X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, Chemically derived, ultrasmooth graphene nanoribbon semiconductors Science 319, pp.1229-1261, 2008.
DOI : 10.1126/science.1150878

C. Berger, Z. M. Song, T. B. Li, X. B. Li, A. Y. Ogbazghi et al., Ultrathin Epitaxial Graphite:?? 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics, The Journal of Physical Chemistry B, vol.108, issue.52, pp.19912-19928, 2004.
DOI : 10.1021/jp040650f

A. Reina, X. T. Jia, J. Ho, D. Nezich, H. B. Son et al., Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition Nano Lett, pp.30-35, 2009.

X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah et al., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils, Science, vol.324, issue.5932, pp.1312-1326, 2009.
DOI : 10.1126/science.1171245

S. Bae, H. Kim, Y. Lee, X. Xu, J. Park et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nature Nanotechnology, vol.76, issue.8, pp.574-78, 2010.
DOI : 10.1038/nnano.2010.132

Y. Miyata, K. Kamon, K. Ohashi, R. Kitaura, M. Yoshimura et al., A simple alcohol-chemical vapor deposition synthesis of single-layer graphenes using flash cooling, Applied Physics Letters, vol.96, issue.26, p.263105, 2010.
DOI : 10.1063/1.3458797

A. Guermoune, T. Chari, F. Popescu, S. S. Sabri, G. J. Skulason et al., vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors Carbon, Chemical, vol.49, pp.4204-4214, 2011.

J. B. Park, W. Xiong, Y. Gao, M. Qian, Z. Q. Xie et al., Fast growth of graphene patterns by laser direct writing, Applied Physics Letters, vol.98, issue.12, p.123109, 2011.
DOI : 10.1063/1.3569720

J. Hofrichter, B. Szafranek, N. Otto, M. Echtermeyer, T. J. Baus et al., Synthesis of graphene on silicon dioxide by a solid carbon source Nano Lett. 10 36-42 [14] Rodríguez-Manzo J A, Pham-Huu C and Banhart F 2011 Graphene growth by a metal-catalyzed solid-state transformation of amorphous carbon, ACS Nano, vol.515, pp.1529-1563, 2009.

S. Garaj, W. Hubbard, J. Golovchenko, L. Baraton, Z. He et al., Synthesis of few-layers graphene by ion implantation of carbon in nickel thin films, Appl. Phys. Lett. Nanotechnology, vol.971617, issue.22, pp.183103-085601, 2010.

C. M. Lee and J. Choi, Direct growth of nanographene on glass and postdeposition size control, Applied Physics Letters, vol.98, issue.18, p.183106, 2011.
DOI : 10.1063/1.3587784

M. H. Rümmeli, A. Bachmatiuk, A. Scott, F. Bo?-rrnert, J. H. Warner et al., Direct Low-Temperature Nanographene CVD Synthesis over a Dielectric Insulator, ACS Nano, vol.4, issue.7, pp.4206-4216, 2010.
DOI : 10.1021/nn100971s

A. Scott, A. Dianat, F. Borrnert, A. Bachmatiuk, S. Zhang et al., The catalytic potential of high-kappa dielectrics for graphene formation Appl, Phys. Lett, vol.98, pp.73110-73113, 2011.

L. C. Zhang, Z. W. Shi, Y. Wang, R. Yang, D. X. Shi et al., Catalyst-free growth of nanographene films on various substrates, Nano Research, vol.3, issue.3, pp.315-336, 2011.
DOI : 10.1007/s12274-010-0086-5

L. Baraton, C. Cojocaru, and D. Pribat, Process for controlled growth of graphene films International patent 0805769-2008, 2008.

C. S. Lee, L. Baraton, Z. He, M. J. Chaigneau, M. Pribat et al., Dual graphene films growth process based on plasma-assisted chemical vapor deposition SPIE proceedings 7761, p.77610, 2010.

B. Lebental, W. Moujahid, C. S. Lee, J. Maurice, and C. Cojocaru, Graphene-based resistive humidity sensor for in-situ monitoring of drying shrinkage and intrinsic permeability in concrete, 4th Int. Symp. Nanotechnology in Construction (NICOM4), [29, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00857257

C. S. Cojocaru, A. Senger, L. Normand, and F. , A nucleation and growth model of verticallyoriented carbon nanofibers or nanotubes by plasma-enhanced catalytic chemical vapor deposition, J. Nanosci. Nanotechnol, vol.631, pp.1331-1369, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00206072

M. Tanemura, K. Iwata, K. Takahashi, Y. Fujimoto, F. Okuyama et al., Growth of aligned carbon nanotubes by plasma-enhanced chemical vapor deposition: Optimization of growth parameters, Journal of Applied Physics, vol.90, issue.3, pp.1529-1562, 2001.
DOI : 10.1063/1.1382848

M. Meyyappan, Carbon nanotube growth by PECVD: a review Plasma Sources Sci. Technol. 12 205 [33] Meyyappan M 2009 A review of plasma enhanced chemical vapour deposition of carbon nanotubes, J. Phys. D-Appl. Phys, vol.4234, p.213001, 2003.

Z. Peng, Z. Yan, Z. Sun, and J. Tour, Direct growth of bilayer graphene on SiO2 substrates by carbon diffusion through nickel, ACS Nano, vol.535, pp.8241-8288, 2011.

C. S. Cojocaru, D. Kim, D. Pribat, and J. Bourée, Synthesis of multi-walled carbon nanotubes by combining hot-wire and dc plasma-enhanced chemical vapor deposition Thin Solid Films 501, pp.227-259, 2006.

C. S. Cojocaru, M. Larijani, D. S. Misra, M. K. Singh, P. Veis et al., A new polarised hot filament chemical vapor deposition process for homogeneous diamond nucleation on Si(100) Diamond and Related Materials 13 Cyrot-Lackmann F and Sandré É 1996 Curvature-induced bonding changes in carbon nanotubes investigated by electron energy-loss spectrometry Phys, Fine structure constant defines visual transparency of graphene Science, pp.270-76, 2004.

Z. Yong-hui, C. Ya-bin, Z. Kai-ge, L. Cai-hong, Z. Jing et al., Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study, Nanotechnology, vol.20, p.185504, 2009.