J. J. Lander, Solubility and Diffusion Coefficient of Carbon in Nickel: Reaction Rates of Nickel???Carbon Alloys with Barium Oxide, Journal of Applied Physics, vol.23, issue.12, p.1305, 1952.
DOI : 10.1063/1.1702064

P. W. Sutter, Epitaxial graphene on ruthenium, Nature Materials, vol.90, issue.5, p.406, 2008.
DOI : 10.1038/nmat2166

H. Amara, Understanding the Nucleation Mechanisms of Carbon Nanotubes in Catalytic Chemical Vapor Deposition, Physical Review Letters, vol.100, issue.5, p.56105, 2008.
DOI : 10.1103/PhysRevLett.100.056105

URL : https://hal.archives-ouvertes.fr/hal-00303796

J. Coraux, Structural Coherency of Graphene on Ir(111), Nano Letters, vol.8, issue.2, p.565, 2008.
DOI : 10.1021/nl0728874

H. Amara, Tight-binding potential for atomistic simulations of carbon interacting with transition metals: Application to the Ni-C system, Physical Review B, vol.79, issue.1, p.14109, 2009.
DOI : 10.1103/PhysRevB.79.014109

URL : https://hal.archives-ouvertes.fr/hal-00386898

I. V. Makarenko, Structural properties of a monolayer graphite film on the (111)Ir surface, Physics of the Solid State, vol.49, issue.2, p.371, 2007.
DOI : 10.1134/S106378340702031X

L. N. Bolotov, Topographic study by scanning-tunneling microscopy of a two-dimensional graphite film on $$(10\bar 10)$$, Physics of the Solid State, vol.40, issue.8, p.1423, 1998.
DOI : 10.1134/1.1130574

J. C. Shelton, Equilibrium segregation of carbon to a nickel (111) surface: A surface phase transition, Surface Science, vol.43, issue.2, p.493, 1974.
DOI : 10.1016/0039-6028(74)90272-6

Y. Gamo, Atomic structure of monolayer graphite formed on Ni(111), Surface Science, vol.374, issue.1-3, p.61, 1997.
DOI : 10.1016/S0039-6028(96)00785-6

Y. Zhang, Comparison of Graphene Growth on Single-Crystalline and Polycrystalline Ni by Chemical Vapor Deposition, The Journal of Physical Chemistry Letters, vol.1, issue.20, p.3101, 2010.
DOI : 10.1021/jz1011466

R. T. Baker, Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene, Journal of Catalysis, vol.26, issue.1, p.51, 1972.
DOI : 10.1016/0021-9517(72)90032-2

S. Hofmann, Surface Diffusion: The Low Activation Energy Path for Nanotube Growth, Physical Review Letters, vol.95, issue.3, p.36101, 2005.
DOI : 10.1103/PhysRevLett.95.036101

F. Abild-pedersen, density functional theory calculations, Physical Review B, vol.73, issue.11, p.115419, 2006.
DOI : 10.1103/PhysRevB.73.115419

S. Marchini, Scanning tunneling microscopy of graphene on Ru(0001), Physical Review B, vol.76, issue.7, p.75429, 2007.
DOI : 10.1103/PhysRevB.76.075429

J. A. Rodrguez-manzo, Growth of Single-Walled Carbon Nanotubes from Sharp Metal Tips, Small, vol.85, issue.23, p.2710, 2009.
DOI : 10.1002/smll.200900590

A. E. Morgan and G. A. Somorjai, Low energy electron diffraction studies of gas adsorption on the platinum (100) single crystal surface, Surface Science, vol.12, issue.3, p.405, 1968.
DOI : 10.1016/0039-6028(68)90089-7

C. M. Lee and J. Choi, Direct growth of nanographene on glass and postdeposition size control, Applied Physics Letters, vol.98, issue.18, p.183106, 2011.
DOI : 10.1063/1.3587784