T. Lee, N. Rinaldi, F. Robert, D. Odom, Z. Bar-joseph et al., Transcriptional Regulatory Networks in Saccharomyces cerevisiae, Transcriptional regulatory networks in Saccharomyces cerevisiae, pp.799-804, 2002.
DOI : 10.1126/science.1075090

H. Dejong, Modeling and Simulation of Genetic Regulatory Systems: A Literature Review, Journal of Computational Biology, vol.9, issue.1, pp.67-103, 2002.
DOI : 10.1089/10665270252833208

T. Hughes, M. Marton, A. Jones, C. Roberts, R. Stoughton et al., Functional Discovery via a Compendium of Expression Profiles, Cell, vol.102, issue.1, pp.109-126, 2000.
DOI : 10.1016/S0092-8674(00)00015-5

M. W. Covert, E. M. Knight, J. L. Reed, M. J. Herrgard, and B. O. Palsson, Integrating high-throughput and computational data elucidates bacterial networks, Nature, vol.429, issue.6987, pp.92-96, 2004.
DOI : 10.1038/nature02456

M. Eisen, P. Spellman, P. Brown, and D. Botstein, Cluster analysis and display of genome-wide expression patterns, Proc. Natl Acad. Sci. USA, pp.14863-14868, 1998.
DOI : 10.1073/pnas.95.25.14863

A. Ben-dor, R. Shamir, and Z. Yakhini, Clustering Gene Expression Patterns, Journal of Computational Biology, vol.6, issue.3-4, pp.281-297, 1999.
DOI : 10.1089/106652799318274

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

U. Alon, N. Barkai, D. Notterman, K. Gish, S. Ybarra et al., Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays, Proc. Natl Acad. Sci. USA, pp.6745-6750, 1999.
DOI : 10.1073/pnas.96.12.6745

P. Dhaeseleer, S. Liang, and R. Somogyi, Genetic network inference: from co-expression clustering to reverse engineering, Bioinformatics, vol.16, issue.8, pp.707-726, 2000.
DOI : 10.1093/bioinformatics/16.8.707

J. Ihmels, G. Friedlander, S. Bergmann, O. Sarig, Y. Ziv et al., Revealing modular organization in the yeast transcriptional network, Nature Genetics, vol.31, pp.370-377, 2002.
DOI : 10.1038/ng941

M. Bansal, V. Belcastro, A. Ambesi-impiombato, and D. Dibernardo, How to infer gene networks from expression profiles, Mol. Syst. Biol, vol.3, p.78, 2007.

DOI : 10.1142/9789814447331_0040

K. Basso, A. A. Margolin, G. Stolovitzky, U. Klein, R. Dalla-favera et al., Reverse engineering of regulatory networks in human B cells, Nature Genetics, vol.14, issue.4, pp.382-390, 2005.
DOI : 10.1101/gad.906601

A. Margollin, I. Nemenman, K. Basso, C. Wiggins, G. Stolovitzky et al., ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context, BMC Bioinformatics, vol.7, issue.Suppl 1, p.7, 2006.
DOI : 10.1186/1471-2105-7-S1-S7

J. Faith, B. Hayete, J. Thaden, I. Mogno, J. Wierzbowski et al., Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles, PLoS Biology, vol.280, issue.1, p.8, 2007.
DOI : 10.1371/journal.pbio.0050008.sd001

P. E. Meyer, K. Kontos, F. Lafitte, and G. Bontempi, Information-Theoretic Inference of Large Transcriptional Regulatory Networks, EURASIP Journal on Bioinformatics and Systems Biology, vol.6, issue.1, p.79879, 2007.
DOI : 10.1162/089976698300017197

J. Yu, V. Smith, P. Wang, A. Hartemink, and E. Jarvis, Advances to Bayesian network inference for generating causal networks from observational biological data, Bioinformatics, vol.20, issue.18, pp.3594-3603, 2004.
DOI : 10.1093/bioinformatics/bth448

D. Husmeier, Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks, Bioinformatics, vol.19, issue.17, pp.2271-2282, 2003.
DOI : 10.1093/bioinformatics/btg313

A. Fujita, J. R. Sato, H. M. Garay-malpartida, R. Yamaguchi, S. Miyano et al., Modeling gene expression regulatory networks with the sparse vector autoregressive model, BMC Systems Biology, vol.1, issue.1, p.39, 2007.
DOI : 10.1186/1752-0509-1-39

F. Steinke, M. Seeger, and K. Tsuda, Experimental design for efficient identification of gene regulatory networks using sparse Bayesian models, BMC Systems Biology, vol.1, issue.1, p.51, 2007.
DOI : 10.1186/1752-0509-1-51

T. Gardner, D. Dibernardo, D. Lorenz, J. Collins, M. Thompson et al., Inferring genetic networks and identifying compound mode of action via expression profiles Chemogenomic profiling on a genome-wide scale using reverse-engineered gene networks, Science Nat. Biotechnol, vol.301, issue.3, pp.102-105, 2003.

S. Shevade and S. Keerthi, A simple and efficient algorithm for gene selection using sparse logistic regression, Bioinformatics, vol.19, issue.17, pp.2246-2253, 2003.
DOI : 10.1093/bioinformatics/btg308

R. Bonneau, D. Reiss, P. Shannon, M. Facciotti, L. Hood et al., The inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo, Genome Biology, vol.7, issue.5, p.36, 2006.
DOI : 10.1186/gb-2006-7-5-r36

R. Tibshirani, Regression shrinkage and selection via the lasso, J. R. Stat. Soc. B, vol.58, pp.267-288, 1996.

J. Behrens, J. Vonkries, M. Khl, L. Bruhn, D. Wedlich et al., Functional interaction of bold -catenin with the transcription factor LEF-1, Nature, vol.328, pp.638-642, 1996.

V. Stewart and P. Bledsoe, Fnr-, NarP- and NarL-Dependent Regulation of Transcription Initiation from the Haemophilus influenzae Rd napF (Periplasmic Nitrate Reductase) Promoter in Escherichia coli K-12, Journal of Bacteriology, vol.187, issue.20, pp.6928-6935, 2005.
DOI : 10.1128/JB.187.20.6928-6935.2005

J. Long and M. Roth, Synthetic microarray data generation with RANGE and NEMO, Bioinformatics, vol.24, issue.1, pp.132-134, 2008.
DOI : 10.1093/bioinformatics/btm529

H. Salgado, S. Gama-castro, M. Peralta-gil, E. Diaz-peredo, F. Sanchez-solano et al., RegulonDB (version 5.0): Escherichia coli K-12 transcriptional regulatory network, operon organization, and growth conditions, Nucleic Acids Research, vol.34, issue.90001, p.394, 2006.
DOI : 10.1093/nar/gkj156

R. Gray, Entropy and Information Theory, 1990.

R. Steuer, J. Kurths, C. O. Daub, J. Weise, and J. Selbig, The mutual information: Detecting and evaluating dependencies between variables, Bioinformatics, vol.18, issue.Suppl 2, pp.231-240, 2002.
DOI : 10.1093/bioinformatics/18.suppl_2.S231

C. Daub, R. Steuer, J. Selbig, and S. Kloska, Estimating mutual information using B-spline functions ? an improved similarity measure for analysing gene expression data, BMC Bioinformatics, vol.5, issue.1, p.118, 2004.
DOI : 10.1186/1471-2105-5-118

J. P. Cohen, S. West, and L. Aiken, Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences, 2003.

M. Hucka, H. Bolouri, A. Finney, H. Sauro, J. K. Doyle et al., The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models, Bioinformatics, vol.19, issue.4, pp.524-531, 2003.
DOI : 10.1093/bioinformatics/btg015

P. Shannon, A. Markiel, O. Ozier, N. Baliga, J. Wang et al., Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks, Genome Research, vol.13, issue.11, pp.2498-2504, 2003.
DOI : 10.1101/gr.1239303

Z. Bar-joseph, Analyzing time series gene expression data, Bioinformatics, vol.20, issue.16, pp.2493-2503, 2004.
DOI : 10.1093/bioinformatics/bth283

C. Sabatti, L. Rohlin, M. Oh, and J. Liao, Co-expression pattern from DNA microarray experiments as a tool for operon prediction, Nucleic Acids Research, vol.30, issue.13, pp.2886-2893, 2002.
DOI : 10.1093/nar/gkf388

D. Altman and J. Bland, Statistics Notes: Diagnostic tests 1: sensitivity and specificity, BMJ, vol.308, issue.6943, p.1552, 1994.
DOI : 10.1136/bmj.308.6943.1552

URL : http://www.bmj.com/cgi/content/short/308/6943/1552

D. Altman and J. Bland, Statistics Notes: Diagnostic tests 2: predictive values, BMJ, vol.309, issue.6947, p.102, 1994.
DOI : 10.1136/bmj.309.6947.102

J. Faith, M. Driscoll, V. Fusaro, E. Cosgrove, B. Hayete et al., Many Microbe Microarrays Database: uniformly normalized Affymetrix compendia with structured experimental metadata, Nucleic Acids Research, vol.36, issue.Database, pp.866-870, 2008.
DOI : 10.1093/nar/gkm815

R. Irizarry, B. Hobbs, F. Collin, Y. Beazer-barclay, K. Antonellis et al., Exploration, normalization, and summaries of high density oligonucleotide array probe level data, Biostatistics, vol.4, issue.2, pp.249-264, 2003.
DOI : 10.1093/biostatistics/4.2.249

P. Karp, M. Riley, M. Saier, I. Paulsen, J. Collado-vides et al., The EcoCyc Database, Nucleic Acids Research, vol.30, issue.1, pp.56-58, 2002.
DOI : 10.1093/nar/30.1.56

M. Isalan, C. Lemerle, K. Michalodimitrakis, C. Horn, P. Beltrao et al., Evolvability and hierarchy in rewired bacterial gene networks, Nature, vol.57, issue.7189, pp.840-845, 2008.
DOI : 10.1038/nature06847

M. Price, K. Huang, E. Alm, and A. Arkin, A novel method for accurate operon predictions in all sequenced prokaryotes, Nucleic Acids Research, vol.33, issue.3, pp.880-892, 2005.
DOI : 10.1093/nar/gki232

D. Reiss, N. Baliga, and R. Bonneau, Integrated biclustering of heterogeneous genome-wide datasets for the inference of global regulatory networks, BMC Bioinformatics, vol.7, issue.1, p.280, 2006.
DOI : 10.1186/1471-2105-7-280

F. Mordelet and J. Vert, SIRENE: supervised inference of regulatory networks, Bioinformatics, vol.24, issue.16, pp.76-82, 2008.
DOI : 10.1093/bioinformatics/btn273

URL : https://hal.archives-ouvertes.fr/hal-00259119

D. Sprinzak and M. Elowitz, Reconstruction of genetic circuits, Nature, vol.426, issue.7067, pp.443-448, 2005.
DOI : 10.1038/nature04335