Reverse-engineering the Arabidopsis thaliana transcriptional network under changing environmental conditions

Abstract : BACKGROUND: Understanding the molecular mechanisms plants have evolved to adapt their biological activities to a constantly changing environment is an intriguing question and one that requires a systems biology approach. Here we present a network analysis of genome-wide expression data combined with reverse-engineering network modeling to dissect the transcriptional control of Arabidopsis thaliana. The regulatory network is inferred by using an assembly of microarray data containing steady-state RNA expression levels from several growth conditions, developmental stages, biotic and abiotic stresses, and a variety of mutant genotypes. RESULTS: We show that the A. thaliana regulatory network has the characteristic properties of hierarchical networks. We successfully applied our quantitative network model to predict the full transcriptome of the plant for a set of microarray experiments not included in the training dataset. We also used our model to analyze the robustness in expression levels conferred by network motifs such as the coherent feed-forward loop. In addition, the meta-analysis presented here has allowed us to identify regulatory and robust genetic structures. CONCLUSIONS: These data suggest that A. thaliana has evolved high connectivity in terms of transcriptional regulation among cellular functions involved in response and adaptation to changing environments, while gene networks constitutively expressed or less related to stress response are characterized by a lower connectivity. Taken together, these findings suggest conserved regulatory strategies that have been selected during the evolutionary history of this eukaryote.
Document type :
Journal articles
Complete list of metadatas

Cited literature [46 references]  Display  Hide  Download

https://hal-polytechnique.archives-ouvertes.fr/hal-00766036
Contributor : Denis Roura <>
Submitted on : Monday, December 17, 2012 - 2:48:19 PM
Last modification on : Wednesday, March 27, 2019 - 3:56:02 PM
Long-term archiving on : Sunday, December 18, 2016 - 3:13:50 AM

File

gb-2009-10-9-r96.pdf
Publisher files allowed on an open archive

Identifiers

Collections

Citation

J. Carrera, G. Rodrigo, A. Jaramillo, S.F. Elena. Reverse-engineering the Arabidopsis thaliana transcriptional network under changing environmental conditions. Genome Biology, BioMed Central, 2009, 10 (9), pp.R96. ⟨10.1186/gb-2009-10-9-r96⟩. ⟨hal-00766036⟩

Share

Metrics

Record views

283

Files downloads

161