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Abstract

We recently obtained partial results on the computational power of population
protocols when population is assumed to be huge.

We studied in particular a particular protocol that we proved to converge

towards
√

1
2 , using weak-convergence methods for stochastic processes.

In this note, we prove that this is possible to compute
√

1
2 with precision

ǫ > 0 in a time polynomial in 1
ǫ using a number of agents polynomial in 1

ǫ , with
individuals that can have only two states.

This is established through a general result on approximation of stochas-
tic differential equations by a stochastic Euler like discretization algorithm, of
general interest.

1. Introduction

The computational power of networks of finitely many anonymous resource-
limited mobile agents has been investigated in several recent papers. In partic-
ular, the population protocol model, introduced in [1], consists of a population
of finite-state agents that interact in pairs, where each interaction updates the
state of both participants according to a transition based on the previous states
of the participants. When all agents converge after some finite time to a common
value, this value represents the result of the computation.

Their computational power has been investigated under several hypotheses
but always when restricted to finite size populations. Predicates stably com-
putable by population protocols in this sense have been characterized as being
precisely the semi-linear predicates, that is to say those predicates on counts
of input agents definable in first-order Presburger arithmetic [2]. Semi-linearity
was shown to be sufficient in [1] and necessary in [3].
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Refer to [4] for a survey on results obtained for finite size population proto-
cols.

In a recent paper [5], we started to investigate the computational power of
population protocols when the size of the population goes to infinity. In partic-
ular, we considered the following example. Assume that we have a population of
agents that can be either in state + or in state −. Assume that this population
is huge, and that at each discrete time step, two agents are paired. These two
agents are chosen according to a uniform law (without choosing twice the same).
The effect of a pairing is given by the following rules:















+ + → + −
+ − → + +
− + → + +
−− → + −

(1)

These rules must be interpreted as follows: if an agent in state + is paired
with an agent in state +, then the second becomes −. If an agent in state + is
paired with an agent in state −, then the second becomes +, and symmetrically.
If an agent in state − is paired with an agent in state −, then the first becomes
in state +.

Suppose that we want to discuss the limit of the proportion p(k) of agents
in state + in the population at discrete time k. If n+(k) denotes the number of
agents in state +, and n−(k) = n − n+(k) the number of agents in state −,

p(k) =
n+(k)

n
.

Since we are dealing with n indistinguishable agents, the population protocol
is completely described by the number of agents in state +. We are then reduced
to determine the evolution of the Markov chain

(p(k))k∈N
∈

{

0

n
,
1

n
, . . . ,

n

n

}

.

If we put aside the special configuration where all agents are in state −
which is immediately left in any next round, any configuration is reachable from
any configuration: Hence, (p(k)) is an homogeneous irreducible Markov chain
in { 1

n , . . . , n
n}.

A consequence of the ergodic theorem is that the chain (p(k)) admits a
unique stationary distribution µ.

It is easy to see that this must be an element of Qn. Hence, its mean
∑

i µ(i/n)i/n is a rational number, that we denote p(n).
A second consequence of the ergodic theorem is the following convergence :

p(1) + p(2) + ... + p(k)

k

k→∞→ p(n), almost surely.

We proved in [5], that when n goes to infinity, the mean value of p(k) con-

verges to the irrational number
√

1
2 . This was obtained through some weak-
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convergence methods, based on theoretical results on stochastic processes and
their approximation by stochastic discrete time sequences.

By several aspects these results are non-constructive, and not usable to give

any bounds on the number of individuals, nor the time required to compute
√

1
2

at precision ǫ.
The purpose of the current note is to circumvent the problem and show that

this is possible to compute
√

1
2 with precision ǫ > 0 in a time polynomial in 1

ǫ

using a number of agents polynomial in 1
ǫ .

This is established through a general result on approximation of stochastic
differential equations by a stochastic Euler like discretization algorithm. This
provides a convergence result which is more directly exploitable from a computer
science point of view (we have bounds on required size and time).

We believe the approach useful in many other contexts. In particular, this
works for general population protocols considered in [5], as we will see in next
section.

2.
√

1

2
vs General Case

Formally, if pn(k) denotes the proportion of + in the population of size n at
time k, we established in [5] that one can always write

pn(k + 1) = pn(k) +
1

n

(

1 − 2
n

n − 1
pn(k)2 +

2

n − 1
pn(k)

)

+
1

n
ρn(k).

This can be rewritten

pn(k + 1) − pn(k) =
1

n
F (pn(k)) +

1

n
ǫn(k) +

1

n
ρn(k),

where
F (x) = 1 − 2x2,

and ǫn(k) = 2
n−1 (pn(k)−pn(k)2), can be seen as a deterministic O( 1

n ) perturba-
tion, and ρn(k) as a randomized perturbation, that is to say a random variable,
that takes value in interval [−2, 2].

The result then follows from Theorem 1, proved in next section: observe that
the ordinary differential equation dx

dt = F (x) is explicitly solvable (we thanks our
formal calculus software about reminding us how to solve this type of rational

fraction equations): x(t) = e2
√

2(t−c1)−1√
2(e2

√
2(t−c1)+1)

, where c1 is some constant, fixed by

the initial condition. Whatever the initial condition is, it converges to
√

1
2 . A

simple asymptotic development of x(t) −
√

1
2 shows that taking t = T (ǫ) with

T (ǫ) > − 1
2
√

2
ln( ǫ√

2
) + c1 guarantees |x(t) −

√

1
2 | ≤ ǫ.
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Actually, this works for general population protocols. Following [5], the
transition rules of a general population protocol are of the form

q q′ → δ1(q, q
′) δ2(q, q

′)

for all (q1, q2) ∈ Q2.
For general protocols, from the proof of Theorem 4 in [5], for Pn(k) describing

the vector of K = [0, 1]Q ⊂ RQ whose components are the proportions of agents
in the different state at time k for populations of size n, we still have

Pn(k + 1) = Pn(k + 1) + b(Pn(k)) +
1

n
ǫn(k) +

1

n
ρn(k),

where
b(x) =

∑

(q,q′)∈Q

xqxq′(−(eq + e′q) + eδ1(q,q′) + eδ2(q,q′)),

(eq)q∈Q is the canonical base of RQ, where ǫn(k) can be seen as a deterministic
O( 1

n ) perturbation, and ρn(k) is a randomized perturbation, that is to say a
random variable, that takes value in interval [−2, 2].

It then also follows from Theorem 1, proved in next section, that if the
ordinary differential equation

dX

dt
= b(X),

is efficiently globally convergent, then its limit can be approximated at ǫ in a
time polynomial in 1

ǫ with a number of agents of size polynomial in 1
ǫ .

3. Approximating A Stochastic Differential Equation by An Euler
Like Method

Theorem 1. Assume that F : K ⊂ Rd → Rd is some C1 function over some
compact K.

Assume that ordinary differential equation (ODE)

dX

dt
= F (X) (2)

over K ⊂ Rd is globally convergent: there is some x∗ ∈ K, such that for all ǫ,
there is some T (ǫ) so that, whatever X(0) is, any solution of the ODE is such
that ||X(t) − x∗|| ≤ ǫ for t ≥ T (ǫ).

Assume that it is moreover it is efficiently globally convergent: we also have
that T (ǫ) is in O(ln 1/ǫ).

Asume that (Pn(k))k is a sequence of random variables taking values in com-
pact K, and c and d are two integers so that for all n and k,

• we have

Pn(k + 1) − Pn(k) =
1

n
F (Pn(k)) +

1

n
ǫn(k) +

1

n
ρn(k),
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• where ǫn(k) is a deterministic term taking value in [− d
n , d

n ],

• and ρn(k) is random variable taking value in interval [−c, c],

Then for any precision ǫ > 0 arbitrary close to 0 and probability 0 < µ < 1
arbitrary close to 1, one can consider some integers n and k that guarantees
that whatever the initial condition Pn(0) is, we have

||Pn(k) − x∗|| ≤ ǫ.

Moreover, whenever µ is fixed, n = n(ǫ) and k = k(ǫ) can be taken bounded
by a polynomial in 1/ǫ.

Proof. Fix precision ǫ > 0 and probability 0 < µ < 1.
Let X be a solution of ODE (2). From Taylor-Lagrange on function X, we

have for T = k
n ,

X(T +
1

n
) − X(T ) =

1

n
F (X(T )) +

1

2n2
F ′(χ)F (χ),

where χ ∈ [T, T + 1
n ].

Let

P̃n(
k

n
) = Pn(k),

for all k, n.
We can then write for T = k

n ,

X(T +
1

n
)− P̃n(T +

1

n
) = X(T )− P̃n(T )+

1

n

(

F (X(T )) − F (P̃n(T ))
)

− 1

n
µn(T ),

(3)
where µn(T ) = ǫn(k) + ρn(k) − 1

2nF (χn)F ′(χn).
Summing (3) from 0 to k, yields

X(
k + 1

n
)−P̃n(

k + 1

n
) = X(0)−P̃n(0)+

k
∑

i=0

1

n

(

F (X(
i

n
)) − F (P̃n(

i

n
))

)

−
k

∑

i=0

1

n
µn(

i

n
)

Since F is C1 over compact K, it is Λ-Lipschtiz for some Λ.
Using the fact that X(0) − P̃n(0) = 0, and the fact that F is Λ-Lipschtiz,

this gives

∣

∣

∣

∣

X(
k + 1

n
) − P̃n(

k + 1

n
)

∣

∣

∣

∣

≤
k

∑

i=0

Λ

n

∣

∣

∣

∣

X(
i

n
) − P̃n(

i

n
)

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

k
∑

i=0

1

n
µn(

i

n
)

∣

∣

∣

∣

∣

Introducing

θk =

k
∑

i=0

∣

∣

∣

∣

X(
i

n
) − P̃n(

i

n
)

∣

∣

∣

∣

,
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this can be stated as

θk+1 − θk ≤ Λ

n
θk +

∣

∣

∣

∣

∣

k
∑

i=0

1

n
µn(

i

n
)

∣

∣

∣

∣

∣

Recall

Lemma 2 (Gronwall’s Lemma: e.g. [6, page 213]). Suppose that for some
sequences hk, θk ≥ 0 and ǫk ∈ R we have θk+1 ≤ (1 + Λhk)θk + |ǫk|. Then

θk ≤ eΛ(tk−t0)θ0 +
∑

0≤i≤k−1

eΛ(tk−ti+1)|ǫi|,

where tk+1 = tk + hk, for all k.

This gives here for hk = 1
n , ǫk =

∣

∣

∣

∑k
i=0

1
nµn( i

n )
∣

∣

∣

θk ≤
∑

0≤i≤k−1

e
Λ
n

(k−i−1)

∣

∣

∣

∣

∣

∣

i
∑

j=0

1

n
µn(

j

n
)

∣

∣

∣

∣

∣

∣

,

and hence

sup
0≤i≤k

∣

∣

∣

∣

X(
i

n
) − P̃n(

i

n
)

∣

∣

∣

∣

≤
∑

0≤i≤k−1

e
Λ
n

(k−i−1)

∣

∣

∣

∣

∣

∣

i
∑

j=0

1

n
µn(

j

n
)

∣

∣

∣

∣

∣

∣

. (4)

This implies

sup
0≤i≤k

∣

∣

∣

∣

X(
i

n
) − P̃n(

i

n
)

∣

∣

∣

∣

≤ ν(k, n) sup
0≤i≤k

∣

∣

∣

∣

∣

∣

i
∑

j=0

1

n
µn(

j

n
)

∣

∣

∣

∣

∣

∣

. (5)

where

ν(k, n) =
∑

0≤i≤k−1

e
Λi

n =
e

Λk

n − 1

e
Λ
n − 1

≤ e
Λk

n

1 − e−
Λk

n

1 − e−
Λ
n

which is, doing an asymptotic development, in O(e
Λk

n ), when n and T = k/n
are big enough, say when n ≥ n1 and T ≥ T1.

Decomposing µn(k/n) = ǫn(k) + ρn(k) − 1
2nF ′(χn)F (χn), we obtain

∣

∣

∣

∣

∣

∣

i
∑

j=0

1

n
µn(

j

n
)

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

i
∑

j=0

1

n
ǫn(j)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

i
∑

j=0

1

n
ρn(j)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

i
∑

j=0

1

2n2
F ′(χn)F (χn)

∣

∣

∣

∣

∣

∣

As ǫn(k) was assumed to take values in [− d
n , d

n ], the first term can be then
bounded as follows

∣

∣

∣

∣

∣

∣

i
∑

j=0

1

n
ǫn(j)

∣

∣

∣

∣

∣

∣

≤ d(i + 1)

n2
.
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The third term can be bounded as follows
∣

∣

∣

∣

∣

∣

i
∑

j=0

1

2n2
F ′(χn)F (χn)

∣

∣

∣

∣

∣

∣

≤ M1M2(i + 1)

2n2
,

given that F is bounded on K, and that F ′ = X is also bounded on K by
respective constants M1 and M2.

Equation (5) then allows to write

∣

∣

∣

∣

X(
k

n
) − P̃n(

k

n
)

∣

∣

∣

∣

≤ ν(k, n)

(

d(k + 1)

n2
+

M1M2(k + 1)

2n2

)

+
ν(k, n)

n
sup

0≤i≤k

∣

∣

∣

∣

∣

∣

i
∑

j=0

ρn(j)

∣

∣

∣

∣

∣

∣

,

if one prefers

∣

∣

∣

∣

X(
k

n
) − P̃n(

k

n
)

∣

∣

∣

∣

≤ O(eΛT T
1

n
) + O(eΛT 1

n
) sup

0≤i≤k

∣

∣

∣

∣

∣

∣

i
∑

j=0

ρn(j)

∣

∣

∣

∣

∣

∣

where T = k
n , when n ≥ n1 and T ≥ T1.

Recall that a sequence of random variables Z0, Z1, · · · is said to be martingale
with respect to sequence X0, X1, · · · if, for all n ≥ 0, we have (i) Zn is a
function from X0, X1, · · · , Xn (ii) E[|Zn|] < ∞ (iii) E[Zn+1|X0, · · · , Xn] = Zn.
A function is martingale if it is a martingale with respect to itself.

Proposition 1 (Azuma-Hoeffding’s Inequality: see e.g. [7]). Let Z1, Z2, · · · , Zn

a martingale such that
|Zk − Zk−1| ≤ ck.

Then for all t ≥ 0 and all λ > 0,

Pr(|Zt − Z0| ≥ λ) ≤ 2e−λ2/(2
P

t

k=1 c2
k
).

Now consider Z0 = 0,

Zk =

k−1
∑

j=0

ρn(j),

for k > 0.
We have by hypothesis

|Zk − Zk−1| ≤ c.

So, for all λ > 0,

Pr(|Zk| ≥ λ) ≤ 2e−λ2/(2kc2)

Using some union bounds,

Pr( sup
0≤i≤k

|
i

∑

j=0

ρn(j)| > λ) ≤ P (
⋃

0≤i≤k

|
i

∑

j=0

ρn(j)| > λ) ≤
k

∑

i=0

P (|
i

∑

j=0

ρn(j)| > λ),
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which is less than

k
∑

i=0

2e−λ2/(2(i+1)c2) ≤ 2(k + 1)e−λ2/(2c2).

Fix κ so that 1 − 2(k + 1)e−κ2T 2 ≥ µ whenever n ≥ n1 and k ≥ k1 = T1n1.
Take then λ = κTc

√
2. With probability more than µ

sup
0≤i≤k

|
i

∑

j=0

ρn(j)| ≤ κc
√

2T,

hence

∣

∣

∣

∣

X(
k

n
) − P̃n(

k

n
)

∣

∣

∣

∣

≤ O(eΛT T
1

n
) + O(eΛT T

1

n
) = O(eΛT T

1

n
)

Take any T ≥ max(T ( ǫ
2 ), T1) so that

||X(T ) − x∗|| ≤ ǫ

2
.

Then take any n ≥ n1 where n is big enough so that O(eΛT T 1
n ) ≤ ǫ

2 :
as n1 is some constant (not depending on ǫ) n can be taken in O( 1

ǫ eΛT T ) =

O( 1
ǫ ( 1

ǫ )O(1) ln 1
ǫ ), that is to say, polynomial in 1

ǫ .
Consider then k = max(k1, Tn). We have

||Pn(k) − x∗|| = ||P̃n(
k

n
) − x∗|| ≤ ||P̃n(

k

n
) − X(

k

n
)|| + ||X(

k

n
) − x∗|| ≤ ǫ :

as k1 is some constant (not depending on ǫ), and as n is polynomial in 1
ǫ , k can

also be taken as polynomial in 1
ǫ .
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