
�>���G �A�/�, �?���H�@�y�y�d�e�e�y�j�e

�?�i�i�T�b�,�f�f�?���H�@�T�Q�H�v�i�2�+�?�M�B�[�m�2�X���`�+�?�B�p�2�b�@�Q�m�p�2�`�i�2�b�X�7�`�f�?���H�@�y�y�d�e�e�y�j�e

�a�m�#�K�B�i�i�2�/ �Q�M �R�d �.�2�+ �k�y�R�k

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�_�2�p�2�`�b�2�@�2�M�;�B�M�2�2�`�B�M�; �i�?�2 ���`���#�B�/�Q�T�b�B�b �i�?���H�B���M��
�i�`���M�b�+�`�B�T�i�B�Q�M���H �M�2�i�r�Q�`�F �m�M�/�2�` �+�?���M�;�B�M�; �2�M�p�B�`�Q�M�K�2�M�i���H

�+�Q�M�/�B�i�B�Q�M�b
�C�X �*���`�`�2�`���- �:�X �_�Q�/�`�B�;�Q�- ���X �C���`���K�B�H�H�Q�- �a�X�6�X �1�H�2�M��

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

�C�X �*���`�`�2�`���- �:�X �_�Q�/�`�B�;�Q�- ���X �C���`���K�B�H�H�Q�- �a�X�6�X �1�H�2�M���X �_�2�p�2�`�b�2�@�2�M�;�B�M�2�2�`�B�M�; �i�?�2 ���`���#�B�/�Q�T�b�B�b �i�?���H�B���M�� �i�`���M�@
�b�+�`�B�T�i�B�Q�M���H �M�2�i�r�Q�`�F �m�M�/�2�` �+�?���M�;�B�M�; �2�M�p�B�`�Q�M�K�2�M�i���H �+�Q�M�/�B�i�B�Q�M�b�X �:�2�M�Q�K�2 �"�B�Q�H�Q�;�v�- �"�B�Q�J�2�/ �*�2�M�i�`���H�-
�k�y�y�N�- �R�y �U�N�V�- �T�T�X�_�N�e�X ���R�y�X�R�R�3�e�f�;�#�@�k�y�y�N�@�R�y�@�N�@�`�N�e���X ���?���H�@�y�y�d�e�e�y�j�e��



Open Access2009Carreraet al.Volume 10, Issue 9, Article R96Research
Reverse-engineering the Arabidopsis thaliana transcriptional 
network under changing environmental conditions
Javier Carrera¤*†, Guillermo Rodrigo ¤*, Alfonso Jaramillo ‡§ and 
Santiago F Elena*¶

Addresses: *Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, Ingeniero Fausto Elio 
s/n, 46022 València, Spain. †ITACA, Universidad Politécnica de Valencia, Ingeniero Fausto Elio s/n, 46022 València, Spain. ‡Laboratoire de 
Biochimie, École-Polytechnique-CNRS UMR7654, Route de Saclay, 91128 Palaiseau, France. §Epigenomics Project, Genopole-Université 
d'Évry Val d'Essonne-CNRS UPS3201, 523 Terrasses de l'Agora, 91034 Évry, France. ¶The Santa Fe Institute, Hyde Park Road, Santa Fe, NM 
87501, USA. 

¤ These authors contributed equally to this work.

Correspondence: Santiago F Elena. Email: sfelena@ibmcp.upv.es

© 2009 Carrera et al.; licensee BioMed Central Ltd. 
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Connectivity in transcriptional networks<p>An Arabidopsis thaliana transcriptional network reveals regulato ry mechanisms for the control of genes related to stress adaptation.</p>

Abstract

Background: Understanding the molecular mechanisms plants have evolved to adapt their
biological activities to a constantly changing environment is an intriguing question and one that
requires a systems biology approach. Here we present a network analysis of genome-wide
expression data combined with reverse-engineering network modeling to dissect the
transcriptional control of Arabidopsis thaliana. The regulatory network is inferred by using an
assembly of microarray data containing steady-state RNA expression levels from several growth
conditions, developmental stages, biotic and abiotic stresses, and a variety of mutant genotypes.

Results: We show that the A. thaliana regulatory network has the characteristic properties of
hierarchical networks. We successfully applied our quantitative network model to predict the full
transcriptome of the plant for a set of microarray experiments not included in the training dataset.
We also used our model to analyze the robustness in expression levels conferred by network
motifs such as the coherent feed-forward loop. In addition, the meta-analysis presented here has
allowed us to identify regulatory and robust genetic structures.

Conclusions: These data suggest that A. thaliana has evolved high connectivity in terms of
transcriptional regulation among cellular functions involved in response and adaptation to changing
environments, while gene networks constitutively expressed or less related to stress response are
characterized by a lower connectivity. Taken together, these findings suggest conserved regulatory
strategies that have been selected during the evolutionary history of this eukaryote.
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Background
Living organisms have evolved molecular circuitries with the
aim of promoting their own development under dynamically
changing environments. In particular, plants are not able to
evade those changes and have had to evolve robust methods
to cope with environmental st ress and recovery mechanisms.
Genomic sequences specify the context-dependent gene
expression programs to render cells, tissues, organs and,
finally, organisms. Then, at any moment during the cell cycle
and at each stage of an organism's development, and in
response to environmental conditions, each cell is the prod-
uct of specific and well defined programs involving the coor-
dinated transcription of thou sands of genes. Thus, the
elucidation of such programs in terms of the regulatory inter-
actions involved is pivotal for the understanding of how
organisms have evolved and what environments may have
conditioned evolutionary trajec tories the most. However, we
still have little understanding of how this highly tuned proc-
ess is achieved for most organisms, and the surface of the
problem is only just being scratched for a handful of model
organisms, such as the bacterium Escherichia coli [1], the
yeast Saccharomyces cerevisiae [2], the nematode
Caenorhabditis elegans [3], the plant Arabidopsis thaliana
[4,5], and, to a lesser extent, humans [6].

Meta-analyses of microarray data collections may now be
used to construct biological networks that systematically cat-
egorize all molecules and describe their functions and inter-
actions. Networks can integrate biological functions of cells,
organs, and organisms. During recent years, there has been a
tremendous effort in the development and improvement of
techniques to infer gene connectivity. Clustering approaches
[7-11] and information theory  methods [12-16] have been
used to infer regulatory networks. Bayesian methods [17-20]
can give accurate networks with low coverage but at a high
computational cost.

The analysis of the expression of the A. thaliana transcrip-
tome offers the potential to id entify prevailing cellular proc-
esses, to associate genes with particular biological functions,
and to assign otherwise unknown genes to biological
responses. Previous attempts to model the A. thaliana gene
network used methods such as fuzzy k-means clustering [21],
graphical Gaussian models [4], and Markov chain graph clus-
tering [5,15]. The inconvenience of the first approach is that
clustering describes genes based on a characteristic property
common to all genes, but it is difficult to deduce a pathway
structure from this property alone because pathways would
have to be concerned with co-expression features that tran-
scend such cluster structure. The second approach assumes
that the number of microarray slides should be much larger
than the number of genes analyzed or approximations must
be taken (for example, empirical Bayes with bootstrap re-
sampling or shrinkage approaches). The last approach is
based on Person's correlations and, therefore, strongly sensi-
tive to outliers and to violations of the implicit assumption of

linear relationships among genes. In this article, we present a
predictable genome model from a regulatory scaffold inferred
by using probabilistic methods [15] and estimate the corre-
sponding kinetic parameters using linear regression [22-25].
We analyze the topological properties and predictive power of
the inferred regulatory model. We evaluate the performance
of the network by predicting already known transcriptional
regulations and assess the functional relevance and reproduc-
ibility of the co-expression patt erns detected. Finally, we dis-
cuss the evolutionary implicatio ns of transcriptional control
in plants.

Results
High-throughput technologies combined with rigorous and
biologically rooted modeling wi ll allow understanding of how
simple genetic or environmental perturbations influence the
dynamic behavior of cellular genetic and metabolic networks
[26]. However, transcriptomic data need to be properly inte-
grated to formulate a model that can be used for making
quantitative predictions on how the environment interacts
with cellular networks to affect phenotypic responses. At the
end, the accurate prediction of this quantitative behavior will
open the possibility of re-engineering cellular circuits. To
reach this end, we have attempted the integration of experi-
mental and computatio nal approaches to construct a predic-
tive gene regulatory network model covering the full
transcriptome of the model plant A. thaliana .

Genome-wide transcriptional control in A. thaliana
In the present work, we have applied a recently developed
inference methodology, InferGene [25], to obtain a gene reg-
ulatory model suitable for analyzing optimality and allowing
study of the transcriptional control response under changing
environments in A. thaliana . For this, we have considered the
Affymetrix chip for the A. thaliana genome, from which we
selected 22,094 non-redundant genes, of which about 1,187
are putative transcription factors (TFs; see Materials and
methods). The data used for the inference procedure were a
compendium of 1,436 Affymetr ix microarray hybridization
experiments publicly available at The Arabidopsis Informa-
tion Resource (TAIR) website; these were normalized using
the robust multi-array average method [27]. Here we used the
whole expression set (1,436 experiments) to construct the
model. In Figure 1 we show the inferred transcriptional regu-
latory network of A. thaliana drawn using the Cytoscape
viewer [28]; Table 1 collates some parameters describing the
topology of the network.

Three types of efficiencies, precision (P), sensitivity ( S) and
absolute efficiency (F), have been computed to assess the abil-
ity of the above inferred network to predict the 448 experi-
mentally validated tr anscriptional regulations collected in the
AtRegNet database. P is the fraction of predicted interactions
that are correct:
Genome Biology 2009, 10:R96
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and S the fraction of all known interactions that are discov-
ered by the model:

where TP is the number of true positives, FN the number of
false negatives and FP the number of false positives. F thus
represents the absolute efficiency and it is computed as:

which is the harmonic mean of precision and sensitivity.
Indeed, precision and sensitivity are necessarily negatively
correlated performance statisti cs, and these two values were
set up so they maximize global performance (F) by selecting
values > 5 (Figures S1 and S2 in Additional data file 1) for the

z-score used as threshold to predict the transcriptional regu-
lations. Figure S3 in Additional data file 1 shows P, S and F as
a function of the z-score threshold. Sensitivity is maximized
(S = 100%) for z = 0 (that is, a high number of regulations but
very low confidence) while precision is maximized (P = 100%)
for z = 11 (that is, high confidence but a very low number of
regulations). The optimu m value is reached for z = 5, a value
for which F = 26% (P = 40% and S = 20%). In a recent study,
a smaller network topology has been proposed for A. thaliana
[4]. This network contains 18,625 regulations and an F = 3.7%
(P = 88% but S = 1.8%), relative to the AtRegNet reference
dataset.

InferGene predicts that more than half of the genes are con-
trolled by constitutive promot ers (17.89%) or by promoters
regulated by less than three TFs (Table 1). Also, from a purely
topological perspective, the inferred transcriptional network
of A. thaliana is weakly connected directed, containing 18,169
connected genes (Table 1), while the size of the largest

P TP TP FP= +( )/

S TP TP FN= +( )/

F PS P S= +( )2 /

Plot of the inferred regulatory network of A. thaliana visualized using CytoscapeFigure 1
Plot of the inferred regulatory network of A. thaliana visualized using Cytoscape. Nodes only represent TFs.
Genome Biology 2009, 10:R96
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strongly connected component contains only 730 nodes, all of
which are TFs. In addition, it  has a high density (0.078%;
Table 1); this parameter is the normalized average connectiv-
ity of a gene in the network in comparison to values reported
in similar studies on other organisms. For example, Lee et al.
[2] suggested a network density of 0.0027% for S. cerevisiae,
while we previously reported a value of 0.036% for the
inferred network for E. coli [25]. The characteristic path
length [29] of the network follows a Gaussian distribution,
with an average value of 5.065 edges (Table 1; Figure S4 in
Additional data file 1) and, specifically, the distance between
two genes for which a path exists ranges from 1 to 13 edges. In
a previous study, we estimated that the characteristic path
length for the E. coli network was 1 [25], much smaller than
that for A. thaliana . Furthermore, the E. coli inferred network
did not contain any strongly connected components and its
largest weakly directed subnetwork contained only four TFs.

Other relevant statistical properties of networks are the stress
distribution (Figure S5 in Additional data file 1) - that is, the
number of paths in which a gene is involved - and the
betweenness centrality distributi on (Figure 2d) - that is, the
number of shortest pathways in which a particular gene is
involved. Both distributions are highly asymmetrical, with
many nodes having low betweenness centrality and only a few
cases with high betweenness centrality (Figure 2d), and with
the number of shortest paths per gene smoothly increasing
until reaching a maximu m of approximately 105 short paths
per gene followed by a drastic drop, with very few genes
(around 5) having 107 short paths (Figure S5 in Additional
data file 1). Ten genes (At1g32330, At4g26930 , At1g24110,
At4g24490 , At2g36590 , At1g01030, At1g76900, At2g19050,
At2g03840 , and At3g19870) are connected among them-
selves but remain isolated from the rest of the main network
(Figure 1); the number of shortest paths for these genes

ranges from 1 to 3 (Figure S5 in Additional data file 1). All
these genes but the last are involved in several and apparently
loosely related Gene Ontology (GO) functional categories that
include regulation of transcription, transportation and signal
transduction, and development and senescence.

Next, we sought to explore whether the inferred regulatory
network has scale-free properties. It has been suggested that
the distribution of outgoing connections should belong to the
class of scale-free small-world networks, representing the
potential of TFs to regulate mult iple target genes, whereas the
distribution of incoming connec tivities would be more expo-
nential-like because regulation by multiple TFs should be less
common than regulation of several targets by a given TF [30].
Figure 2a shows the distribution of outgoing connectivities
per TF, whereas Figure 2b shows the same distribution but
only for incoming connectivities per gene. As expected, the
outgoing connectivity is best fitted by a truncated power-law
(that is, the Weibull distribution) with exponent �J = 0.902
and cutoff kc = 99.093 (Table S1 in Additional data file 2; R2 =
0.949; Akaike's weight over a set of 10 competing models >
99.99%). This distribution indi cates that outgoing connectiv-
ity has a scale-free behavior in the range 1 �d k <kc but deviates
from this for connectivities over  the cutoff. According to Bara-
bási and Oltvai [31], scale-free properties arise when hub
genes are related in a hierarchical way, with the hub receiving
most links being connected to a small fraction of all nodes. In
the case of incoming connectivity, the model that better
describes the data is a restricted exponential, the half-normal
distribution (Table S1 in Additional data file 2; R2 = 0.983;
Akaike's weight > 99.99%). Taken together, these two obser-
vations suggest that the A. thaliana transcriptional network
contains a few highly connected regulators (Table 2) that play
a central role in mediating in teractions among a large number
of less connected genes. Notice that 88.4% of the TFs regulate
more than 10 genes, 36.3% regulate more than 100 genes and
just 2.6% control over 500 genes. For the sake of comparison,
it is worth mentioning that, in the case of S. cerevisiae, the
critical exponents estimated for the outgoing connectivity
distribution ( �J = 0.96 [2,32]) are quite similar to that reported
here. However, the estimate obtained for E. coli was smaller
(�J = 0.87), a result that suggests that hubs are more important
in bacteria than in the two eukaryotes [31].

We have validated the set of predicted targets for the 25%
most highly connected TFs using AtRegNet, recovering 80%
of known interactions for the regulatory model and up to 85%
for the effective model (that is, the one containing both gene-
gene and gene-TF interactions). Figure 2c shows that the scal-
ing of the average clustering coefficient with the number of
genes with k-connections is approximately linear in a log-log
scale in the range 1 to 10,000 for neighbors with slope -1.05
(R2 = 0.850). Barabási and Oltvai [31] and Ravasz and Bara-
bási [33] have suggested that whenever clustering scales with
the number of nodes with slope -1, as in our case, it has to be
taken as a strong indication of hierarchical modularity - that

Table 1

Topological parameters of the in ferred transcription network of 
A. thaliana

Parameter Value

Clustering coefficient 0.319

Network diameter 13

Characteristic path length 5.065

Number of connected genes 18,169

Number of regulations inferred 128,422

Network density 7.78 × 10-4

Constitutive genes 3,952 (17.89%)

Genes regulated by one TF 3,111 (14.08%)

Genes regulated by two TFs 2,352 (10.64%)

Genes regulated by three TFs 1,966 (8.90%)

Genes regulated by four TFs 1,606 (7.27%)

Genes regulated by five TFs 1,393 (6.30%)

Genes regulated by more than five TFs 7,714 (34.91%)
Genome Biology 2009, 10:R96
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is, genes cluster in higher-order units of different modularity
- a finding that has been suggested as general for system-level
cellular organization in plants [34]. Similarly, when the effec-
tive model is analyzed, it shows similar results to those for the
regulatory model. The outgoing connectivity per gene follows
a truncated power law with scale-free behavior up to kc =

21.341 connections per gene and with an exponent �J = 0.765
(Table S1 in Additional data file 2; R2 = 0.998, Akaike's weight
> 99.99%; Figure 2e). Figure 2f shows that the incoming con-
nectivity per gene does not present scale-free properties as it
fits to a normal distribution (Table S1 in Additional data file
2; R2 = 0.998, Akaike's weight > 99.99%).

Analyses of the regulatory network of A. thalianaFigure 2
Analyses of the regulatory network of A. thaliana. Distributions for the transcriptional network of: (a) outgoing connectivity showing the master regulators
from Table 2 in gray; (b) incoming connectivity; (c) clustering coefficient; and (d) betweenness centrality. Distributions for the non-transcriptional 
network of: (e) outgoing connectivity; and (f) incoming connectivity.
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The environment significantl y influences the dynamic
expression and assembly of all components encoded in the A.
thaliana genome into functional biological subnetworks. We
have computed the clustering coefficient for all subnetworks
with the largest normalized index of connectivity between
genes involved in the subnetwork. The subnetworks were
then ranked according to these numbers and the top 12 net-
works are shown in Table 3. Interestingly, four of these highly
connected subnetworks are involved in responses to external
influences - for example, responses to pathogens and other
processes related to abiotic stresses (heat, salinity, light,
reduction/oxidation). For the sa ke of illustration, Figure 3
shows the inferred subnetworks for three abiotic and three
biotic responses. In particul ar, we have made a comprehen-
sive analysis for the subnetwork of systemic acquired resist-
ance (Figure 3d) and found that the fraction of predicted
interactions is P = 33%. Not surprisingly , all genes involved in
this subnetwork are associated with GO categories related to
responses to stress, such as defense against pathogens,
responses to other organisms such as fungi, bacteria and
insects, and responses to cold.

Transcriptomic profile prediction
The basic premise of our approach is to use transcriptomic
data from multiple perturbation experiments (either genetic
or environmental) and quantitatively measure steady-state
RNA concentrations to assimilate these expression profiles

into a network model that can recapitulate all observations.
We also developed a test model that excludes 10% of experi-
ments to quantify prediction power. This dataset was ran-
domly split into two subsets. The first, larger subset contained
1,292 experiments and was used as a training set for inferring
a transcription network containing 128,422 regulatory inter-
actions. The second, smaller subset contained 144 array
experiments and was used for validation purposes.

As a first measure of the performance of our test model net-
work in predicting responses to stresses, we used it along with
the expression levels of all the TFs for each experimental con-
dition, c, to predict global expression profiles. Then, the pre-
dicted expression values for each of the 22,094 individual

genes included in the Affymetrix array, , were compared

with the corresponding empirical measurements, ygc, using

the deviation statistic:

where Nc = 144 is the number of microarray experiments
included in the random tester dataset. Figure 4a shows the
distribution of �' g for all genes included in the predicted A.
thaliana transcriptional network. Th e distribution of errors
has a median value of 3.66% and is significantly asymmetrical

ùy gc

� �g cN c

ygc ygc
ygc

=
Š1 ù

Table 2

The ten transcription factors with  the most regulatory effects (h ighest outgoing connectivity)

Transcription factor Outgoing connectivity G ene annotation GO pathways (level 5)

At4g17695 1254 KAN3 (KANDI 3) Transcription; regulation of cellular metabolic 
process

At1g77200 1103 AP2 Transcription; regulation of cellular metabolic 
process; RNA metabolic process

At2g17040 1100 ANAC036 (Arabidopsis NAC domain 
containing protein 36)

Transcription; regulation of cellular metabolic 
process; RNA metabolic process

At5g16560 1100 KAN Reproductive structure development; 
regionalization; organ development; cell fate 
commitment

At2g47900 971 AtTLP3 (tubby like protein 3) Transcription; regulation of cellular metabolic 
process

At2g28700 921 AGL46 Transcription; regulation of cellular metabolic 
process; RNA metabolic process

At5g07690 850 MYB29 (myb domain protein 29) Transcription; response to gibberellin stimulus; 
regulation of cellular metabolic process; RNA 
metabolic process

At4g14920 846 PHD finger Transcription; regulation of cellular metabolic 
process; RNA metabolic process

At3g23240 816 ATERF1/ERF1 
(ethylene response factor 1)

Response to ethylene stimulus; transcription; 
regulation of cellular metabolic process; intracellular 
signaling cascade; two-component signal 
transduction system; RNA metabolic process

At3g30210 721 MYB121 (myb domain protein 121) Response to abscisic acid stimulus; transcription; 
regulation of cellular metabolic process; RNA 
metabolic process
Genome Biology 2009, 10:R96




















	Abstract

