
HAL Id: hal-00760742
https://polytechnique.hal.science/hal-00760742

Submitted on 4 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the complexity of solving polynomial initial value
problems

Olivier Bournez, Daniel Graça, Amaury Pouly

To cite this version:
Olivier Bournez, Daniel Graça, Amaury Pouly. On the complexity of solving polynomial initial
value problems. International Symposium on Symbolic and Algebraic Computation (ISSAC’12), 2012,
France. �hal-00760742�

https://polytechnique.hal.science/hal-00760742
https://hal.archives-ouvertes.fr

On the complexity of solving initial value problems

Olivier Bournez
Ecole Polytechnique, LIX
91128 Palaiseau Cedex,

France.
olivier.bournez@lix.polytechnique.fr

Daniel S. Graça
CEDMES/FCT, Universidade do Algarve, C. Gambelas, 8005-139 Faro, Portugal.

SQIG /Instituto de Telecomunicações, Lisbon, Portugal.
dgraca@ualg.pt
Amaury Pouly

Ecole Normale Supérieure de
Lyon, France.

amaury.pouly@ens-
lyon.fr

ABSTRACT
In this paper we prove that computing the solution of an
initial-value problem ẏ = p(y) with initial condition y(t0) =
y0 ∈ Rd at time t0 + T with precision e−µ where p is a
vector of polynomials can be done in time polynomial in
the value of T , µ and Y = supt06u6T ‖y(u)‖∞. Contrary
to existing results, our algorithm works for any vector of
polynomials p over any bounded or unbounded domain and
has a guaranteed complexity and precision. In particular
we do not assume p to be fixed, nor the solution to lie in
a compact domain, nor we assume that p has a Lipschitz
constant.

1. INTRODUCTION
Solving initial-value problems (IVPs) defined with ordi-

nary differential equations (ODEs) is of great interest, both
in practice and in theory. Many algorithms have been de-
vised to solve IVPs, but they usually only satisfy one of the
following conditions: (i) they are guaranteed to find a solu-
tion of the IVP with a given precision (accuracy) (ii) they
are fast (efficiency). It is not easy to find an algorithm which
satisfies both (i) and (ii) since, in practice, efficiency comes
at the cost of accuracy and vice versa.

In particular when dealing with functions defined on an
unbounded domain (say R, the set of reals), numerical meth-
ods with guaranteed accuracy for solving ODE are not poly-
nomial∗ even for very basic functions. Indeed, usual meth-

∗In the classical sense, that is to say to be formal, in the
sense of recursive analysis [Wei00].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

ods for numerical integrations (including basic Euler’s method,
Runge Kutta’s methods, etc) fall in the general theory of n-
order methods for some n. They do require a polynomial
number of steps for general functions over a compact do-
main [a, b], but are not always polynomial over unbounded
domains: computing f(t), hence solving the ODE over a
domain of the form [0, t] is not done in a number of steps
polynomial in t without further hypotheses on function f by
any n-order method (see e.g. the general theory in [Dem96]).
This has been already observed in [Smi06], and ODEs have
been claimed to be solvable in polynomial time in [Smi06]
for some classes of functions by using methods of order n
with n depending on t, but without a full proof.

Somehow, part of the problem is that solving ẏ = f(y)
in full generality requires some knowledge of f . Generally
speaking, most algorithms only work over a fixed, specified
compact domain, since in this case f is usually Lipschitz (it
is well-known that any C1 function over a compact is also
Lipschitz there).

In this paper we present an algorithm which has been
designed to work over an unbounded domain, be it time
or space. More precisely, we do not assume that the solu-
tion lies in a compact domain. Our algorithm guarantees
the precision (given as input) and its running time is ana-
lyzed. Achieving both aims is especially complicated over
unbounded domains, because we do not have access to the
classic and fundamental assumption that f is Lipschitz.

The proposed method is based on the idea of using a
varying order: the order n is chosen accordingly to the re-
quired precision and other parameters. Compared to [Smi06]
(which takes a physicist’s point of view, being more inter-
ested on the physics of the n-body problem than on studying
the problem from a numerical analysis or recursive analysis
perspective), we provide full proofs, and we state precisely
the required hypotheses.

Even though many useful functions f are locally Lipschitz
functions, there is an inherent chicken-and-egg problem in
using this hypothesis. We can always compute some approx-
imation z(t) of the correct solution y(t). However, to know
the error we made computing z(T), one often needs a local

Lipschitz constant L which is valid for some set A with the
property that y(t), z(t) ∈ A for all t ∈ [t0, T]. However, we
can only obtain the Lipschitz constant if we know A, but we
can only know A from z(t) if we know the error we made
computing z(t), which was the problem we were trying to
solve in the first place.

In this paper we are interested in obtaining an algorithm
which provides an approximation of the solution of ẏ = f(y),
bounded by error ε, where ε is given as input (as well as other
parameters). We will then analyze the impact of the various
parameters on the runtime of the algorithm.

We mainly restrict in this paper our analysis to the sim-
ple yet broad class of differential equations of the form (1),
that is ẏ = p(y) where p is a vector of polynomials. This
is motivated first by the fact that most ODEs using usual
functions from Analysis can be rewritten equivalently into
the format (1) – see [GCB08]. We denote the solutions of
this kind of problems as PIVP functions.

The necessary input parameters for the algorithm will be
specified as follows: Given p and a solution y : I → Rd to
the PIVP (1), we want to compute y(T) with a precision
2−µ knowing that ∀t 6 T, ‖y(T)‖∞ 6 Y . Our parameters
are thus d the dimension of the system, T the time at which
to compute, µ the precision, Y a bound on the solution and
k = deg(p) the degree of the polynomials.

Our second motivation for studying the particular class
(1) of polynomial IVPs comes from the study of the General
Purpose Analog Computer (GPAC) [Sha41]. The GPAC is
an analog model of computation introduced by Claude Shan-
non as an idealization of an analog computer, the Differential
Analyzer, which most well-known implementation was done
in 1931 by Vannevar Bush [Bus31]. Differential Analyzers
have been used intensively up to the 1950’s as computa-
tional machines to solve various problems from ballistic to
aircraft design, before the era of digital computations that
was boosted by the invention of the transistor [Wil96].

It is known that any GPAC can be described equivalently
as the solution of a PIVP [GC03]. It has been shown that
the GPAC (and thus PIVP functions) are equivalent to Tur-
ing machines from a computability point of view [GCB08],
[BCGH07a]. However, it is unknown whether this equiva-
lence holds at a complexity level. This work is a required and
substantial step towards comparing the GPAC to Turing ma-
chines, or if one prefers in more provocative terms, in proving
(the not clear fact) that analog computation are not stronger
than digital computation. See [BC08] and [BCGH07b] for
more discussions.

In other words, with the results presented in this paper,
we seek not only to understand what is the computational
complexity of the problem of solving PIVPs (which appear
in many applications from Physics, etc.), but also to under-
stand how analog and digital computational models can be
related at a computational complexity level.
Organization of the paper
In Section 2 we introduce some notations and claim some
basic results that will be useful later. In Section 3 we de-
rive an explicit bound on the derivatives of the solution at
any order. In Section 4 we derive an explicit bound on the
divergence of two solutions given the initial difference. In
Section 5 we apply the results of the previous section to de-
rive an explicit error bound for a Taylor approximation of
the solution at any point. In Section 6 we describe an algo-
rithm to solve a PIVP and give an explicit complexity. We

hence obtain the proof of our main result. We provide some
extensions for general ordinary differential equations in the
following section.

Overview of the paper
In order to compute the solution to a PIVP, we use a clas-
sical multi-step method, but of varying order. At each step,
we use a Taylor approximation of the solution at an arbi-
trary order to approximate the solution. In Section 3 we
explain how to compute the derivatives needed by the Tay-
lor approximation. Furthermore, we need an explicit bound
on the derivatives since our method is not of fixed order.
Section 3 provides such a bound as a corollary. Since our
method computes an approximation of the solution at each
point, it will make slight errors that might amplify if not
dealt with correctly. We can control the errors in two ways:
by reducing the time step and by increasing the order of the
method. A careful balance between those factors is needed.
In Section 4 we explain how the error grows when the initial
condition of the PIVP is perturbed. In Section 5 we quantify
the overall error growth, by also including the error intro-
duced by using Taylor approximations. Finally in Section 6
we put everything together and explain how to balance the
different parameters to get our main result.

2. NOTATION AND BASIC FACTS
We will use the following notations:

‖(x1, . . . , xn)‖∞ = max
16i6n

|xi|

‖(x1, . . . , xn)‖ =
√
|x1|2 + · · ·+ |xn|2

x 6 y ⇔ ∀ i, xi 6 yi

n!(d) = dnn!

f [n] =

{
id if n = 0

f [n−1] ◦ f otherwise

Saf(t) = sup
a6u6t

‖f(u)‖∞

Tna f(t) =

n−1∑
k=0

f (k)(a)

k!
(t− a)k

Note that 6 is not an order on Rd but just a notation. We
will denote by W the principal branch of the Lambert W
function which satisfies x = W (x)eW (x) and W > −1.
We will consider the following ODE:{

ẏ = p(y)
y(t0)= y0

(1)

where p : Rd → Rd is a vector of polynomial. If p : Rd → R
is polynomial, we write:

p(X1, . . . , Xd) =
∑
|α|6k

aαX
α

where k is degree of pi that will be written deg(pi); We write
|α| = α1 + · · ·+ αd. We will also write:

ΣP =
∑
|α|6k

|aα|

If p : Rd → Rd is a vector of polynomial, we write deg(p) =
max(deg(p1), . . . , deg(pd)) and Σp = max(Σp1, . . . ,Σpd). With
the previous notation, the following lemmas are obvious.

Lemma 1. For any Q : Rn → R and any x ∈ Rn,

|Q(x)| 6 ΣQmax(1, ‖x‖deg(Q)
∞)

Lemma 2. For any polynomial Q : Rn → R, α ∈ Nd and
x ∈ Rn, if |α| 6 deg(Q) then

|Q(α)(x)| 6 |α|!ΣQmax(1, ‖x‖deg(Q)−|α|
∞)

3. NTH DERIVATIVE OF Y

Given the relationship between ẏ and p(y) it is natural
to try to extend it to compute the nth derivative of y. Of
particular interest is the following remark: the derivatives
at a point t only depend on y(t). Since an exact formula is
difficult to obtain, we only give a recursive formula and try
to bound the coefficients of the relationship obtained.

Notice that since pi is a polynomial, it is infinitely dif-
ferentiable and thus the partial derivatives commute. This

means that for any α ∈ Nd, p(α)
i is well-defined and is inde-

pendent of the order in which the derivatives are taken.

Proposition 1. If y satisfies (1) for any t ∈ I and deg(p) =
k, define:

Γ = J0, kKd Λ = J1, dK× Γ

V (t) =
(
p

(α)
i (y(t))

)
(i,α)∈Λ

t ∈ I

Then

∀t ∈ I, ∀n ∈ N∗, y(n)
i (t) = Qi,n(V (t))

where Qi,n is a polynomial of degree at most n. Furthermore,

ΣQi,n 6 (n− 1)!(d)

Proof. First notice that Qi,n has variables p
(α)
j (y(t)) so

we will use ∂j,αQi,n to designate its partial derivatives. We
will prove this result by induction on n. The case of n = 1
is trivial:

y′i(t) = pi(y(t)) Qi,1(V (t)) = pi(y(t))

deg(Qi,1) = 1 ΣQi,1 = 1 = 0!(d)

Now fix n > 1. We will need µk ∈ Nd such that (µk)i = δi,k.
Elementary differential calculus gives:

y
(n+1)
i (t) =

dy
(n)
i

dt
=

d

dt

(
Qi,n(V (t))

)
=

d∑
j=1

∑
α∈Γ

d

dt

(
p

(α)
j (y(t))

)
∂j,αQi,n(V (t))

=

d∑
j=1

∑
α∈Γ

(
d∑
k=1

ẏk(t)∂kp
(α)
j (y(t))

)
∂j,αQi,n(V (t))

=

d∑
j=1

∑
α∈Γ

(
d∑
k=1

pk(y(t))p
(α+µk)
j (y(t))

)
∂j,αQi,n(V (t))

Since Qi,n is a polynomial, this proves that Qi,n+1 is a poly-
nomial. Furthermore a close look at the expression above
makes it clear that each monomial has degree at most n+ 1

since every monomial of ∂j,αQi,n(V (t)) has degree n−1 and
is multiplied by the product of two variables of degree 1.

Now, we can bound the sum of the coefficients. We will
first need to give an explicit expression to Qi,n so we write:

Qi,n =
∑
|β|6n

aβX
β

Recall that the variables of Qi,n are p
(α)
j so β ∈ NJ1,dK×Γ

and βi,α makes perfect sense. Then:

ΣQi,n+1 6
d∑
j=1

∑
α∈Γ

(
d∑
k=1

1

)
Σ∂j,αQi,n

=

d∑
j=1

∑
α∈Γ

dΣ∂j,α

∑
|β|6n

|aβ |Xβ


=

d∑
j=1

∑
α∈Γ

d
∑
|β|6n

|aβ |βi,α

= d
∑
|β|6n

|aβ |
d∑
j=1

∑
α∈Γ

βi,α

= d
∑
|β|6n

|aβ |
d∑
j=1

|β|

= dnΣQi,n

6 dn(n− 1)!(d)

= n!(d)

Corollary 1. If y satisfies (1) for t ∈ I and deg(p) = k,
then∥∥∥y(n)(t)

∥∥∥
∞

6 n!(d) max
(

1, k!Σpmax
(

1, ‖y(t)‖k∞
))n

4. DEPENDENCY IN THE INITIAL CON-
DITION

When using multi-steps methods to solve ODEs or simply
when doing approximation, we might end up solving an ODE
like (1) with a wrong initial condition. This will of course
affect the result of the computation since even if we could
compute the solution with an infinite precision, the results
would be different because of the dependency in the initial
condition. For this reason we would like to evaluate this
dependency numerically. Assuming y satisfies (1), we define
the functional Φ as:

Φ(t0, y0, t) = y(t)

Notice that the dependency in y0 is implicit but that in
particular, Φ(t0, y0, t0) = y0. Also notice that Φ and y0 are
vectors so we’ll study the dependency of Φi in y0j .

We first recall the well-known Gronwall’s inequality.

Proposition 2 (Generalized Gronwall’s inequality).
Suppose ψ satisfies

ψ(t) 6 α(t) +

∫ t

0

β(s)ψ(s)ds, t ∈ [0, T]

with α(t) ∈ R and β(s) > 0. Then ∀t ∈ [0, T],

ψ(t) 6 α(t) +

∫ t

0

α(s)β(s) exp

(∫ t

s

β(u)du

)
ds

If, in addition, α is a non-decreasing function on [0, T], then

ψ(t) 6 α(t) exp

(∫ t

0

β(s)ds

)
, t ∈ [0, T]

In order to apply Gronwall’s inequality to φ, we will need
to bound the Lipschitz constant for a multivariate poly-
nomial. So consider a polynomial P ∈ R[X1, . . . , Xd] and
write:

P =
∑
|α|6k

aαX
α

We first prove a lemma on monomials and then extend it
to polynomials.

Lemma 3. If a, b ∈ Rd, α ∈ Nd and ‖a‖∞ , ‖b‖∞ 6 M
then:

|bα − aα| 6 |α|M |α|−1 ‖b− a‖∞
Proof. One can see by induction that:

bα − aα =

d∑
i=1

(∏
j<i

b
αj

j

)
(bαi
i − a

αi
i)
(∏
j>i

a
αj

j

)
Since it is well know that for any integer n:

bn − an = (b− a)

n−1∑
i=0

aibn−1−i

Thus we can deduce that:

|bα − aα| 6
d∑
i=1

(∏
j<i

|bj |αj

)
|bαi
i − a

αi
i |
(∏
j>i

|aj |αj

)

6
d∑
i=1

M |α|−αi |b− a|
αi−1∑
j=0

Mαi−1

6 ‖b− a‖∞
d∑
i=1

M |α|−1αi

6 |α| ‖b− a‖∞M
|α|−1

We can use this result to obtain an explicit Lipschitz
bound for the polynomial P :

Lemma 4. For all a, b ∈ Rd such that ‖a‖∞ , ‖b‖∞ 6M ,

|P (b)− P (a)| 6 kMk−1ΣP ‖b− a‖∞
where k = degP .

Proof.

|P (b)− P (a)| 6
∑
|α|6k

|aα||bα − aα|

6
∑
|α|6k

|aα||α|M |α|−1 ‖b− a‖∞

6 kMk−1 ‖b− a‖∞
∑
|α|6k

|aα|

6 kMk−1ΣP ‖b− a‖∞

In order to evaluate the divergence between two solutions,
we will need to solve a highly nonlinear equation (the so-
called chicken-and-egg problem of the introduction). This
lemma gives an explicit solution as well as an inequality
result.

Lemma 5. Let α, β, x > 0 and k ∈ N∗ then:

x = αeβx
k

⇔ x = αe−
1
k
W(−kβαk) (2)

Furthermore,

kβαk 6
1

3
⇒ (2) has a solution and x 6 4α

Proof. If α = 0 this is trivial (x = 0), so we can assume
that α > 0 and write α = eᾱ and then x > 0 so we can write
x = ex̄. Then

x = αeβx
k

⇔ x̄ = ᾱ+ βekx̄

⇔ ḡ = βekᾱekḡ where ḡ = x̄− ᾱ

⇔ kḡ = β̄ekḡ where β̄ = kβekᾱ = kβαk

⇔ h̄ = β̄eh̄ where h̄ = kḡ

⇔ −h̄e−h̄ = −β̄
⇔ h̄ = −W (−β̄)

⇔ k(x̄− ᾱ) = −W (−kβαk)

⇔ x̄ = ᾱ− 1

k
W (−kβαk)

⇔ x = αe−
1
k
W (−kβαk)

And finally we can apply this result to Φ.

Proposition 3. Let I = [a, b] and y0, z0 ∈ Rd. Assume
that y = Φ(a, y0, ·) and z = Φ(a, z0, ·) are defined over I.
Let Y = Say. Assume that ∀t ∈ I,

‖y0 − z0‖∞ exp
(
k22kΣp|t− a|(1 + Y (t)k−1)

)
6

1

3
(3)

Then ∀t ∈ I,

‖z(t)− y(t)‖∞ 6 ‖z0 − y0‖∞ e
k(2+Y (t))k−1Σp|t−a|

where k = deg(p).

Proof. Define M = max(Y, Saz) and consider ψ(t) =
‖z(t)− y(t)‖∞. By definition of Φ we have:

y(t) = y0 +

∫ t

a

p(y(u))du, t ∈ I

z(t) = z0 +

∫ t

a

p(z(u))du, t ∈ I

Applying a few inequalities and Lemma 4, we get

ψ(t) 6 ‖z0 − y0‖∞ +

∫ t

a

‖p(z(u))− p(y(u))‖∞ du

= ‖z0 − y0‖∞︸ ︷︷ ︸
α(t)

+

∫ t

a

kM(t)k−1Σp︸ ︷︷ ︸
β(u)

ψ(u)du

Finally, apply Proposition 2 with α and β being non-decreasing
functions to get

ψ(t) 6 ψ(a) exp
(
kM(t)k−1Σp|t− a|

)
, t ∈ I

This inequality looks good except that there is an hidden
dependency in M : M depends on Φ(a, y0, ·) and Φ(a, y0, ·)
and we seek one on Φ(a, y0, ·) only. Since ψ is the difference
between the two solutions, we have the following bound on
M :

M(t) 6 Y (t) + Saψ(t)︸ ︷︷ ︸
=Ψ(t)

, t ∈ I (4)

Thus ∀t ∈ I,

ψ(t) 6 ψ(a) exp
(
k (Y (t) + Ψ(t))k−1 Σp|t− a|

)
︸ ︷︷ ︸

G(Y (t),Ψ(t))

And since Y , Ψ andG are non-decreasing functions, G(Y (t),Ψ(t))
is a non-decreasing function so we have:

Ψ(t) 6 G(Y (t),Ψ(t)), t ∈ I

Consider the solution f : J → R, J ⊆ I† to:

f(t) = ψ(a) exp
(
k2k

(
Y (t)k−1 + f(t)k−1

)
Σp|t− a|

)
︸ ︷︷ ︸

H(Y (t),f(t))

(5)

Since (5) implies f(a) = ψ(a) = Ψ(a) and 0 6 x 6 y ⇒
∀z > 0, G(z, x) 6 H(z, y), then ∀t ∈ J,Ψ(t) 6 f(t) and we
can find an explicit expression for f :

(5)⇔ f(t) = ψ(a) exp
(
k2kY (t)k−1Σp|t− a|

)
︸ ︷︷ ︸

α(t)

× exp
(
k2kΣp|t− a|︸ ︷︷ ︸

β(t)

f(t)k−1)
⇔ f(t) = α(t) exp

(
β(t)f(t)k−1)

Applying Lemma 5 and since (3) implies that (k−1)β(t)α(t)k−1 6
1
3

we have:

f(t) 6 4α(t), t ∈ I

Notice that the case of k = 1 is not handled by Lemma 5
but trivially gives the same result. Thus ∀t ∈ I,

M(t) 6 Y (t) + 4ψ(a) exp
(
k2kY (t)k−1Σp|t− a|

)
6 2 + Y (t)

So finally,

ψ(t) 6 ψ(a) exp
(
k(2 + Y (t))k−1Σp|t− a|

)
, t ∈ I

Corollary 2. Let I = [a, b] and y0, z0 ∈ Rd. Assume
that y = Φ(a, y0, ·) and z = Φ(a, z0, ·) are defined over I.
Let Y = Say and µ 6 1

3
and assume that ∀t ∈ I,

‖y0 − z0‖∞ exp
(
k4kΣp|t− a|(1 + Y (t)k−1)

)
6 µ (6)

†Notice that J can’t be empty because a ∈ J since f(a) =
ψ(a). We will see that J = I

Then ∀t ∈ I,

‖z(t)− y(t)‖∞ 6 µ

where k = deg(p).

5. TAYLOR APPROXIMATION
We first recall a simplified form of Taylor-Lagrange theo-

rem which will be useful for our approximation step of the
solution.

Proposition 4 (Taylor-Lagrange). Let a, x ∈ R, f ∈
Ck+1([a, x]), then∣∣∣f(x)− T ka f(x)

∣∣∣ 6 (x− a)k

k!
Saf

(k)(x)

The idea is now to apply this result to the solution of (1)
and extend it in two directions:

• Since the solution satisfies (1), we can use Corollary 1
to estimate the high-order derivative and the error
bound.

• Since our algorithm will make slight errors, we do not
assume that we have the right initial condition; we
want a general result with a perturbed solution and
relate it to the expected solution using Corollary 2.

Proposition 5. Let I = [a, b] and y0, z0 ∈ Rd. Assume
that y = Φ(a, y0, ·) and z = Φ(a, z0, ·) are defined over I.
Let Y = Say and µ 6 1

3
and assume that ∀t ∈ I,

‖y0 − z0‖∞ exp
(
k4kΣp|t− a|(1 + Y (t)k−1)

)
6 µ (7)

Then ∀t ∈ I,

‖y(t)− Tna z(t)‖∞ 6 µ+
(
d(t− a)

(
1 + k!Σp(1 + µ+ Y (t))k

))n
where k = deg(p).

Proof. Let ∆ = ‖y(t)− Tna z(t)‖∞, then

∆ 6 ‖y(t)− z(t)‖∞ + ‖z(t)− Tna z(t)‖∞

Apply Corollary 2 and Proposition 4

6 µ+
(t− a)n

n!
Saz

(n)(t)

Apply Corollary 1

6 µ+
(t− a)n

n!
d!(n) max

(
1, k!Σpmax(1, Saz(t)

k)
)n

Use ‖z(t)‖∞ 6 ‖y(t)‖∞ + µ and apply Corollary 2

6 µ+
(t− a)n

n!
d!(n) max

(
1, k!Σpmax(1, (µ+ Y (t))k)

)n
6 µ+

(t− a)n

n!
d!(n) max

(
1, k!Σp(1 + µ+ Y (t))k

)n
6 µ+

(
d(t− a)

(
1 + k!Σp(1 + µ+ Y (t))k

))n

6. OUR MAIN RESULT
First we need a lemma that will be helpful to compute the

forward error.

Lemma 6. Let a > 1 and b > 0, assume u ∈ RN satisfies:

un+1 6 aun + b, n > 0

Then

un 6 anu0 + b
an − 1

a− 1
, n > 0

Proof. By induction, the case n = 0 is trivial and the
induction step works as follows:

un+1 6 aun + b

6 an+1u0 + ab
an − 1

a− 1
+ b

6 an+1u0 + b
a(an − 1) + (a− 1)

a− 1

Algorithm 1: NthDeriv

input : The polynomial p of the PIVP
input : The value z ∈ Qd of the function
input : The order n of the derivative
input : The precision ξ requested
output: x ∈ Qd

1 Compute x such that
∥∥∥x− y(n)(0)

∥∥∥
∞

6 e−ξ where

y = Φ(0, z, ·) using Proposition 1

Algorithm 2: SolvePIVP

input : The initial condition (t0, y0) ∈ Q×Qd
input : The polynomial p of the PIVP
input : The total time step T ∈ Q
input : The precision ξ requested
input : The number of steps N
input : The order of the method ω
output: x ∈ Qd

1 begin
2 ∆← T

N
3 x← y0

4 for n← 1 to N do

5 x←
∑ω−1
i=0

∆i

i!
NthDeriv(p, t0 + n∆, x, ω, ξ + ∆)

Since at each step of the algorithm we compute an ap-
proximation of the derivatives, we need a technical result to
compute the total error made. We want to relate the er-
ror between the value computed by the algorithm and the
Taylor approximation, to the error made by computing the
derivatives.

Lemma 7. Let n, ξ, d ∈ N∗, ∆ ∈ Q+, z, z̃ ∈ (Rd)n, as-
sume that ‖zi − z̃i‖∞ 6 e−ξ−∆, then∥∥∥∥∥

n−1∑
k=0

∆k

k!
zk −

n−1∑
k=0

∆k

k!
z̃k

∥∥∥∥∥
∞

6 e−ξ

Proof. ∥∥∥∥∥
n−1∑
k=0

∆k

k!
(zk − z̃k)

∥∥∥∥∥
∞

6 e−ξ−∆
n−1∑
k=0

∆k

k!

6 e−ξ−∆e∆

We now get our main result in a technical form:

Theorem 1. If y satisfies (1) for t ∈ I = [t0, t0 + T], let
k = deg(p), µ ∈ N, T ∈ Q+, Y ∈ Q such that

µ > 2 Y > St0y(t0 + T)

Then Algorithm 2 above guarantees

‖y(t0 + T)− SolvePIVP(t0, ỹ0, p, T, ω,N, ω)‖∞ 6 e−µ

with the following parameters

M = (2 + Y)k A = d(1 + k!ΣpM) N = dTeAe

∆ =
T

N
B = k4kΣp∆M ω = 2 + µ+ ln(N) +NB

‖y0 − ỹ0‖∞ 6 e−NB−µ−1

Proof. Denote by tn = t0 +n∆ and xn the value of x at
the nth step of the algorithm. That is:

y[n] = Φ(tn, xn, ·)
∥∥∥xn+1 − Tωtny

[n](tn + ∆)
∥∥∥
∞

6 e−ω

Notice that xn+1 is only an approximation of the Taylor
approximation. We request an approximation up to e−ω,
as a parameter of the algorithm. Lemma 7 ensures that
this bound is indeed reached by computing the derivatives
sufficiently precisely. Then define

εn = ‖xn − y(tn)‖∞
By the choice of x0 = ỹ0, we have ε0 = ‖ỹ0 − y0‖∞ 6
e−NB−µ−1. Now assume that εne

B 6 1
3
. After a few sim-

plifications, Proposition 5 gives:

εn+1 6 εne
B + (∆A)ω + e−ω

Now apply Lemma 6:

εn 6 enBε0 +
(
(∆A)ω + e−ω

) enB − 1

eB − 1

Notice that

enB − 1

eB − 1
=

n−1∑
k=0

ekB 6 nenB

Thus for n = N we get

εN 6 eNBe−NB−µ−1 +
(
(∆A)ω + e−ω

)
NeNB

By the choice of A we have

∆A 6 e−1

Thus by the choice of ω we have

εN 6 e−µ−1 + 2e−2−µ−ln(N)−NBNeNB

6 e−µ−1 + e−µ−1 6 e−µ 6
1

3

Notice that we need to check that we indeed get a value
smaller that 1

3
at the end otherwise we couldn’t have applied

Proposition 5.

Lemma 8. If the coefficients of the vector of polynomial
p are polynomial time computable, then for all z ∈ Qd and
n, ξ ∈ N∗, NthDeriv(p, z, n, ξ) has running time polynomial
in the value of n and ξ.

Proof. From Proposition 1, we have:

∀t ∈ I, ∀n ∈ N∗, y(n)
i (t) = Qi,n(V (t))

where Qi,n is a polynomial of degree at most n and ΣQi,n 6
(n− 1)!(d). From the proof, it is easy to see that the Qi,n
are computable by induction in polynomial time in n and d
since Qi,n is of degree n (thus has at most nd terms) and has

the sum of its coefficients not larger that (n− 1)!(d) (thus
taking a space and time at most polylogarithmic in n to
manipulate). Finally, V (t) can be computed with precision
e−ξ in time polynomial in ξ from the assumption on the
coefficients of p.

Corollary 3. If the coefficients of the vector of poly-
nomial p are polynomial time computable, then for all t0 ∈
Q, y0 ∈ Qd, T ∈ Q, ξ,N, ω ∈ N, SolvePIVP(t0, y0, p, T, ξ,N, ω)
has running time polynomial in the value of T/N, ξ,N and
ω.

In less technical form:

Theorem 2. There exists an algorithm A such that for
any p vector of polynomial with polynomial time computable
coefficients, y0 ∈ Rd polynomial time computable vector,
t0 ∈ Q, µ ∈ N, T ∈ Q and Y ∈ Q such that Y > St0y(t0+T),

‖A(p, y0, t0, µ, T, Y)− Φ(t0, y0, t0 + T)‖∞ 6 e−µ

Furthermore A(p, y0, t0, µ, T, Y) is computed in time polyno-
mial in the value of µ, T and Y .

7. EXTENSION
Our main result has the nice property that it requires

minimal hypothesis and has maximal precision in its state-
ment: all the parameters of the polynomials are kept. On
the other hand, only considering differential equations of the
form ẏ = p(y) has two drawbacks:

• not all initial value problem can be put in this form;

• even when possible, this might considerably increase
the size of the system, and thus the complexity (which
can be exponential is the size of the system) compared

to a ”non-expanded form” (e.g ẏ = sin[k](y) expands
to a 2k-dimensional polynomial system).

For this reason, we want to extend our result to differential
equations of the form ẏ = f(y) with (minimal) restrictions
on f . Intuitively, our hypothesis will be the lemmas we had
for p in the previous sections. That is, f will need to be
computable quickly and its derivatives must not grow too
fast. We only give the lemmas and proposition which are
similar to the previous sections. The proofs are similar and
we make a few remarks when relevant. For simplicity, we
write the hypothesis only once, after introducing a small
notation. Notice that in this section we assume d is a con-
stant (since everything will be exponential in d anyway, we
do not need to consider it). Hypothesis 1 is about the differ-
ential equation verified by y. Hypothesis 2 is about value the
derivatives of f . Hypothesis 3 is about the continuity mod-
ulus of f (or its ”Lipschitz” constant). Finally, Hypothesis 4

is about the complexity of computing f and its derivatives.

Notation: poly∗ (X #Y) = poly(X)poly(Y)

Hypothesis 1. Let I ⊆ R, J ⊆ Rd, y : I → J , f : J →
Rd, t0 ∈ Q, y0 ∈ Rd. Assume that{

ẏ = f(y)
y(t0)= y0

Hypothesis 2. Assume that for all α ∈ Nd, x ∈ J ,∥∥∥f (α)(x)
∥∥∥
∞

6 poly∗
(
‖x‖∞ , |α|# |α|

)
Hypothesis 3. Assume that for all a, b ∈ J ,

‖f(a)− f(b)‖∞ 6 ‖a− b‖∞Q(max ‖a‖∞ , ‖b‖∞)

where Q is a polynomial of degree k.

Hypothesis 4. Assume that y0 is polynomial time com-
putable vector of reals and that f and its derivative are poly-
nomial computable, that is, for all α ∈ N, x ∈ J , f (α)(x)
is computable with precision e−ξ in time polynomial in the
value of |α|, ξ and ‖x‖∞.

Hypothesis 1 will provides us a with a recursive formula
for the derivatives of y, similarly to Proposition 1. Armed
with Hypothesis 2 which more or less replaces Lemma 2,
we can derive a bound on the derivative of y, similarly to
Corollary 1.

Proposition 6. Define

Γn =
{
α ∈ Nd

∣∣ |α| 6 n
}

Λn = J1, dK× Γn

Vn(t) =
(
f

(α)
i (y(t))

)
(i,α)∈Λn

t ∈ I

Then

∀t ∈ I, ∀n ∈ N∗, y(n)
i (t) = Qi,n(Vn−1(t))

where Qi,n is a polynomial of degree at most n. Furthermore,

ΣQi,n 6 (n− 1)!(d)

Corollary 4.∥∥∥y(n)(t)
∥∥∥
∞

6 poly∗
(
‖y(t)‖∞ , n#n

)
Similarly to Proposition 3, Hypothesis 3 will allow us to

bound the divergence of two solutions given the initial dif-
ference. We reuse the notation y = Φ(a, y0, t) for f with its
obvious meaning.

Proposition 7. Let K = [a, b] and y0, z0 ∈ Rd. Assume
that y = Φ(a, y0, ·) and z = Φ(a, z0, ·) are defined over K.
Let Y = Say. Assume that ∀t ∈ I,

‖y0 − z0‖∞ ΣQ(1 + Y (t))k exp
(

ΣQ|t− a|(1 + Y (t))k
)
6

1

3

Then ∀t ∈ I,

‖z(t)− y(t)‖∞ 6 4 ‖y0 − z0‖∞ e
ΣQ|t−a|(1+Y (t))k

The other results are basically the same except for the
exact constant choices in the theorem. We get the same
result at the end, that is y(t) is computable is polynomial
time with respect to the same parameters.

8. ACKNOWLEDGMENTS
D.S. Graça was partially supported by Fundação para

a Ciência e a Tecnologia and EU FEDER POCTI/POCI
via SQIG - Instituto de Telecomunicações through the FCT
project PEst-OE/EEI/LA0008/2011.

Olivier Bournez and Amaury Pouly were partially sup-
ported by ANR project SHAMAN, by DGA, and by DIM
LSC DISCOVER project.

9. REFERENCES
[BC08] Olivier Bournez and Manuel L. Campagnolo.

New Computational Paradigms. Changing
Conceptions of What is Computable, chapter
A Survey on Continuous Time Computations,
pages 383–423. Springer-Verlag, New York,
2008.

[BCGH07a] O. Bournez, M. L. Campagnolo, D. S. Graça,
and E. Hainry. Polynomial differential
equations compute all real computable
functions on computable compact intervals. J.
Complexity, 23(3):317–335, 2007.

[BCGH07b] Olivier Bournez, Manuel L. Campagnolo,
Daniel S. Graça, and Emmanuel Hainry.
Polynomial differential equations compute all
real computable functions on computable
compact intervals. Journal of Complexity,
23(3):317–335, June 2007.

[Bus31] V. Bush. The differential analyzer. A new
machine for solving differential equations. J.
Franklin Inst., 212:447–488, 1931.

[Dem96] J.-P. Demailly. Analyse Numérique et

Équations Différentielles. Presses
Universitaires de Grenoble, 1996.

[GC03] D. S. Graça and J. F. Costa. Analog
computers and recursive functions over the
reals. J. Complexity, 19(5):644–664, 2003.

[GCB08] D. S. Graça, M. L. Campagnolo, and
J. Buescu. Computability with polynomial
differential equations. Adv. Appl. Math.,
40(3):330–349, 2008.

[Sha41] C. E. Shannon. Mathematical theory of the
differential analyzer. J. Math. Phys. MIT,
20:337–354, 1941.

[Smi06] Warren D. Smith. Church’s thesis meets the
N-body problem. Applied Mathematics and
Computation, 178(1):154–183, 2006.

[Wei00] K. Weihrauch. Computable Analysis: an
Introduction. Springer, 2000.

[Wil96] Michael R. Williams. About this issue. IEEE
Annals of the History of Computing, 18(4),
October–December 1996.

	1 Introduction
	2 Notation and basic facts
	3 Nth derivative of y
	4 Dependency in the initial condition
	5 Taylor approximation
	6 Our main result
	7 Extension
	8 Acknowledgments
	9 References

