shock wave solutions of kinetic equations, in: Applications of bifurcation theory, Proc. Advanced Sem, pp.333-357, 1975.

Y. Sone, Sone, Molecular Gas Dynamics: Theory, Techniques and Applications, Modeling and Simulation in Science, Engineering and Technology Notes on the boundary conditions for fluiddynamic equations on the interface of a gas and its condensed phase, Phys. Fluids, pp.13-324, 2001.

S. Ukai, T. Yang, and S. Yu, Nonlinear Boundary Layers of the Boltzmann Equation: I. Existence, Communications in Mathematical Physics, vol.236, issue.3, pp.373-393, 2003.
DOI : 10.1007/s00220-003-0822-8

S. Ukai, T. Yang, and S. Yu, Nonlinear Stability of Boundary Layers of the Boltzmann Equation, I. The case M ? <?1, Communications in Mathematical Physics, vol.244, issue.1, pp.99-109, 2003.
DOI : 10.1007/s00220-003-0976-4