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Abstract

An alternative and consistent approach, not appealing to the principle ofvirtual power

and to Coleman-Noll procedure, is used to derive constitutive and governing equations

involving temperature or entropy gradients, in thermomechanics of materials. Using the

balance of energy, an analysis of the dissipation naturally leads to the definition of the tem-

perature and the entropy as variational derivatives. The approach preserves the classical

forms of the equations and yields to consistent form of the second law and heat conduction

inequality. The framework of generalized standard materials is then suitable for deriving

admissible constitutive laws. The methodology is applied, first using entropy and its gradi-

ent as state variables (with internal energy as thermodynamic potential), andsecond using
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temperature and its gradient (starting from the free energy).

To cite this article: M.H. Maitournam, C. R. Mecanique (2012).

Résumé

Thermomécanique avec gradients d’entropie et de température :dissipation, inégalité

de la conduction et équation de la chaleur.Une approche alternative et cohérente, ne fai-

sant pas appel au principe des puissances virtuelles et à la procédurede Coleman-Noll, est

utilisée pour obtenir les lois de comportement avec gradients de température oud’entropie,

ainsi que les équations d’évolution en thermomécanique. En partant du biland’énergie,

une analyse de la dissipation conduit naturellement à la définition de la température et de

l’entropie par des dérivées variationnelles. Tout en préservant les formes classiques des

équations, l’approche permet d’établir les formes cohérentes de l’inégalité de l’entropie

(second principe) et de la conduction dont une nouvelle forme est proposée. Le formalisme

standard généralisé offre ensuite un moyen commode d’établir des lois admissibles. La

méthodologie est appliquée en prenant d’abord l’entropie et son gradient comme variables

d’état (énergie interne comme potentiel), et ensuite la température et son gradient (énergie

libre comme potentiel).

Pour citer cet article : M.H. Maitournam, C. R. Mecanique (2012).
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1 Introduction

The approach proposed by Coleman and Noll [1] uses the Clausius-Duhem inequality as a tool

to select constitutive laws by requiring that this inequality holds by all thermodynamic pro-

cesses. Adopting the Truesdell and Toupin’s principle of equipresence, Coleman and Mizel [2]

used this inequality to show that all the response functionscannot depend on all the state vari-

ables; some of them must be independent of certain variables. More precisely, assuming that

the heat flux, the specific internal energy and entropy are functions of the temperature and the

first n spatial gradients of the temperature, they showed that the internal energy and the en-

tropy are independent of the temperature gradients. This result is related to the forms chosen

for thermal energy exchanges only through heat flux and radiation, as they mentioned. Within

the same framework, Coleman and Gurtin [3] extended straightforward the result to obtain the

independence of the free energy, the entropy and the stress on the temperature gradients in the

case of nonlinear materials with internal state variables.However, this result is based on certain

assumptions such as independence of stresses, or more generally of irreversible forces, on the

rate of temperature gradient. One way to account for this dependence is to add an extra term

of entropy flux [5,6,7,8,9] as constitutive quantity. Changes are also made in the energy bal-

ance by adding new contributions to the power of internal forces. Principle of virtual power

on microscopic movements or micromorphic approaches (Frémond and Nedjar [10], Frémond

and Nedjar [11], Frémond [12], Fried and Gurtin [13], Gurtin[14]) have been used by Forest

and Amestoy [15], Forest and Aifantis [16] to account for entropy gradient. However, the phys-

ical meaning of the principle of virtual power involving virtual rates of variables as entropy

(in [15]) is not obvious. An extra term of entropy productioninside the volume has also been

added by Ireman and Nguyen [17]. They showed that three different expressions of this quan-

tities lead to different thermodynamical models. A variational-based field description coupled

with the Generalized Standard Materials formalism for gradient temperature thermomechanics
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is given by Nguyen and Andrieux [18] and Nguyen [19], followed by a justification through an

homogenization process. It can be seen as a non-local generalized standard model as proposed

by Lorentz and Andrieux [20,21]. The approach shows the way to derive the correct forms of

intrinsic dissipation and to restore duality between internal and free energy. However, in all

these works, the classical expression of the heat conduction inequality was maintained, while

the introduction of the gradient of temperature or entropy is likely to affect its structure.

The objective of this work, is, while remaining strictly within the framework of the phenomeno-

logical theory of continuum thermodynamics, to derive the constitutive equations and inequa-

tions of the gradient thermomechanics, without appealing to to the principle of virtual power

and to the Coleman-Noll procedure and the classical heat conduction inequality. The approach

conducts to the adoption of variational based derivatives for the definition of the temperature

and the entropy. These definitions lead to consistent forms of second law (generalized Clausius-

Duhem inequality) and a new heat conduction inequality. Constitutive laws are postulated, based

on the splitting of the dissipation in its intrinsic and thermal parts. They permit to recover the

existing results on temperature and entropy gradients thermomechanics. The formal structure

obtained is closely related to the one from the canonical thermomechanics with dual weakly

non-local internal variables proposed by Berezovski et al. [22].

2 Entropy gradient: using internal energy

2.1 Energy balance

The basic principle is the energy balance (first law of thermodynamics) stating that energy

cannot be generated. The variation of the energy of a system is solely due to exchange with the

environment. The form of the energy exchanged with the outside defines therefore how to act

on the system, that is to say its control variables. For the continuum medium, the external rate
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of energy supply is generally composed of two terms:

• the power of external forcesPe, associated with the primal kinematic variables (displacement

and another independent variable denotedα), given by:

Pe =
∫

Ω(t)
f

Ωu
· v dΩ +

∫

∂Ω(t)
f

Su
· v da

+
∫

Ω(t)
aΩα · α̇ dΩ +

∫

∂Ω(t)
aSα · α̇ da ,

(1)

wherev is the velocity,f
Ωu

(resp.aΩα) andf
Su

(resp.aSα) are the external body and sur-

face forces associated with the displacement (resp. with the variableα). Superimposed dot

denotes time-derivative.α is a state variable which typically represents microscopicmotions

as such damage associated to failure of bonds within the material particle [12]. This variable

can be controlled by external forces (such as radiation in the case of damage). We assume

that the external rate of energy supplies associated toα are objective and the surface rate of

energy related toα depends only on the considered point, the surface normal vector and the

time.

• The total heat supply per unit timePcal, associated with the thermal control variable, is given

by:

Pcal =
∫

Ω(t)
r dΩ +

∫

∂Ω(t)
Qda , (2)

r is the external rate of heat supply per unit volume andQ is the external rate of heat supply per

unit surface. For instance, one can have:

• as in Frémond 2002 [12],

r = R T et Q = QT T , (3)

• or, consistent with the choice of entropys as internal variable, the following form could be

proposed

r = Rs ṡ and Q = Qs ṡ . (4)
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The balance of energy is written as:

Ė + ė

∫

Ω
ρv̇ · v dΩ +

∫

Ω
ρaγa · α̇ dΩ =

∫

Ω
f

Ωu
· v dΩ +

∫

∂Ω
f

Su
· v da

+
∫

Ω
aΩα · α̇ dΩ +

∫

∂Ω
aSα · α̇ da

+
∫

Ω
r dΩ +

∫

∂Ω
Qda .

(5)

where the internal energyE is the objective and non kinetic part of the total energy of the sys-

tem. The classical arguments (invariance under superposedrigid body motion and tetrahedron

lemma applied on the energy balance) lead to the existence ofa second order symmetric tensor

σ, a vectorq and also a tensorA ((orderα) +1) such as:

f
Su

= σ · n , Q = −q · n , and aSα = A · n , (6)

wheren is the outward unit normal vector at the considered point. Some invariance require-

ments may allow to precise the form ofA but are not considered in the paper as they have no

direct influence on our purpose.

Using equation (6) in equation (5), one obtains:

Ė =
∫

Ω

(

(div σ + f
Ωu

− ρv̇) · v + σ : ∇v

+ (div A + aΩα − ργ
α
) · α̇ + A : ∇α̇

+ (div (−q) + r)
)

dΩ

(7)

We assume that the internal energy (extensive quantity) is regular ;e denotes the internal en-

ergy per unit volume. With suitable regularity (smoothness) assumptions for the different field

quantities and assuming also the validity of equation (7) onΩ and any of its subdomains, we
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obtain the local equation:

ė = (div σ + f
Ωu

− ρv̇) · v + σ : ∇v

+(div A + aΩα − ρaγα
) · α̇ + A : ∇α̇

+(div (−q) + r)

(8)

Remark: If we use the assumption (4), the previous equation can be written as:

ė = (div σ + f
Ωu

− ρv̇) · v + σ : ∇v

+(div A + aΩα − ργ
α
) · α̇ + A : ∇α̇

+(div Q
s
+ Rs)ṡ + Q

s
· ∇ṡ

(9)

2.2 Intrinsic dissipation: definition of temperature and heat flux

Entropy is the extensive heat variable, naturally associated with the internal energy. We assume

that the volumic internal energy depends on the kinematic variable∇u
s
,α,∇α, the entropy per

unit volumes and also on the entropy gradient∇s (as in [15,19]).∇u
s

is the symmetric part of

∇u. The following quantities are defined:

T = e,s , T ′ = e,∇s , σnd = e,∇u
s

, a
nd = e,α and A

nd = e,∇α (10)

The non-local generalized standard approach (Nguyen and Andrieux [18]) has led to the ap-

propriate expression of the intrinsic dissipation. Without recourse to the variational derivation,

the intrinsic dissipation is defined as the part of heat rate which does not come from external

sources and exchanges. It is therefore given by the difference between the rate of internal en-

ergy associated with the variation of entropic (or heat) variables(s and∇s) and the rate of heat
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supply from the environment,

D1 = ė|{∇u
s

,α,∇α} −r + div q

=
︷ ︸︸ ︷

e,s ṡ + e,∇s ·∇ṡ −r + div q

(11)

By denoting:

T̃ = T − div T ′ and q̃
s
= q + T ′ṡ, (12)

the following expression of the intrinsic dissipation is obtained:

D1 = (T − div T ′)ṡ − r + div (q + T ′ṡ)

= T̃ ṡ − r + div q̃
s

(13)

This form is similar to the one obtained in the classical approach (without entropy gradient),

with the definitions of temperature as the variational derivative of the internal energy relative

to the entropy (̃T = e,s −div e,∇s, as defined by Gouin, Gouin and Ruggeri [23,24]) and of the

heat flux as (̃q
s
= q + T ′ṡ).

2.3 Second law and heat conduction inequality

To formulate the second law, we use the balance of entropy as proposed in Green and Naghdi

[25] using the same assumptions while adopting the generalized temperature and heat flux. The

external rate of supply of entropy per unit volume (resp. perunit surface) is given by the ratio

of the external rate of volume heat supplyr (resp. surface supply of heatq̃
s
) to the temperature

T̃ . Denoting the rate of internal production of volumic entropy by Si, the balance of entropy is:

ṡ = Si +
r

T̃
− div

q̃
s

T̃
(14)
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and the second law is thus written as:

ṡ −
r

T̃
+ div

q̃
s

T̃
≥ 0 (15)

Let us notice that when there is no external volumic heat source (r = 0), the internal entropy

production is reduced to:

Si = ṡ + div

(

T ′ṡ

T̃

)

+ div
q

T̃
(16)

The proposed expression for the second law is different fromthat used as a starting point by

Forest and Amestoy [15]. Indeed Forest and Amestoy [15] keptthe classical form.

One notices that the entropy production can be written in thefollowing form:

Si = ṡ −
r

T̃
+ div

q̃
s

T̃
=

D1

T̃
− q̃

s
·
∇T̃

T̃ 2
(17)

Admitting the separation of the total dissipation in intrinsic and thermal parts, the thermal dis-

sipation is therefore given by−q̃
s
· ∇T̃

T̃
and the conduction inequality is:

−q̃
s
·
∇T̃

T̃
≥ 0 or − (q + T ′ṡ) ·

∇(T − div T ′)

T − div T ′
≥ 0 (18)

which is again different from the classical heat conductioninequality (−q · ∇T
T

≥ 0).

The generalized Clausius-Duhem inequality, in this case, reads:

D1 − q̃
s
·
∇T̃

T̃
= T̃ ṡ − r + div q̃

s
− q̃

s
·
∇T̃

T̃
≥ 0 (19)

Using equations (8), the intrinsic dissipation (11) is written as:

D1 = (div σ + f
Ωu

− ρv̇) · v + (σ − e,∇u
s

) : ∇v

+ (div A + aΩα − ργ
α
− e,α ) · α̇ + (A − e,∇α ) : ∇α̇

(20)
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or:

D1 = (−ρv̇ + f
Ωu

+ div σ) · v + (σ − σnd) : ∇v
s

+ (−ργ
α

+ ava − a
nd + div A) · α̇ + (A − A

nd) : ∇α̇

(21)

By denoting,

fd = div σ + f
Ωu

− ρv̇ , σd = σ − σnd ,

a
d = div A − a

nd + ava − ργ
α

and A
d = A − A

nd

(22)

The termfd is zero (this is the equilibrium equation, we notice that it can be obtained directly

here by using the invariance of the energy balance (Eq. 5) relative to an observer in uniform

translation). Then, one obtains:

D1 = σd : ∇v
s
+ a

d · α̇ + A
d : ∇α̇ . (23)

Finally, the dissipation inequality is written as:

σd : ∇v
s
+ a

d · α̇ + A
d : ∇α̇ − q̃

s
·
∇T̃

T̃
≥ 0 . (24)

2.4 Constitutive and governing equations

The following quantitiesT, T ′, σnd, and,And have already been defined constitutively by equa-

tions (10) using the internal energy.

Constitutive laws must be specified for the dissipative variablesσd, ad,Ad and q̃
s
. They must

allow to satisfy the second principle, or equivalently the dissipation inequality (24). Because, in

the general case, the dissipative forces may depend on the rate on all state variables, Coleman

and Noll procedure [1] is not adequate.

However, a stronger assumption we adopt here, is to require the positiveness of the intrinsic
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and the thermal dissipations. In such a case, the constitutive model is completely determined by

specifying, on the one hand the internal energy defining the non-dissipative forces and the tem-

perature, and on the second hand the dissipative forcesσd, andandA
d satisfying the following

intrinsic dissipation inequality,

σd : ∇v
s
+ a

d · α̇ + A
d : ∇α̇ ≥ 0 (25)

and the fluxq̃
s

fulfilling the heat conduction inequality.

Using the Standard Generalized Materials (SGM) formalism [26,27], a special class of material

can be constructed if one postulates the existence of two pseudo-potentials with the suitable

properties [18]: (i) an intrinsic dissipation potential which is function of the rates∇v
s
, α̇ and

∇α̇ with the state variables as parameters:D(∇v
s
, α̇,∇α̇ | ∇u

s
,α, s), (ii) a heat potential

which is function of the entropy gradient∇s and possibly of higher order gradients ofs, with

the state variable and possibly their time derivatives as parameters:Ds(∇s| s,∇u
s
,α, ṡ, . . . ),

such as:

σd ∈ ∂D,∇v
s

, a
d ∈ ∂D,α̇ and A

d ∈ ∂D,∇α̇ , (26)

which is denoted:

σd = D,∇v
s

, a
d = D,α̇ and A

d = D,∇α̇ , (27)

and

−q̃
s
=

δDs

δ∇s
(28)

For instance, considering a potentialDs function of∇s and∇∇s (and so, not adopting the

principle of equipresence), one has:

−q̃
s
= Ds,∇s −div (Ds,∇∇s ) (29)
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To sum up, the following field equations are obtained:







div σ + f
Ωu

− ρv̇ = 0

div A + ava − a − ργ
α

= 0

div q̃
s
− r − (σd : ∇v

s
+ a

d · α̇ + A
d : ∇α̇) + T̃ ṡ = 0

(30)







σnd = e,∇u
s

a
nd = e,α

A
nd = e,∇α

T̃ =
δe

δs







σd = D,∇v
s

a
d = D,α̇

A
d = D,∇α̇

−q̃
s
=

δDs

δ∇s







σ = σnd + σd

a = a
nd + a

d

A = A
nd + A

d

q = −T ′ṡ + q̃
s

(31)

with the following boundary conditions, on the surface∂Ω:







σ · n = f
Su

or (σnd + σd) · n = f
Su

A · n = aSα or (And + A
d) · n = aSα

(−q) · n = Q or − (q̃
s
− T ′ṡ) · n = Q

(32)

The set of field equations obtained in this framework can be written in a compact manner as:







div (e,∇u
s

+D,∇v
s

) + f
Ωu

− ρü = 0

div (e,∇α +D,∇α̇ ) + ava − (e,α +D,α̇ ) − ργ
α

= 0

div
δDs

δ∇s
+ r + (D,∇v

s

: ∇v
s
+ D,α̇ ·α̇ + D,∇α̇ ·∇α̇) −

δe

δs
ṡ = 0

(33)
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2.5 Heat equation and comparisons

As established in subsection 2.3, the heat equation is

T̃ ṡ + div q̃
s
− r −D1 = 0 (34)

with

T̃ =
δe

δs
= e,s −div e,∇s and q̃

s
=

δDs

δ∇s
(35)

It is also written as:

T ṡ + T ′ · ∇ṡ + div q − r −D1 = 0 (36)

When Fourier law is adopted one recovers the form proposed by Nguyen [19]. This form is

different the one obtained by the micromorphic approach of Forest and Amestoy [15] in the

absence of intrinsic dissipation. Indeed, Forest and Amestoy [15] adopt the classical forms of

the heat equation and the Fourier law

T ṡ + div q − r = 0 and q = −κ∇T (37)

but define the temperature with a state law

T = e,s −
as

ρ
and bs = e,∇s (38)

Using a principle of virtual work on entropy, the justification of which is not obvious, they find

the equilibrium equation associated with the variables, readily:

div bs − as = 0 (39)

Thus, we have:

T = e,s −
1

ρ
div bs = e,s −div (e,∇s ) (40)

which is exactly the variable denoted̃T here, and therefore, with our notations,

q = −κ∇T̃ (41)
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which is a particular form of the law (28). More specifically,in our case, by taking:

e = T0s +
1

2
a1s

2 +
1

2
a2∇s · ∇s (42)

one obtains:̃T = T0 + a1s − a2∆s. The potential

Ds = κ(a1∇s · ∇s − a2∇∇s : ∇∇s) (43)

leads to the generalized Fourier law (41). And finally the heat equation (34) is:

(T0 + a1s − a2∆s)ṡ + r + κ(a1∆s − κa2∆
2s) = 0 . (44)

The linearization of this equation gives the equation obtained in [15].

3 Temperature gradient: using the Helmholtz free energy

In this section, the temperature and its gradient as adoptedas internal variables instead of the

entropy and its gradient. A complementary description to the previous one, in term of Helmholtz

free energy, is established. It leads to the same results as the variational formulation of Nguyen

and Andrieux [18], except for the heat conduction inequality given here by a new inequality.

The point of departure is still the balance of energy in its global and then local form (equations

(7) and (8)). Ass and∇s are no longer state variables and replaced byT and∇T , the more

convenient thermodynamic function is no longer the internal energy but its conjugate function

obtained by a Legendre transformation on the entropic variables (dual variables ofT and∇T ).

These variables, denoted respectivelys ands′, are related toT and∇T by:

T =
∂e

∂s
and ∇T =

∂e

∂s′
(45)

The thermodynamic functionw keeping the duality, as established by Nguyen and Andrieux

[18], is defined as:

w = e − Ts −∇T · s′ (46)
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Thus:

s = −w,T and s′ = −w,∇T (47)

w is the Helmholtz free energy per unit volume defined in a non classical way. In this context,

it is a function of∇u
s
,α,∇α, T and∇T .

As ė|s,s′ = ẇ|T,∇T , the intrinsic dissipationD1 given by (13) becomes:

D1 = T ṡ + ṡ′ · ∇T − r + div (q)

= (ṡ − div ṡ′)T − r + div (q + T ṡ′)

(48)

If we set ˙̃s = ṡ − div (ṡ′) and q̃
T

= q + T ṡ′, we obtain

D1 = T ˙̃s − r + div q̃
T

(49)

This form is similar to the one obtained in the classical approach (without temperature gradient),

with the definitions of entropy as the variational derivative of the Helmholtz free energy relative

to the temperature (s̃ = w,T −div w,∇T ) and of the heat flux as (q̃
T

= q + T ṡ′).

3.1 Second law and heat conduction inequality

Given the entropỹs and the total heat flux̃q
T
, the internal production of entropySi is, as

previously in section 3.1, given by:

Si = ˙̃s −
r

T
+ div

q̃
T

T
(50)

and the second law is defined as:

˙̃s −
r

T
+ div

q̃
T

T
≥ 0 (51)

Let us notice that when there is no external volumic heat source (r = 0), the internal entropy
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production is reduced to:

Si = ṡ + ṡ′ ·
∇T

T
+ div

q

T
(52)

which is exactly the expression proposed by Nguyen and Andrieux and Nguyen [19] while

Cardona et al. [15] keep the classical form.

One notices that the entropy production can be written in thefollowing form:

Si = s̃ −
r

T
+ div

q̃
T

T
=

D1

T
− q̃

T
·
∇T

T 2
(53)

Admitting the separation of the total dissipation in intrinsic and thermal parts, the thermal dis-

sipation is therefore given by−q̃
T
· ∇T

T
and the conduction inequality is:

−q̃
T
·
∇T̃

T̃
≥ 0 or − (q + T ṡ′) ·

∇T

T
≥ 0 (54)

which is again different from the classical heat conductioninequality (−q · ∇T
T

≥ 0).

The Clausius-Duhem inequality, in this case, reads:

D1 − q̃
T
·
∇T

T
= T ˙̃s − r + div q̃

T
− q̃

s
·
∇T̃

T̃
≥ 0 (55)

The free energyw depends on∇u
s
, α, ∇α, T , ∇T , we thus define:

σnd = w,ε , a
nd = w,α , A

nd = w,∇α , s = −w,T and s′ = −w,∇T (56)

The intrinsic dissipation is given by equation (23) and the dissipative forcesσd, ad,Ad and q̃
s

are defined by equation (22).

3.2 Constitutive and governing equations

The same approach as previously is used. The following quantities T, T ′, σnd,And are defined

constitutively by equation (56) using the free energy. Constitutive laws are specified for the dis-

sipative variablesσd, ad,Ad andq̃
s
. They must satisfy the second principle, or equivalently the
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dissipation inequality (24). Because, in the general case, the dissipative forces may depend on

the rate on all state variables, Coleman and Noll procedure [1] is not adequate. The constitutive

model is completely determined by specifying, on the one hand the internal energy defining

the non-dissipative forces and the temperature, and on the second hand the dissipative forces

σd, ad andA
d satisfying the positiveness ofD1, and the fluxq̃

s
fulfilling the heat conduction

inequality.

Using the SGM formalism [26,27], a class of constitutive models can be constructed using two

pseudo-potentials with the suitable properties [18]: (i) an intrinsic dissipation potential which is

function of the rates∇v
s
, α̇ and∇α̇ with the state variables as parameters:D(∇v

s
, α̇,∇α̇ | ∇u

s
,α, T ),

(ii) a thermal dissipation potential which is function of the temperature gradient∇T and possi-

bly of higher order gradients ofT , with the state variable and possibly their time derivatives as

parameters:DT (∇T | T,∇u
s
,α, Ṫ , . . . ), such as:

σd ∈ ∂D,∇v
s

, a
d ∈ ∂D,α̇ and A

d ∈ ∂D,∇α̇ , (57)

that we denote:

σd = D,∇v
s

, a
d = D,α̇ and A

d = D,∇α̇ , (58)

and

−q̃
T

=
δDT

δ∇T
(59)

For instance, considering a potentialDT function of∇T and∇∇T (and so, not adopting the

principle of equipresence), one has:

−q̃
T

= DT ,∇T −div (DT ,∇∇T ) (60)
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To sum up, the following field equations are obtained:







div σ + f
Ωu

− v̇ = 0

div A + ava − a − γ
α

= 0

div q̃
T
− r − (σd : ∇v

s
+ a

d · α̇ + A
d : ∇α̇) + T ˙̃s = 0

(61)







σnd = w,∇u
s

a
nd = w,α

A
nd = w,∇α

s̃ = −
δw

δT







σd = D,∇v
s

a
d = D,α̇

A
d = D,∇α̇

−q̃
T

=
δDT

δ∇T







σ = σnd + σd

a = a
nd + a

d

A = A
nd + A

d

q = −T ṡ′ + q̃
T

(62)

with the following boundary conditions, on the surface∂Ω:







σ · n = f
Su

or (σnd + σd) · n = f
Su

A · n = aSα or (And + A
d) · n = aSα

−q · n = Q or − (q̃
T
− T ṡ′) · n = Q

(63)

The set of field equations obtained in this framework, consistent with the results of [19], can be

written in a compact manner as in [19]:







div (w,∇u
s

+D,∇v
s

) + f
Ωu

− ρü = 0

div (w,∇α +D,∇α̇ ) + ava − (w,α +D,α̇ ) − ργ
α

= 0

div
δDT

δ∇T
+ r + (D,∇v

s

·∇v
s
+ D,α̇ ·α̇ + D,∇α̇ ·∇α̇) +

δw

δT
Ṫ = 0

(64)
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with the boundary conditions:







(w,∇u
s

+D,∇v
s

) · n = f
Su

(w,α +D,α̇ ) · n = aSα

(

δDT

δ∇T
+ T

˙︷ ︸︸ ︷
w,∇T

)

· n = Q

(65)

3.2.1 Heat equation and comparisons

As established in subsection 3.1, the heat equation is

T ˙̃s + div q̃
T
− r −D1 = 0 (66)

with

˙̃s = ṡ − div (ṡ′) = −
˙︷ ︸︸ ︷

(w,T −div w,∇T ) and − q̃
T

=
δDT

δ∇T
(67)

It is the equation obtained from the variational formulation of Nguyen and Andrieux [18]. Suit-

able choices of the potentials permit also to recover results obtained in [28,29].

4 Conclusion

This work is intended to give some physical insights into theentropy and temperature gradients

thermomechanics, without using variational approach or virtual work principle. Departing from

the expression of the intrinsic dissipation, it is shown that, when using the variational derivation

to define temperature and entropy, the (temperature or entropy) gradient thermodynamics pre-

serves the classical forms of equations and leads to consistent formulations of the second law

and the heat conduction inequality. More particularly, theobtained heat conduction inequality is

different from the classical one. Its expression is clearlyrelated to the form and the nature of the

entropy fluxes. Finally, the GSM formalism can be used as systematic tool for proposing ther-
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modynamic admissible constitutive laws. Note that, as suggested by Nguyen and Andrieux [18],

the extension to higher order gradient is straightforward adopting the variational derivatives.
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