A. Kirsch, An introduction to the mathematical theory of inverse problems, 2011.

G. Alessandrini, Stable determination of conductivity by boundary measurements, Applicable Analysis, vol.1975, issue.1-3, pp.153-172, 1988.
DOI : 10.2307/1971291

G. Alessandrini and S. Vessella, Lipschitz stability for the inverse conductivity problem, Advances in Applied Mathematics, vol.35, issue.2, pp.207-241, 2005.
DOI : 10.1016/j.aam.2004.12.002

M. Cheney, D. Isaacson, and J. C. Newell, Electrical Impedance Tomography, SIAM Review, vol.41, issue.1, pp.85-101, 1999.
DOI : 10.1137/S0036144598333613

L. Borcea, Electrical impedance tomography, Inverse Problems, vol.18, issue.6, pp.99-136, 2002.
DOI : 10.1088/0266-5611/18/6/201

W. R. Lionheart, EIT reconstruction algorithms: pitfalls, challenges and recent developments, Physiological Measurement, vol.25, issue.1, pp.125-142, 2004.
DOI : 10.1088/0967-3334/25/1/021

URL : http://arxiv.org/abs/physics/0310151

F. Cakoni and D. Colton, Qualitative methods in inverse scattering theory, 2006.

M. Hanke and M. Brühl, Recent progress in electrical impedance tomography, Inverse Problems, vol.19, issue.6, pp.65-90, 2003.
DOI : 10.1088/0266-5611/19/6/055

A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems, 2008.
DOI : 10.1093/acprof:oso/9780199213535.001.0001

R. Potthast, A survey on sampling and probe methods for inverse problems, Inverse Problems, vol.22, issue.2, pp.1-47, 2006.
DOI : 10.1088/0266-5611/22/2/R01

M. Ikehata, Reconstruction of inclusion from boundary measurements, Journal of Inverse and Ill-posed Problems, vol.10, issue.1, pp.37-65, 2002.
DOI : 10.1515/jiip.2002.10.1.37

L. Jackowska-strumillo, J. Sokolowski, and A. Zochowski, Topological optimization and inverse problems, Computer Assisted Mechanics and Engineering Sciences, vol.10, issue.2, pp.163-176, 2002.

M. Bonnet and B. B. Guzina, Sounding of finite solid bodies by way of topological derivative, International Journal for Numerical Methods in Engineering, vol.55, issue.13, pp.2344-2373, 2004.
DOI : 10.1002/nme.1153

URL : https://hal.archives-ouvertes.fr/hal-00111263

A. J. Devaney, Super-resolution processing of multi-static data using time reversal and music, 2000.

A. J. Devaney, Time reversal imaging of obscured targets from multistatic data, IEEE Transactions on Antennas and Propagation, vol.53, issue.5, pp.1600-1610, 2005.
DOI : 10.1109/TAP.2005.846723

P. Hähner, An inverse problem in electrostatics, Inverse Problems, vol.15, issue.4, pp.961-975, 1999.
DOI : 10.1088/0266-5611/15/4/308

M. Brühl and M. Hanke, Numerical implementation of two noniterative methods for locating inclusions by impedance tomography, Inverse Problems, vol.16, issue.4, pp.1029-1042, 2000.
DOI : 10.1088/0266-5611/16/4/310

M. Brühl, Explicit Characterization of Inclusions in Electrical Impedance Tomography, SIAM Journal on Mathematical Analysis, vol.32, issue.6, pp.1327-1341, 2001.
DOI : 10.1137/S003614100036656X

M. Brühl, M. Hanke, and M. S. Vogelius, A direct impedance tomography algorithm for locating small inhomogeneities, Numerische Mathematik, vol.93, issue.4, pp.635-654, 2003.
DOI : 10.1007/s002110200409

R. Kress and L. Kühn, Linear sampling methods for inverse boundary value problems in potential theory, Applied Numerical Mathematics, vol.43, issue.1-2, pp.161-173, 2002.
DOI : 10.1016/S0168-9274(02)00123-X

M. Cheney, The linear sampling method and the MUSIC algorithm, Inverse Problems, vol.17, issue.4, pp.591-595, 2001.
DOI : 10.1088/0266-5611/17/4/301

M. Hanke and B. Schappel, The Factorization Method for Electrical Impedance Tomography in the Half-Space, SIAM Journal on Applied Mathematics, vol.68, issue.4, pp.907-924, 2008.
DOI : 10.1137/06067064X

B. Gebauer and N. Hyvönen, Factorization method and irregular inclusions in electrical impedance tomography, Inverse Problems, vol.23, issue.5, pp.2159-2170, 2007.
DOI : 10.1088/0266-5611/23/5/020

N. Hyvönen, H. Hakula, and S. Pursiainen, Numerical implementation of the factorization method within the complete electrode model of electrical impedance tomography, Inverse Probl. Imaging, vol.1, pp.299-317, 2007.

A. Lechleiter, N. Hyvönen, and H. Hakula, The Factorization Method Applied to the Complete Electrode Model of Impedance Tomography, SIAM Journal on Applied Mathematics, vol.68, issue.4, pp.1097-1121, 2008.
DOI : 10.1137/070683295

B. Harrach and J. K. Seo, Detecting Inclusions in Electrical Impedance Tomography Without Reference Measurements, SIAM Journal on Applied Mathematics, vol.69, issue.6, pp.1662-1681, 2009.
DOI : 10.1137/08072142X

D. R. Luke and A. J. Devaney, Identifying Scattering Obstacles by the Construction of Nonscattering Waves, SIAM Journal on Applied Mathematics, vol.68, issue.1, pp.271-291, 2007.
DOI : 10.1137/060674430

T. Arens, A. Lechleiter, and D. R. Luke, MUSIC for Extended Scatterers as an Instance of the Factorization Method, SIAM Journal on Applied Mathematics, vol.70, issue.4, pp.1283-1304, 2009.
DOI : 10.1137/080737836

URL : https://hal.archives-ouvertes.fr/hal-00782980

M. '. Fares, S. Gratton, and P. L. Toint, SVD-tail: a new linear-sampling reconstruction method for inverse scattering problems, Inverse Problems, vol.25, issue.9, p.95013, 2009.
DOI : 10.1088/0266-5611/25/9/095013

A. P. Calderón, On an inverse boundary value problem. Seminar on Numerical Analysis and its Application to Continuum Physics, pp.65-73, 1980.

J. Sylvester and G. Uhlmann, A Global Uniqueness Theorem for an Inverse Boundary Value Problem, The Annals of Mathematics, vol.125, issue.1, pp.153-169, 1987.
DOI : 10.2307/1971291

V. Isakov, Inverse problems for partial differential equations, 1998.

K. Astala and L. Päivärinta, Calder??n???s inverse conductivity problem in the plane, Annals of Mathematics, vol.163, issue.1, pp.265-299, 2006.
DOI : 10.4007/annals.2006.163.265

D. J. Cedio-fengya, S. Moskow, and M. S. Vogelius, Identification of conductivity imperfections of small diameter by boundary measurements. Continuous dependence and computational reconstruction, Inverse Problems, vol.14, issue.3, pp.553-595, 1998.
DOI : 10.1088/0266-5611/14/3/011

M. Costabel, M. Dauge, and S. Nicaise, ANALYTIC REGULARITY FOR LINEAR ELLIPTIC SYSTEMS IN POLYGONS AND POLYHEDRA, Mathematical Models and Methods in Applied Sciences, vol.22, issue.08
DOI : 10.1142/S0218202512500157

URL : https://hal.archives-ouvertes.fr/hal-00454133

W. Mclean, Strongly Elliptic Systems and Boundary Integral Operators, 2000.

P. Monk, Finite Element Methods for Maxwell's Equations, 2003.
DOI : 10.1093/acprof:oso/9780198508885.001.0001

S. Sauter and C. Schwab, Boundary element methods, 2011.

J. Saranen and G. Vainikko, Periodic integral and pseudodifferential equations with numerical approximation, 2002.
DOI : 10.1007/978-3-662-04796-5

N. Hyvönen, APPROXIMATING IDEALIZED BOUNDARY DATA OF ELECTRIC IMPEDANCE TOMOGRAPHY BY ELECTRODE MEASUREMENTS, Mathematical Models and Methods in Applied Sciences, vol.19, issue.07, pp.1185-1202, 2009.
DOI : 10.1142/S0218202509003759

T. Kato, Perturbation theory for linear operators, 1995.

G. W. Stewart, Perturbation theory for the singular value decomposition. SVD and Signal Processing, II: Algorithms, Analysis and Applications, pp.99-109, 1991.

A. Lechleiter, A regularization technique for the factorization method, Inverse Problems, vol.22, issue.5, pp.1605-1625, 2006.
DOI : 10.1088/0266-5611/22/5/006

M. A. Fischler and R. C. Bolles, Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography, Communications of the ACM, vol.24, issue.6, pp.381-395, 1981.
DOI : 10.1145/358669.358692

J. Garnier, Use of random matrix theory for target detection, localization, and reconstruction, Contemporary Mathematics, vol.548, pp.1-19, 2011.
DOI : 10.1090/conm/548/10832

URL : https://hal.archives-ouvertes.fr/hal-00660342

G. W. Stewart and J. Sun, Matrix perturbation theory, 1990.

M. Stewart, Perturbation of the SVD in the presence of small singular values, Linear Algebra and its Applications, vol.419, issue.1, pp.53-77, 2006.
DOI : 10.1016/j.laa.2006.04.013

V. Choquet and J. Alaterre, Localisation d'inclusions par tomographie d'impedance electrique, 2011.

R. Lazarovitch, D. , and I. Bucher, Experimental crack identification using electrical impedance tomography, NDT & E International, vol.35, issue.5, pp.301-316, 2002.
DOI : 10.1016/S0963-8695(01)00054-8