G. Fayat, C. Hountondji, and S. Blanquet, Methionyl-tRNA Synthetase from Escherichia coli. Inactivation and Labeling by Periodate-Treated Initiator tRNA, European Journal of Biochemistry, vol.74, issue.1, pp.87-92, 1979.
DOI : 10.1016/0005-2744(76)90312-0

C. Hountondji, G. Fayat, S. Blanquet, C. Hountondji, S. Blanquet et al., Complete inactivation and labeling of methionyl-tRNA synthetase by periodate-treated initiator tRNA in the presence of sodium cyanohydridoborate Methionyl-tRNA synthetase from Escherichia coli: primary structure at the binding site for the 3'-end of tRNAfMet, Eur. J. Biochem. Biochemistry, vol.1024, issue.24, pp.247-250, 1979.

C. Hountondji, F. Lederer, P. Dessen, and S. Blanquet, E. coli tyrosyl- and methionyl-tRNA synthetases display sequence similarity at the binding site for the 3'-end of tRNA, Biochemistry, vol.25, issue.1, pp.16-21, 1986.
DOI : 10.1021/bi00349a003

C. Hountondji, J. M. Schmitter, C. Beauvallet, S. Blanquet, P. Dessen et al., Affinity labeling of Escherichia coli phenylalanyl-tRNA synthetase at the binding site for tRNAPhe, Biochemistry, vol.26, issue.17, pp.5433-5439, 1986.
DOI : 10.1021/bi00391a033

C. Hountondji, J. M. Schmitter, T. Fukui, M. Tagaya, and S. Blanquet, Affinity labeling of aminoacyl-tRNA synthetases with adenosine triphosphopyridoxal: Probing the Lys-Met-Ser-Lys-Ser signature sequence as the ATP-binding site in E. coli methionyl- and valyl-tRNA synthetases, Biochemistry, vol.29, issue.51, pp.11266-11273, 1990.
DOI : 10.1021/bi00503a016

C. Hountondji, S. Gillet, J. M. Schmitter, T. Fukui, and S. Blanquet, Affinity labeling of the two species of Escherichia coli lysyl-tRNA synthetase with adenosine Di-and triphosphopyridoxals, J. Biochem, vol.1169, pp.493-501, 1994.

S. Gillet, C. Hoang, J. M. Schmitter, S. Blanquet, and C. Hountondji, Affinity labeling of Escherichia coli histidyl-tRNA synthetase with reactive ATP analogues. Identification of labeled amino acid residues by matrix assisted laser desorption-ionization mass spectrometry Modification of aminoacyl-tRNA synthetases with pyridoxal-5'- phosphate. Identification of the labeled amino acid residues, Eur. J. Biochem. Biochimie, vol.24111, issue.76, pp.133-141, 1994.

C. Hountondji, S. Gillet, J. M. Schmitter, T. Fukui, S. Blanquet et al., Affinity labeling of Escherichia coli Lysyl-tRNA synthetase with pyridoxal mono-and diphosphate1 Valyl-tRNA synthetase from Escherichia coli MALDI-MS identification of the binding sites for L-valine or for noncognate amino acids upon qualitative comparative labeling with reactive amino-acid analogs Enzyme hyperspecificity. Rejection of threonine by the valyl-tRNA synthetase by misacylation and hydrolytic editing Editing mechanisms in protein synthesis. Rejection of valine by the isoleucyl-tRNA synthetase Enzyme structure with two catalytic sites for double-sieve selection of substrate Insights into editing from an ile-tRNA synthetase structure with tRNAile and mupirocin Specific sequence homology and three-dimensional structure of an aminoacyl transfer RNA synthetase, J. Biochem. Eur. J. Biochem. Biochemistry Biochemistry Science J. Science Science, vol.116141617, issue.226, pp.502-507, 1976.

T. Yura, H. Mori, T. Nagata, A. Ishima, N. Fujita et al., Systematic sequencing of the Escherichia coli genome: analysis of the 0-2.4 min region Swiss-Prot accession number P00956, Nucleic Acids Res, vol.2019, pp.3305-3308, 1992.

S. Manon, J. M. Schmitter, G. Fayat, P. Laufer, and S. Blanquet, Analysis of protein sequences and protein complexes by matrix-assisted laser desorption/ionization mass spectrometry Affinity chromatography of aminoacyl-tRNA syntheses on agarose-hexyl- adenosine-5'-phosphate, Proteomics Biochimie Biochemistry, vol.123, issue.63, pp.946-954, 1978.

C. Hountondji, J. M. Schmitter, C. Beauvallet, S. Blanquet, S. Blanquet et al., Mapping of the active site of Escherichia coli methionyl-tRNA synthetase: identification of amino acid residues labeled by periodateoxidized tRNA(fMet) molecules having modified lengths at the 3'- acceptor end The mechanism of action of methionyl-tRNA synthetase from Escherichia coli. Mechanism of the amino-acid activation reaction catalyzed by the native and the trypsin-modified enzymes, Biochemistry Eur. J. Biochem, vol.2925, issue.44, pp.8190-8198, 1974.

F. Lawrence, S. Blanquet, M. Poiret, M. Robert-gero, J. P. Waller et al., The mechanism of action of methionyl-tRNA synthetase. 3. Ion requirements and kinetic parameters of the ATP-PPi exchange and methionine-transfer reactions catalyzed by the native and trypsin-modified enzymes Modification of lactate dehydrogenase by pyridoxal phosphate and adenosine polyphosphopyridoxal Synthesis and properties of alpha and epsilon pyridoxyl lysines and their phosphorylated derivatives Labeling of specific lysine residues at the active site of glutamine synthetase Analytical strategy for determination of active site sequences in aminoacyl-tRNA synthetases, Dessen, P.; Schmitter, J.M. Fast protein sequence verification by matrix assisted laser desorption mass spectrometric analysis of whole enzymatic digests. C. R. Acad. Sci. Paris, pp.234-243, 1971.

E. Holler and M. Calvin, Isoleucyl transfer ribonucleic acid synthetase of Escherichia coli B. A rapid kinetic investigation of the Lisoleucine-activating reaction, Biochemistry, vol.1132, pp.3741-3752, 1972.

Y. Mechulam, F. Dardel, D. Le-corre, S. Blanquet, and G. Fayat, Lysine 335, part of the KMSKS signature sequence, plays a crucial role in the amino acid activation catalysed by the methionyl-tRNA synthetase from Escherichia coli, Journal of Molecular Biology, vol.217, issue.3, pp.465-475, 1991.
DOI : 10.1016/0022-2836(91)90750-Z

Y. Mechulam, E. Schmitt, L. Maveyraud, C. Zelwer, O. Nureki et al., Crystal structure of Escherichia coli methionyl-tRNA synthetase highlights speciesspecific features, J. Mol. Biol. Science, vol.29435, pp.1287-1297, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00841066

P. Rainey, E. Holler, M. R. Kula, T. L. Hendrickson, T. K. Nomanbhoy et al., Labelling of L-isoleucine tRNA ligase from Escherichia coli with L-isoleucyl-bromomethyl ketone Mutational separation of two pathways for editing by a class I tRNA synthetase, Eur. J. Biochem. Mol. Cell, vol.6338, issue.9, pp.419-426, 1976.

C. Hountondji, C. Lazennec, C. Beauvallet, P. Dessen, J. C. Pernollet et al., Crucial role of conserved lysine 277 in the fidelity of tRNA aminoacylation by Escherichia coli valyltRNA synthetase, Biochemistry, vol.4139, pp.14856-14865, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00770919

S. Fukai, O. Nureki, S. Sekine, A. Shimada, J. Tao et al., Structural basis for double-sieve discrimination of L-valine from L-isoleucine and L-threonine by the complex of tRNA(Val) and valyl-tRNA synthetase, Cell, vol.10340, pp.793-803, 2000.

Y. Liu, J. Liao, B. Zhu, and E. D. Wang, Ding J. Crystal structures of the editing domain of Escherichia coli leucyl-tRNA synthetase and its complexes with Met and Ile reveal a lock-and-key mechanism for amino acid discrimination, Biochem. J, vol.39441, pp.399-407, 2006.

Y. Zhai and S. A. Martinis, Two conserved threonines collaborate in the Escherichia coli leucyl-tRNA synthetase amino acid editing mechanism, Biochemistry, vol.4442, pp.15437-15443, 2005.