P. Mason, The viscoelastic behavior of rubber in extension, Journal of Applied Polymer Science, vol.1, issue.1, pp.63-69, 1959.
DOI : 10.1002/app.1959.070010111

J. Davies, A. Thomas, and K. Akutagawa, The effect of low molar mass liquids on the dynamic mechanical properties of elastomers under strain, Progr. Rubber Plast. Technol, vol.12, issue.3, pp.174-190, 1996.

N. Suphadon, A. G. Thomas, and J. J. Busfield, Viscoelastic behavior of rubber under a complex loading, Journal of Applied Polymer Science, vol.39, issue.2, pp.693-699, 2009.
DOI : 10.1002/app.30102

N. Suphadon, A. G. Thomas, and J. J. Busfield, The viscoelastic behavior of rubber under a complex loading. II. The effect large strains and the incorporation of carbon black, Journal of Applied Polymer Science, vol.51, pp.1290-1297, 2010.
DOI : 10.1002/app.31991

E. Meinecke and S. Maksin, Influence of Large Static Deformation on the Dynamic Properties of Polymers Part II. Influence of Carbon Black Loading, Rubber Chemistry and Technology, vol.54, issue.4, pp.857-870, 1981.
DOI : 10.5254/1.3535839

J. Sullivan and V. Demery, The nonlinear viscoelastic behavior of a carbon-black-filled elastomer, Journal of Polymer Science: Polymer Physics Edition, vol.20, issue.11, pp.2083-2101, 1982.
DOI : 10.1002/pol.1982.180201110

K. Arai and J. Ferry, Differential Dynamic Shear Moduli of Various Carbon-Black-Filled Rubbers Subjected to Large Step Shear Strains, Rubber Chemistry and Technology, vol.59, issue.4, pp.605-614, 1986.
DOI : 10.5254/1.3538222

A. Voet and J. Morawski, Dynamic Mechanical and Electrical Properties of Vulcanizates at Elongations up to Sample Rupture, Rubber Chemistry and Technology, vol.47, issue.4, pp.47-765, 1974.
DOI : 10.5254/1.3540463

N. Dutta and D. Tripathy, Influence of large static deformations on the dynamic mechanical properties of bromobutyl rubber vulcanizates: Part I. Effect of carbon black loading, Polymer Testing, vol.9, issue.1, pp.9-12, 1990.
DOI : 10.1016/0142-9418(90)90044-E

J. Busfield, C. Deeprasertkul, and A. Thomas, The effect of liquids on the dynamic properties of carbon black filled natural rubber as a function of pre-strain, Polymer, vol.41, issue.26, pp.9219-9225, 2000.
DOI : 10.1016/S0032-3861(00)00306-2

R. Warley, D. Feke, and I. , Transient effects in dynamic modulus measurement of silicone rubber, part 2: Effect of mean strains and strain history, Journal of Applied Polymer Science, vol.26, issue.4, pp.2197-2204, 2007.
DOI : 10.1002/app.25136

A. Adicoff and A. Lepie, Effect of tensile strain on the use of the WLF equation, Journal of Applied Polymer Science, vol.14, issue.4, pp.953-966, 1970.
DOI : 10.1002/app.1970.070140406

A. Azoug, A. Constantinescu, R. Pradeilles-duval, M. Vallat, R. Nevière et al., Effect of the sol fraction and hydrostatic deformation on the viscoelastic behaviour of prestrained highly-filled elastomers, J. Appl. Polym. Sci., in press

S. Ozupek and E. Becker, Constitutive Modeling of High-Elongation Solid Propellants, Journal of Engineering Materials and Technology, vol.114, issue.1, pp.111-115, 1992.
DOI : 10.1115/1.2904130

S. Ozupek and E. Becker, Constitutive Equations for Solid Propellants, Journal of Engineering Materials and Technology, vol.119, issue.2, pp.125-132, 1997.
DOI : 10.1115/1.2805983

G. Ravichandran and C. Liu, Modeling constitutive behavior of particulate composites undergoing damage, International Journal of Solids and Structures, vol.32, issue.6-7, pp.979-990, 1995.
DOI : 10.1016/0020-7683(94)00172-S

C. Nadot-martin, H. Trumel, and A. Dragon, Morphology-based homogenization for viscoelastic particulate composites: Part I: Viscoelasticity sole, European Journal of Mechanics - A/Solids, vol.22, issue.1, pp.89-106, 2003.
DOI : 10.1016/S0997-7538(02)00003-7

C. Nadot-martin, A. Dragon, H. Trumel, and A. Fanget, Damage modeling framework for viscoelastic particulate composites via a scale transition approach, J. Theor. Appl. Mech, vol.44, issue.3, pp.553-583, 2006.

C. Nadot-martin, M. Touboul, A. Dragon, and A. Fanget, Chapter 12 Direct Scale Transition Approach for Highly-filled Viscohyperelastic Particulate Composites: Computational Study, pp.218-237, 2008.

F. Xu, N. Aravas, and P. Sofronis, Constitutive modeling of solid propellant materials with evolving microstructural damage, Journal of the Mechanics and Physics of Solids, vol.56, issue.5, pp.2050-2073, 2008.
DOI : 10.1016/j.jmps.2007.10.013

K. Matous, H. Inglis, X. Gu, D. Rypl, T. Jackson et al., Multiscale modeling of solid propellants: From particle packing to failure, Composites Science and Technology, vol.67, issue.7-8, pp.67-1694, 2007.
DOI : 10.1016/j.compscitech.2006.06.017

A. Lion, J. Retka, and M. Rendek, On the calculation of predeformation-dependent dynamic modulus tensors in finite nonlinear viscoelasticity, Mechanics Research Communications, vol.36, issue.6, pp.653-658, 2009.
DOI : 10.1016/j.mechrescom.2009.02.005

P. Höfer and A. , Modelling of frequency- and amplitude-dependent material properties of filler-reinforced rubber, Journal of the Mechanics and Physics of Solids, vol.57, issue.3, pp.500-520, 2009.
DOI : 10.1016/j.jmps.2008.11.004

A. Medalia, Effect of Carbon Black on Dynamic Properties of Rubber Vulcanizates, Rubber Chemistry and Technology, vol.51, issue.3, pp.437-523, 1978.
DOI : 10.5254/1.3535748

L. Mullins and N. Tobin, Stress softening in rubber vulcanizates. Part I. Use of a strain amplification factor to describe the elastic behavior of filler-reinforced vulcanized rubber, Journal of Applied Polymer Science, vol.9, issue.9, pp.2993-3009, 1965.
DOI : 10.1002/app.1965.070090906

A. Azoug, Micromécanismes et comportement macroscopique d'un élastomère fortement chargé, Ecole Polytechnique, 2010.

A. Payne, The dynamic properties of carbon black-loaded natural rubber vulcanizates. Part I, J. Appl. Polym. Sci. VI, pp.57-63, 1962.

G. Kraus, Mechanical losses in carbon-black-filled rubbers, J. Appl. Polym. Sci.: Appl. Polym. Symp, vol.39, pp.75-92, 1984.

R. Stacer, C. Hubner, and D. Husband, Binder/Filler Interaction and the Nonlinear Behavior of Highly-Filled Elastomers, Rubber Chemistry and Technology, vol.63, issue.4, pp.63-488, 1990.
DOI : 10.5254/1.3538268

R. Stacer and D. Husband, Small deformation viscoelastic response of gum and highly filled elastomers, Rheologica Acta, vol.61, issue.61, pp.152-162, 1990.
DOI : 10.1007/BF01332382

R. Christensen, Theory of Viscoelasticity, Journal of Applied Mechanics, vol.38, issue.3, 1971.
DOI : 10.1115/1.3408900

. Fig, Response in E 0 ,E 00 of the identified model for material A, tolerance divided by 2.5 compared to Fig