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Abstract— An elementary arbitrage principle and the
existence of trends in financial time series, which is based
on a theorem published in 1995 by P. Cartier and Y. Perrin,
lead to a new understanding of option pricing and dynamic
hedging. Intricate problems related to violent behaviors of the
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convincing computer experiments are reported.
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I. INTRODUCTION

Option pricing intends like many other financial techniques

to tame as much as possible market risks. The Black-Scholes-

Merton (BSM) approach ([7], [39]), which is forty years old,

is still by far the most popular setting, although some of its

drawbacks and pitfalls were known shortly after its publica-

tion. It had an enormous impact1 on the huge development

of modern quantitative finance. Its heavy use of advanced

mathematical tools, like stochastic differential equations and

partial differential equations, explains to a large part the

features of today’s mathematical finance, which is enjoying

a great popularity not only among academics but also among

practitioners. Many textbooks (see, e.g., [12], [13], [16], [26],

[30], [34], [42], [50]) provide an excellent overview of this

lively and fascinating field.

Let us add in the context of this conference that a growing

number of references exploits the connections of the BSM

setting with methods stemming from various engineering

fields. We mention here:

• learning techniques (see, e.g., [27], [31]),

• control theory (see, e.g., [2], [4], [10], [14], [37], [41],

[43], [49]).

In 1997, Scholes and Merton won the Nobel Prize in

economics – Black died in 1995 – not for the discovery

of the pricing formulas which were already known ([8],

[44], [45], [48]), but for the methods they introduced for

deriving them.2 The most elegant concepts of replication and

1The performative aspect of the BSM approach might also be stressed (see,
e.g., [35]).

2See, e.g., the historical comments in [47], [38], [28] and [29].

dynamic delta hedging, which are now central both in theory

and practice, have nevertheless been the subject of severe

criticisms for their lack of realism (see, e.g., [15]). Dynamic

delta hedging moreover cannot be extended to more general

stochastic processes exhibiting jumps for instance ([40]).

Pricing formulas are derived here via an elementary ar-

bitrage principle which employs the expected return of the

underlying and goes back at least to [1] and [9].3 Combined

with the utilization of trends ([19]) it permits to

1) alleviate one of the most annoying paradoxes in modern

approaches that concerns the uselessness of the expected

return of the underlying (see, e.g., [6]),

2) deal quite simply with more subtle behaviors of the

underlying, which may exhibit jumps, by incorporating

those behaviors in the trends,

3) define a new more realistic dynamic hedging.

Our paper is organized as follows. Section II summarizes

and sometimes improves some facts already presented earlier

(see [22] and the references therein). Section III recalls how

pricing formulas may be derived via an elementary arbitrage

principle, i.e., without replication. Section IV slightly modifies

those formulas by taking trends into account. A new dynamic

hedging, which employs both the pricing formulas and the

trend of the underlying, is proposed in Section V. Due to an

obvious lack of space, the convincing computer illustrations,

which are displayed in Section VI, are limited to a quite violent

behavior of the underlying. Section VII further analyzes the

change of paradigm which might arise from this new setting.

II. THE CARTIER-PERRIN THEOREM AND SOME OF ITS

CONSEQUENCES: A SHORT REVIEW

A. Trend

The theorem due to Cartier and Perrin [11] is expressed in

the language of nonstandard analysis. It depends on a time

sampling TS where the difference tν+1 − tν is infinitesimal,

i.e., “very small”. Then, under a mild integrability condition,

the price S(t) of the financial quantity may be decomposed

([19]) in the following way

S(t) = STS,trend(t) + STS,fluct(t)

where

3See the comments by [46] and [51].



• STS,trend is the trend, or the mean, or the average, of S;

• STS,fluct is a quickly fluctuating function around 0, i.e.,
∫ τ1
τ0

STS,fluct(τ)dτ is infinitesimal for any finite interval

[τ0, τ1],
• STS,trend and STS,fluct are unique up to an additive

infinitesimal quantity.

Remark 2.1: STS,trend(t), which is “smoother” than S(t),
provides a mathematical justification ([19]) of the trends in

technical analysis (see, e.g., [3], [32]).

Remark 2.2: Note that STS,fluct(t) is analogous to “noises”

in engineering according to the analysis of [17].4 See [25]

and [36] for the estimation of Strend(t) and of its derivatives.

See [22], and the references therein, for convincing numerical

experiments including forecasting results which are deduced

from the trends.

B. Return

If STS,trend is differentiable at t, then its logarithmic

derivative

rTS,trend(t) =
ṠTS,trend(t)

STS,trend(t)
(1)

is called the trend-return of S at t.

Remark 2.3: See [21], [22] for other definitions of returns.

C. Volatility

Take two integrable time series S1(t), S2(t), such that their

squares and the squares of S1,trend(t) and S2,trend(t) are also

integrable. It leads us to the following definitions, which are

borrowed from [21], [22]:

1) The covariance of two time series S1(t) and S2(t) is
the time series

cov(S1S2)(t) = Tr ((S1 − Tr(S1))(S2 − Tr(S2))) (t)

≃ Tr(S1S2)(t)−Tr(S1)(t)× Tr(S2)(t)

where Tr(•) denotes the trend with respect to the time

sampling TS.

2) The variance of the time series S1(t) is

var(S1)(t) = Tr
(

(S1 − Tr(S1))
2
)

(t)

≃ Tr(S2
1)(t)− (Tr(S1)(t))

2

3) The volatility of S1(t) is the corresponding standard

deviation

vol(S1)(t) =
√

var(S1)(t) (2)

III. PRICING WITHOUT TRENDS

We limit ourselves for simplicity’s sake to European call

options, which are options for the right to buy a stock or an

index at a certain price at a certain maturity date.

4The notion of “noise” has sometimes a quite different meaning in quanti-
tative finance ([5]).

A. Arbitrage

Let r(t) be the risk-free rate. The expected price at maturity

T should be equal to

S(0) exp

(

∫ T

0

r(τ)dτ

)

(3)

A heuristic justification goes like this: Assume, for simplicity’s

sake and like in today’s academic literature, that

• r(t) is a constant r,

• S(t) follows a geometric Brownian motion

S(t) = S(0) exp

[(

µ−
σ2

2

)

t+ σW (t)

]

(4)

where

– W (t) is a standard Brownian motion,

– µ and σ are constant.

Providing a theoretical estimation of µ and σ from historical

data is classic and straightforward. We thus know the mean

S(0)eµt of S(t). If µ > r (resp. µ < r), it might be

profitable for the arbitrageur to borrow money (resp. selling

the underlying) for buying the underlying S (resp. for investing

the corresponding amount of money) at time 0, and selling it

(resp. buying the underlying) later, at time T for instance.

B. Formulas

Assume that

• the underlying follows the geometric Brownian motion

(4),

• the expected final price satisfies the condition (3), i.e., is

equal to

S(0)erT

Krouglov [33] shows, by exploiting properties of log-normal

distributions, that the usual BSM formulas may be recovered.

Write down here the value of a European call option:

C(S, t) = S(t)N(d1)−KN(d2)e
−r(T−t) (5)

where

• N is the standard normal cumulative distribution func-

tion, i.e.,

N(x) =
1

√
2π

∫ x

−∞

exp

(

−
z2

2

)

dz

• K is the strike price,

• d1 =
lg( S

K )+
(

r+σ
2

2

)

(T−t)

σ
√
T−t

,

• d2 = d1 − σ
√
T − t.

IV. PRICING WITH TRENDS

A. Arbitrage

Assume again that the risk-free rate r(t) is a constant r. A

natural extension of Section III states that the expected final

price at maturity T of the underlying is

STS,trend(0)e
rT



It means the following:

• STS,trend(0) replaces S(0) in order to avoid the quick

fluctuations.

• The trend STS,trend(t) is “close” around maturity T to

STS,trend(0)e
rt.

• The trend STS,trend(t) is differentiable around T and the

corresponding trend-return rTS,trend(t) of Equation (1)

is “close” to r.

B. Formulas

Assume that the quick fluctuations around the trend may be

described at a time t around T by a lognormal distribution

of mean STS,trend(t) and variance σ. It yields, as in Section

III, the BSM-like formulas where the value of a European call

option is given by

C(S, t) = STS,trend(t)N(d1)−KN(d2)e
−r(T−t) (6)

When compared to Equation (5), notice that S(t) is replaced

by STS,trend(t).
Remark 4.1: If we suppose that the quick fluctuations may

be properly described by a normal distribution, we would

arrive at pricing formulas quite analogous to those of [1] and

[9].5 If we assume that we only forecast the volatility (2), then

the choice of the corresponding normal distribution might be

quite appropriate.

V. DYNAMIC HEDGING

A. General principles6

Let Π be the value of an elementary portfolio of one long

option position V and one short position in quantity ∆ of

some underlying S:

Π(t) = V (t)−∆S(t) (7)

Note that ∆ is the control variable: the underlying is sold or

bought. The portfolio is riskless if its value obeys the equation

dΠ = rΠdt, where r is the constant risk-free rate. It yields

Π(t) = Π(0)ert (8)

Replace

• Equation (7) by

ΠTS,trend(t) = V (t)−∆STS,trend(t) (9)

where V is computed at time t via Section IV-B.

• Equation (8) by

ΠTS,trend(t) = ΠTS,trend(0)e
rt (10)

Combining Equations (9) and (10) leads to the tracking control

strategy

∆ =
V (t)−ΠTS,trend(0)e

rt

STS,trend(t)
(11)

5Mimicking the computations with the other probability distributions, which
were considered by [9], would be straightforward.

6See [20] for a related attempt.

We might again call delta hedging this strategy, although it

is only an approximate dynamic hedging via the utilization of

trends and of the corresponding time sampling TS.

In order to implement correctly Equation (11), the initial

value ∆(0) of ∆ has to be known. If STS,trend and V are

differentiable, this is achieved by equating the logarithmic

derivatives at t = 0 of the right handsides of Equations (9)

and (10):

∆(0) =
V̇ (0)− rV (0)

ṠTS,trend(0)− rSTS,trend(0)
(12)

Remark 5.1: Our approach to dynamic hedging may be

connected to model-free control ([18], [24]) which already

found many concrete applications.7 Remember that one of the

main difficulty related to dynamic replication is the necessity

to have a “good” probabilistic model of the behavior of the

underlying.

VI. SOME COMPUTER ILLUSTRATIONS

The underlying is the S&P 500, which is one of the most

commonly followed equity indices.

A. Preliminary calculations

The preliminary calculations below are necessary for our

dynamic hedging in Section VI-B.

1) Data and trends: Figure 1 displays the daily S&P 500,

from 3 January 2000 until 2 December 2012. A turbulent

200 days period from 9 May 2008 until 24 February 2009

is extracted in Figure 2. The excellent quality of our trend

estimation (see Remark 2.2) is highlighted by those two Fig-

ures, especially when compared to a classic moving average

techniques using the same number of points, here 30. Let

us emphasize moreover that the unavoidable delay associated

to any estimation technique is quite reduced thanks to our

theoretical viewpoint.

2) Volatility: Figure 3 and 4 display the corresponding

logarithmic return

R(t) = ln

(

S(t)

S(t− 1)

)

where S(t) denotes the daily value of the S&P 500 and t > 1.

The corresponding annualized volatility is

σ(t) = STD(R(t))×
√
255

where, for determining the standard deviation STD,

• a 10 days sliding window is used,

• the mean may be deduced from Equation (1).

This type of calculations is much too sensitive to the return

fluctuations. Figure 6 exhibits this annoying feature as well as

the results obtained via the two following procedures which

are utilized in order to bypass this difficulty:

1) A classic low-pass filter permits to alleviate those fluc-

tuations.

7See the references in [24].



2) The results for the on-line detection methods in [23] of

change-points8 are depicted in Figure 5. The sensitivity

of the algorithm, which may be easily modified, is

adapted here to quite violent abrupt changes. If such a

change is detected its effect is reduced via an averaging

where the size of the sliding window is augmented. It

corresponds to the time-scaled volatility in Figures 6, 7

and 8.

The second method, which provides a most efficient

smoothing when a change point is detected, seems to work

better.

3) Option pricing: Introduce now the European call option

during the hectic period of 200 days shown in Figure 2. Write

T = 200 the maturity time. Set r = 1% for the risk-free rate.

The strike price K is given by

K = STS,trend(0)(k/100 + 1)(T/255)

where k = 10%. At any time t, 0 < t < T , computing the

numerical value of the call, as shown in Figure 7, uses

• Formula (6),9

• the estimated volatilities in Section VI-A2.

B. Dynamic hedging

Thanks to the numerical results of Section VI-A, Formula

(11) yields dynamic hedging performances which are reported

in Figure 8. Note that a proper choice of the volatility

calculation ensures in the same time and in spite of an only

rough replication

• small oscillations of the control variable ∆,

• a good hedging.

VII. CONCLUSION

If further studies confirm our viewpoint on option pricing

and dynamic hedging, it will open radically different roads

which should bypass some of the most important difficulties

encountered with today’s approaches. Let us emphasize as

above and once again ([19], [22]) that a consequence of

our setting might the obsolescence of the need of complex

stochastic processes for modeling the underlying’s behavior.

Taking into account

• the trends, which carry the information about jumps and

other “violent” behaviors,

• their forecasting,

• not only the variance around the trend but also the

skewness and the kurtosis,

should lead to new option pricing formulas, where the (geo-

metric) Brownian motion will loose its preeminence.

American and other exotic options will be considered else-

where.

8This terminology, which is borrowed from the literature on signal pro-
cessing (see [23] and the references therein), seems more appropriate than
the word jumps which is familiar in quantitative finance.

9Only lack of space makes us follow here a Black-Scholes type formula.
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Figure 1: S&P 500 value (blue, –), its moving average (red, -

-) and the proposed trend (black, .-)
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3e série, vol. 17, pp. 21–86, 1900. English translation: “Theory of
speculation,” in P. Cootner (Ed.): The Random Character of Stock Market

Prices, pp. 17–78, MIT Press, 1964.
[2] E.N. Barron, R. Jensen, “A stochastic control approach to the pricing of

options,” Math. Operations Research, vol. 15, pp. 49–79, 1990.
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Reprint: in W. Hafner, H. Zimmerman (Eds): Vinzenz Bronzin’s Option

Pricing Models, pp. 23–111, Springer, 2009. English translation: “Theory
of Premium Contracts,” in W. Hafner, H. Zimmerman (Eds): Vinzenz

Bronzin’s Option Pricing Models, pp. 113–200, Springer, 2009.

[10] R. Caldentey, M. Haugh, “Optimal control and hedging of operations in
the presence of financial markets,” Math. Operations Research, vol. 31,
pp. 285–304, 2006.

[11] P. Cartier, Y. Perrin, “Integration over finite sets,” in F. & M. Diener
(Eds): Nonstandard Analysis in Practice, pp. 195–204, Springer, 1995.
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