Overlay measurements by Mueller polarimetry in back focal plane
Abstract
Angle resolved Mueller polarimetry implemented as polarimetric imaging of a back focal plane of a high NA microscope objective has already demonstrated a good potential for CD metrology. Here we present the experimental and numerical results indicating that this technique may also be competitive for the measurements of overlay error delta. A series of samples of superimposed gratings with well controlled overlay errors have been manufactured and measured with the angle resolved Mueller polarimeter. The overlay targets were 20-mu m wide. When the overlay error is delta is equal to 0, absolute values of elements of real 4x4 Mueller matrix M are invariant by matrix transposition. Otherwise this symmetry breaks down. Consequently, we define the following overlay estimator matrix as E = |M| - |M|(t). The simulations show that matrix element E-14 is the most sensitive to the overlay error. The scalar estimator of E-14 was calculated by averaging the pixel values over a specifically chosen mask. This estimator is found to vary linearly with d for overlay values up to 50 nm. Our technique allows entering small overlay marks (down to 5-mu m wide). Only one target measurement is needed for each overlay direction. The actual overlay value can be determined without detailed simulation of the structure provided two calibrated overlay structures are available for each direction.