L. Papp, A. Holmgren, and K. Khanna, Selenium and Selenoproteins in Health and Disease, Antioxidants & Redox Signaling, vol.12, issue.7, pp.793-795, 2010.
DOI : 10.1089/ars.2009.2973

J. Brozmanová, D. Mániková, V. Vlcková, and M. Chovanec, Selenium: a double-edged sword for defense and offence in cancer, Archives of Toxicology, vol.62, issue.Pt 1, pp.919-938, 2010.
DOI : 10.1007/s00204-010-0595-8

M. Ledesma, B. Jung-hynes, T. Schmit, R. Kumar, and H. Mukhtar, Selenium and vitamin E for prostate cancer: post-SELECT (Selenium and Vitamin E Cancer Prevention Trial) status, Mol Med, vol.17, pp.134-143, 2011.

R. Muecke, L. Schomburg, J. Buentzel, K. Kisters, and O. Micke, Selenium or No Selenium- That Is the Question in Tumor Patients: A New Controversy, Integrative Cancer Therapies, vol.3, issue.4, pp.136-141, 2010.
DOI : 10.1177/1534735410367648

M. Selenius, A. Rundlöf, E. Olm, A. Fernandes, and M. Björnstedt, Selenium and the Selenoprotein Thioredoxin Reductase in the Prevention, Treatment and Diagnostics of Cancer, Antioxidants & Redox Signaling, vol.12, issue.7, pp.867-880, 2010.
DOI : 10.1089/ars.2009.2884

M. Wu, M. Kang, N. Schoene, and W. Cheng, Selenium Compounds Activate Early Barriers of Tumorigenesis, Journal of Biological Chemistry, vol.285, issue.16, pp.12055-12062, 2010.
DOI : 10.1074/jbc.M109.088781

M. Jackson, G. Combs, and J. , Selenium and anticarcinogenesis: underlying mechanisms, Current Opinion in Clinical Nutrition and Metabolic Care, vol.11, issue.6, pp.718-726, 2008.
DOI : 10.1097/MCO.0b013e3283139674

Y. Seko and N. Imura, Active oxygen generation as a possible mechanism of selenium toxicity, Biomed Environ Sci, vol.10, pp.333-339, 1997.

Y. Seko, Y. Saito, J. Kitahara, and N. Imura, Active Oxygen Generation by the Reaction of Selenite with Reduced Glutathione in Vitro, Fourth international symposium on selenium in biology and medecine, pp.70-73, 1989.
DOI : 10.1007/978-3-642-74421-1_14

L. Yan and J. Spallholz, Generation of reactive oxygen species from the reaction of selenium compounds with thiols and mammary tumor cells, Biochem Pharmacol, vol.45, pp.429-437, 1993.

J. Kitahara, Y. Seko, N. Imura, H. Utsumi, and A. Hamada, DNA strand breakage and lipid peroxidation as possible mechanisms of selenium toxicity Genetic response to metals, pp.121-129, 1995.

J. Kitahara, Y. Seko, H. Utsumi, A. Hamada, and N. Imura, Possible Role of Active Oxygen Species in the Toxic Action of Selenite (Proceedings of the 18th Symposium on Toxicology, and Environmental Health), Eisei kagaku, vol.39, issue.1, p.5, 1993.
DOI : 10.1248/jhs1956.39.P5

A. Tarze, M. Dauplais, I. Grigoras, M. Lazard, and N. Ha-duong, Extracellular Production of Hydrogen Selenide Accounts for Thiol-assisted Toxicity of Selenite against Saccharomyces cerevisiae, Journal of Biological Chemistry, vol.282, issue.12, pp.8759-8767, 2007.
DOI : 10.1074/jbc.M610078200

URL : https://hal.archives-ouvertes.fr/hal-00344003

H. Salin, V. Fardeau, E. Piccini, G. Lelandais, and V. Tanty, Structure and properties of transcriptional networks driving selenite stress response in yeasts, BMC Genomics, vol.9, issue.1, p.333, 2008.
DOI : 10.1186/1471-2164-9-333

B. Pinson, I. Sagot, and B. Daignan-fornier, Identification of genes affecting selenite toxicity and resistance in Saccharomyces cerevisiae, Molecular Microbiology, vol.268, issue.3, pp.679-687, 2000.
DOI : 10.1046/j.1365-2958.2000.01890.x

E. Seitomer, B. Balar, D. He, P. Copeland, and T. Kinzy, oxidative stress pathways in growth inhibition by selenium, Molecular Nutrition & Food Research, vol.155, issue.11, pp.1305-1315, 2008.
DOI : 10.1002/mnfr.200700347

A. Izquierdo, C. Casas, and E. Herrero, Selenite-induced cell death in Saccharomyces cerevisiae: protective role of glutaredoxins, Microbiology, vol.156, issue.9, pp.2608-2620, 2010.
DOI : 10.1099/mic.0.039719-0

A. Lewinska and G. Bartosz, A role for yeast glutaredoxin genes in selenite-mediated oxidative stress, Fungal Genetics and Biology, vol.45, issue.8, pp.1182-1187, 2008.
DOI : 10.1016/j.fgb.2008.05.011

K. Anjaria and U. Madhvanath, Genotoxicity of selenite in diploid yeast, Mutation Research/Genetic Toxicology, vol.204, issue.4, pp.605-614, 1988.
DOI : 10.1016/0165-1218(88)90063-8

D. Mániková, D. Vlasáková, J. Loduhová, L. Letavayová, and D. Vigasová, Investigations on the role of base excision repair and non-homologous end-joining pathways in sodium selenite-induced toxicity and mutagenicity in Saccharomyces cerevisiae, Mutagenesis, vol.25, issue.2, pp.155-162, 2010.
DOI : 10.1093/mutage/gep056

L. Letavayová, D. Vlasáková, J. Spallholz, J. Brozmanová, and M. Chovanec, Toxicity and mutagenicity of selenium compounds in Saccharomyces cerevisiae, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.638, issue.1-2, pp.1-10, 2008.
DOI : 10.1016/j.mrfmmm.2007.08.009

L. Letavayová, D. Vlasáková, V. Vlcková, J. Brozmanová, and M. Chovanec, Rad52 has a role in the repair of sodium selenite-induced DNA damage in Saccharomyces cerevisiae, Mutation Research/Genetic Toxicology and Environmental Mutagenesis, vol.652, issue.2, pp.198-203, 2008.
DOI : 10.1016/j.mrgentox.2008.03.001

A. Nashef, D. Osuga, and R. Feeney, Determination of hydrogen sulfide with 5,5???-dithiobis-(2-nitrobenzoic acid), N-ethylmaleimide, and parachloromercuribenzoate, Analytical Biochemistry, vol.79, issue.1-2, pp.394-405, 1977.
DOI : 10.1016/0003-2697(77)90413-4

G. Giaever, A. Chu, L. Ni, C. Connelly, and L. Riles, Functional profiling of the Saccharomyces cerevisiae genome, Nature, vol.57, issue.6896, pp.387-391, 2002.
DOI : 10.1073/pnas.95.25.14863

D. Schwartz and C. Cantor, Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis, Cell, vol.37, issue.1, pp.67-75, 1984.
DOI : 10.1016/0092-8674(84)90301-5

Y. Nogi, R. Yano, and M. Nomura, Synthesis of large rRNAs by RNA polymerase II in mutants of Saccharomyces cerevisiae defective in RNA polymerase I., Proceedings of the National Academy of Sciences, vol.88, issue.9, pp.3962-3966, 1991.
DOI : 10.1073/pnas.88.9.3962

S. Pietri, T. Liebgott, C. Fréjaville, P. Tordo, and M. Culcasi, Nitrone spin traps and their pyrrolidine analogs in myocardial reperfusion injury : hemodynamic and ESR implications. Evidence for a cardioprotective phosphonate effect for 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide in rat hearts, European Journal of Biochemistry, vol.254, issue.2, pp.256-265, 1998.
DOI : 10.1046/j.1432-1327.1998.2540256.x

G. Mazón, E. Mimitou, and L. Symington, SnapShot: Homologous Recombination in DNA Double-Strand Break Repair, Cell, vol.142, issue.4, pp.648-641, 2010.
DOI : 10.1016/j.cell.2010.08.006

H. Van-attikum, O. Fritsch, and S. Gasser, Distinct roles for SWR1 and INO80 chromatin remodeling complexes at chromosomal double-strand breaks, The EMBO Journal, vol.10, issue.18, pp.4113-4125, 2007.
DOI : 10.1038/sj.emboj.7601835

J. Game, G. Birrell, J. Brown, T. Shibata, and C. Baccari, Use of a Genome-Wide Approach to Identify New Genes that Control Resistance of Saccharomyces cerevisiae to Ionizing Radiation, Radiation Research, vol.160, issue.1, pp.14-24, 2003.
DOI : 10.1667/RR3019

W. Lee, . Stonge, . Rp, M. Proctor, P. Flaherty et al., Genome-Wide Requirements for Resistance to Functionally Distinct DNA-Damaging Agents, PLoS Genetics, vol.50, issue.2, p.24, 2005.
DOI : 10.1371/journal.pgen.0010024.st003

B. Llorente and L. Symington, The Mre11 Nuclease Is Not Required for 5' to 3' Resection at Multiple HO-Induced Double-Strand Breaks, Molecular and Cellular Biology, vol.24, issue.21, pp.9682-9694, 2004.
DOI : 10.1128/MCB.24.21.9682-9694.2004

C. Alabert, J. Bianco, and P. Pasero, Differential regulation of homologous recombination at DNA breaks and replication forks by the Mrc1 branch of the S-phase checkpoint, The EMBO Journal, vol.63, issue.8, pp.1131-1141, 2009.
DOI : 10.1038/emboj.2008.111

URL : https://hal.archives-ouvertes.fr/hal-00399013

L. Symington, Role of RAD52 Epistasis Group Genes in Homologous Recombination and Double-Strand Break Repair, Microbiology and Molecular Biology Reviews, vol.66, issue.4, pp.630-670, 2002.
DOI : 10.1128/MMBR.66.4.630-670.2002

H. Hsieh and H. Ganther, Acid-volatile selenium formation catalyzed by glutathione reductase, Biochemistry, vol.14, issue.8, pp.1632-1636, 1975.
DOI : 10.1021/bi00679a014

C. Frejaville, H. Karoui, B. Tuccio, L. Moigne, F. Culcasi et al., 5-(Diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide: A New Efficient Phosphorylated Nitrone for the in Vitro and in Vivo Spin Trapping of Oxygen-Centered Radicals, Journal of Medicinal Chemistry, vol.38, issue.2, 1995.
DOI : 10.1021/jm00002a007

K. Nuttall and F. Allen, Kinetics of the reaction between hydrogen selenide ion and oxygen, Inorganica Chimica Acta, vol.91, issue.4, pp.243-246, 1984.
DOI : 10.1016/S0020-1693(00)81844-7

D. Tapley, G. Buettner, and J. Shick, Free Radicals and Chemiluminescence as Products of the Spontaneous Oxidation of Sulfide in Seawater, and Their Biological Implications, The Biological Bulletin, vol.196, issue.1, pp.52-56, 1999.
DOI : 10.2307/1543166

O. Weres, L. Tsao, and R. Chhatre, Catalytic Oxidation of Aqueous Hydrogen Sulfide in the Presence of Sulfite, CORROSION, vol.41, issue.6, pp.307-316, 1985.
DOI : 10.5006/1.3582010

S. Lee, J. Moore, A. Holmes, K. Umezu, and R. Kolodner, Saccharomyces Ku70, Mre11/Rad50, and RPA Proteins Regulate Adaptation to G2/M Arrest after DNA Damage, Cell, vol.94, issue.3, pp.399-409, 1998.
DOI : 10.1016/S0092-8674(00)81482-8

URL : http://doi.org/10.1016/s0092-8674(00)81482-8

D. Hanway, J. Chin, G. Xia, G. Oshiro, and E. Winzeler, Previously uncharacterized genes in the UV- and MMS-induced DNA damage response in yeast, Proceedings of the National Academy of Sciences, vol.99, issue.16, pp.10605-10610, 2002.
DOI : 10.1073/pnas.152264899

H. Shen, C. Yang, J. Liu, and C. Ong, Dual role of glutathione in selenite-induced oxidative stress and apoptosis in human hepatoma cells, Free Radical Biology and Medicine, vol.28, issue.7, pp.1115-1124, 2000.
DOI : 10.1016/S0891-5849(00)00206-9

H. Ganther, Reduction of the selenotrisulfide derivative of glutathione to a persulfide analog by gluthathione reductase, Biochemistry, vol.10, issue.22, pp.4089-4098, 1971.
DOI : 10.1021/bi00798a013

G. Birrell, J. Brown, H. Wu, G. Giaever, and A. Chu, Transcriptional response of Saccharomyces cerevisiae to DNA-damaging agents does not identify the genes that protect against these agents, Proceedings of the National Academy of Sciences, vol.99, issue.13, pp.8778-8783, 2002.
DOI : 10.1073/pnas.132275199

M. Hillenmeyer, E. Fung, J. Wildenhain, S. Pierce, and S. Hoon, The Chemical Genomic Portrait of Yeast: Uncovering a Phenotype for All Genes, Science, vol.320, issue.5874, pp.362-365, 2008.
DOI : 10.1126/science.1150021