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Abstract 

 Increasing amounts of MoO3 were added to SiO2-B2O3-Na2O-CaO-Al2O3 glasses in order 

to trap molybdenum as powellite (nominally CaMoO4). Different heat treatments were 

performed to study their influences on powellite crystallization by X-ray diffraction and EPR. 

The glass compositions studied in this work lead to glass-ceramics rich in CaMoO4, up to 

[MoO3] = 5 mol% no poorly durable Na2MoO4 phase was identified by XRD. Trivalent 

actinides surrogates (Gd
3+

) were observed to incorporate into CaMoO4 crystals. 
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1. Introduction 

 

 Spent fuel from GCR (Gas Cooled Reactors), mainly worked in France and U.K. during 

the second part of the 20
th

 century is highly concentrated in molybdenum. During vitrification 

processes, Mo-rich glasses can lead to the separation of a poorly durable phase (called 

“yellow phase”) containing radioactive elements like 
137

Cs [1].  Indeed, in glasses prepared 

under neutral or oxidizing atmospheres, molybdenum appears mainly as Mo
6+ 

with a low 

solubility (~1 mol%) and crystallize in alkali or alkaline-earth molybdates during melt cooling 

and heat treatments. Crystallization of the poorly durable phase Na2MoO4 must be avoided to 

keep a low leachability of the immobilization glass matrices. 

 Glass-ceramics are known to exhibit improved properties with respect to glasses as 

mechanical and thermal properties [2]. Besides glass-ceramics are easier to process than 

ceramics since no high pressures or extremely high temperatures are needed. Therefore, new 

glass ceramics formulations [3,4] were studied to trap up to 12 wt% of molybdenum as 

powellite CaMoO4 which is a stable phase in vitreous medium.  

 In this work, we synthesized calcium enriched aluminoborosilicate glasses to study the 

CaMoO4 formation and to obtain a simplified model for powellite-rich glass-ceramics. Heat 

treatments were performed to control the content and the size of crystallites and the structural 

changes were studied by X-ray diffraction (XRD) and electron paramagnetic resonance (EPR) 

measurements.  

  



2. Experimental methods 

  

 For this study, we prepared glasses in the system: SiO2-B2O3-Na2O-CaO-Al2O3. A small 

quantity of Gd2O3 (0.15 mol%) was added to all glasses to study the speciation of rare earth 

elements between the glassy and crystalline phases. For that purpose, Gd
3+ 

was used as a 

spectroscopic probe for EPR measurements. Indeed, EPR spectroscopy is a quantitative tool 

for analyzing ion speciation and Gd
3+ 

ion EPR spectra are known in glasses [5,7]. 

Two series were prepared where x= 0.5, 2.5, 5, 7 mol% corresponds to MoO3 content: 

(i) M1x with MoO3 and CaO introduced in stoichiometric proportions (0.9985-

2x/100)(65.04 SiO2 - 17.22 B2O3 - 13.67 Na2O - 4.14 Al2O3) - x CaO - x MoO3 - 0.15 

Gd2O3 (in mol%). 

(ii) M2x with Ca introduced in excess (0.9985-2x/100)(61.16 SiO2 - 16.28 B2O3 - 12.85 

Na2O - 3.88 Al2O3 - 5.82CaO) - x CaO - x MoO3  - 0.15 Gd2O3 (in mol%). For all M2x 

glasses we have [CaCO3] > [MoO3] + [Al2O3] so that more Ca
2+

 ions are available to 

crystallize into powellite.  

Parent glasses were prepared by mixing desired amount of reagent grade SiO2, H3BO3, 

Na2CO3, Al2O3, CaCO3, MoO3 and Gd2O3. Each batch (~30 g) was melt at 1500°C for 3 h and 

ground before remelting (1500°c for 2 h) for homogeneity. During the first melting, a plateau 

at 700°C during 4 hours is necessary for decarbonation of Na2CO3 and CaCO3. Samples are 

quenched onto a copper plate or into water and are annealed at 500°C for 2 h to relieve 

internal stresses. Chemical analysis by EDX (energy dispersive X-ray analysis) of glasses 

showed that the final Na content is about 40 % lower after the melting process, other elements 

contents seemed to be unchanged (boron content was not measured). 

 Ceramics were elaborated with two chemical compositions: pure powellite CaMoO4 and 

powellite containing 0.15 mol% of Gd2O3 (mentioned later as CaMoO4-Gd). Appropriate 

amounts of reagents were grounded and pellets were obtained with a mechanical press. 

Ceramics were then sintered at 1150°C for 12 h under air. 

 Two different crystallization methods were investigated to control size and concentration 

of powellite.  

(i) The first method consists of a nucleation stage at Tn and a crystal growth stage at 

Tc on annealed parent glasses. Samples were treated at Tn = 650°C or Tn = 950°C 

during 2 h and then transferred to a preheated furnace at Tc = 1050°C or 1100°C 

for 2 h and 20 h. 



(ii) The second method consists of a rapid cooling (0.5 h) from 1500°C following the 

2
nd

 melting to a crystal growth stage at Tc=1100°C during 4h or 22h. The samples 

were then quenched to room temperature in water or in air. 

 All samples were reduced into powder (< 40µm) and studied by (XRD). The diffraction 

data were collected at room temperature on a Panalytical (Philips) diffractometer in the 

Bragg-Brentano geometry with a Cu anti-cathode: K1, K2 (= 1.54560 Å and = 1.54439 

Å, 40 kV, 40 mA) and a linear detector. The angular range 15° - 60° was scanned in 0.02° 

steps with a minimum counting time of 90 s/step. Particular attention was paid to probe the 

same volume of powder for all samples during XRD measurements. EPR measurements were 

effected at room temperature on a X band ( = 9.86 GHz) EMX Bruker EPR spectrometer 

using a 100 kHz field modulation, 3 Gauss of amplitude modulation. Microwave powers (MP) 

between 1 and 50 mW were used for studying Gd
3+

 and Mo
5+

 ions environments and for 

analyzing their microwave saturation properties. 

 

3. Results and discussion 

  

 Figure 1 shows the XRD patterns of samples M1x and M2x with increasing Mo 

concentration. The broad line around 22° 2 is attributed to the WAXS (Wide Angle X-ray 

Scattering) signal of the amorphous aluminoborosilicate phase. Powellite is the only 

crystalline phase observed in the various XRD patterns of glass ceramics with [MoO3] ≤ 5 

mol%. For the highest Mo concentration (7 mol%), samples are heterogeneous. However M27 

is more homogeneous than M17 since there are only small inclusions in the M27 bulk 

compared to a phase completely separated from the M17 bulk. Moreover a thin yellow layer 

is observed on the M17 sample after quenching on a copper plate. The XRD patterns on figure 

1 (g) and (h) show that the separated phase and the inclusions are composed of CaMoO4 

(JCPDS 01-077-2238), Na2MoO4 (JCPDS 01-073-1797) and Na2MoO4, 2H20 (JCPDS 01-

070-1710). The appearance of a Na2MoO4, 2H20 phase could be due to hydration of the 

Na2MoO4 phase during samples storage after the synthesis.  In addition, the relative 

proportion of alkali molybdates in the separated phase of M17 sample is qualitatively higher 

than in the inclusions of the M27 sample. In this work, the calcium content in the parent glass 

seems to be an important parameter to control samples homogeneity and limit alkali 

molybdates precipitation for high [MoO3] content. From now on we will focus on the M2x 

series.  



 The EPR spectra for the M2x series, illustrated in figure 2, show different well-known 

lines typical for Gd
3+

 and Mo
5+

 ions in glass. For [MoO3] ≥ 2.5 mol% a complex signal 

composed of various lines is observed. The lines at g~2.0, g~2.8 and g~6.0 correspond to the 

so called “U” spectrum and are attributed to Gd
3+

 in network modifier position (Gd
3+

[n.m]) [6]. 

The signal at g=4.6 is attributed to Gd
3+ 

characterized by high crystalline field acting as 

network former (Gd
3+

[n.f]) [6]. The broad resonance can be ascribed to magnetic oxide clusters 

of Gd
3+ 

ions, linked through the oxygen bridges [7]. The last EPR line at g=1.91 could be 

attributed to Mo
5+

 diluted in the glassy phase [8, 9, 10]. The increase of MoO3 content and 

therefore the powellite phase formation lead to different changes on the M2x samples EPR 

spectra. The first is a decrease of Gd
3+

[n.f]/Gd
3+

[n.m] ratio (see inset in figure 2). We 

approximated this ratio by the ratio of the intensity of the line at g = 4.6 over the intensity of 

the line at g = 6 since the lines at g = 2 and 2.8 are superimposed on other EPR signals. The 

second change is the increase of the Mo
5+ 

line with MoO3 content in glass as reported in [9]. 

The last change is the appearance with the Mo doping level of a new complex EPR 

component which is described in details below.  

Figure 3 shows the EPR spectra of the CaMoO4 ceramics with and without gadolinium. The 

only EPR lines in common between the two ceramics are the six lines centered at g = 2 

attributed to diluted Mn
2+

 ions [11] and correlated to the presence of this impurity in the 

reagents used for the synthesis. As a consequence, the other EPR lines on the CaMoO4-Gd 

spectra could be associated to Gd
3+

 ions incorporated into the powellite crystalline phase. The 

circled lines on the figure 2 are all observed on the CaMoO4-Gd EPR spectrum.  Moreover, 

microwave saturation properties of the Gd
3+

 EPR spectrum suggest that this ion is inserted in 

several sites in the powellite structure, further studies will be made to determine the nature of 

the different Gd
3+

 ion sites in the powellite structure.  

 Two different heat treatments were performed on samples to change the microstructure. At 

the macroscopic scale, a sharp difference between the two treatments is visible by eye. 

Indeed, for the M225 samples no differences are seen for samples heat treated by nucleation 

(2 h)  and crystal growth (20 h) at 1100°C, on the contrary powellite needles (see figure 4,d ) 

are clearly visible in the M225 heat treated at 1100°C for the crystal growth stage during 22 h. 

After various heat treatments, only powellite is observed by XRD in addition to the 

aluminoborosilicate glass for [MoO3] ≤ 5 mol%. Nevertheless, the gaussian width does not 

evolve as expected since the FWHM (full width at half maximum) does not decrease with 

heat treatments duration. We have therefore no increase of the coherent domains size of 

powellite crystals during the growth stage. Moreover, no increase in powellite concentration 



was detected by XRD, which could be due to an inappropriate nucleation temperature. The 

EPR study reveals a decrease of Mo
5+

 ions (see figure 4,c) in glass with heat treatment 

duration for all samples. This result could be associated to a change in redox couple of the 

elements during the nucleation and crystal growth stage. No significant change in the EPR 

lines associated with Gd
3+

 incorporated into the powellite phase is observed. The 

Gd
3+

[n.f]/Gd
3+

[n.m] ratio changes with heat treatments but no global trends with durations or 

temperatures were found. In addition, this work shows that Gd
3+

 is a good EPR probe for 

studying the speciation of this ion between the different sites of the glassy and crystalline 

phases as a function of synthesis and heat treatments conditions. 

The synthesis parameters used in this work have shown that we can obtain a two phase 

system of glass-ceramics. The fact that only CaMoO4 is detected by XRD in samples for 

[MoO3]  ≤  5 mol% could be due to the high percentage of B2O3 [9,12] combined with the 

addition of Al2O3 introduced in the glass composition [13]. In that case, the sodium acts as a 

charge compensator of BO4
-
 and AlO4

-
 units and is not available for the crystallization in 

alkali molybdates. EPR spectroscopy has shown the presence of different paramagnetic 

species like Mo
5+

 (S = 1/2) in the glassy phase and Gd
3+

 (S=7/2) in the powellite phase. The 

decrease of Gd
3+

[n.f]/Gd
3+

[n.m] ratio in the glassy phase is associated to the powellite formation. 

This result could therefore show that Gd
3+

 ions in network former positions enter mainly in 

the powellite phase. D. Caurant et al. [9] proposed that Mo
6+

 ions are in depolymerized 

regions of the glass and could be precursors of the nucleation stage. According to this work, 

the decrease of Gd
3+

[n.f] relative concentration could show the presence of these ions in the 

vicinity of the depolymerized parts of the glass. X-ray results did not revealed a change in size 

or concentration of powellite, therefore analysis with imaging techniques like SEM (scanning 

electron microscope) are in progress and have shown to be a good way to study the powellite 

size evolution. 

 

5. Conclusion 

 

 The study of two series of glass-ceramics belonging to the system SiO2-B2O3-Na2O-CaO-

Al2O3-MoO3 with increasing MoO3 content highlights two main points. The considered 

synthesis protocol leads to glass-ceramics containing powellite in a glassy matrix under 

various heat treatments. No poorly durable Na2MoO4 phase was detected by XRD for [MoO3] 

≤ 5 mol%. The XRD study also showed that an increase of CaO content may favor the 

CaMoO4 crystallization. EPR measurements revealed a complex spectrum only observed in 



glass-ceramics containing powellite, which could be associated to Gd
3+

 ions incorporated into 

the crystalline phase.  
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Figure Captions 

 

Figure 1: Influence of Ca concentration on the XRD patterns of different Mo glass-ceramics. 

(a) M225, (b) M125, (c) M25, (d) M15, (e) M27, (f) M17, (g) M27 inclusions, (h) M17 

separated phase.  A scale factor of 0.22 was applied to patterns (g) and (h) for clarity reasons. 

(c: CaMoO4 (JCPDS 01-077-2238), *: Na2MoO4 (JCPDS 01-073-1797) or Na2MoO4, 2H20  

(JCPDS 01-070-1710 )).  

 

Figure 2: Influence of Mo concentration on the EPR spectra (MP = 20 mW) of different M2x 

glass-ceramics. EPR lines corresponding to Gd
3+

 inserted in powellite in M25 sample are 

circled. Inset: evolution of the ratio Gd
3

+[n.f]/Gd
3+

[n.m] with molybdenum concentration in M2x 

samples (solid line) and M1X samples (dashed line), line is only a guide for the eyes. 

 

Figure 3: EPR spectra (MP = 20 mW) of powellite CaMoO4 (solid line) and CaMoO4 doped 

with 0.15 mol% of Gd2O3 (dashed line). Only g values observed in the glass-ceramics are 

reported here.   

 

Figure 4: (a) M225 heat treated at 1100°C during 4h. (b) M225 heat treated at 1100°C during 

22h. (c) EPR spectra of heat treated samples, (1) M25 heat treated 2 h at 950°C and 2 h (solid 

line) or 20 h (dashed line) at 1100°C (2) M25 heat treated 4 h (solid line) or 22 h (dashed line) 

at 1100°C. 
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