D. Bashford and M. Karplus, pKa's of ionizable groups in proteins: atomic detail from a continuum electrostatic model, Biochemistry, vol.29, issue.44, pp.10219-10225, 1990.
DOI : 10.1021/bi00496a010

A. Bateman, E. Birney, L. Cerruti, R. Durbin, L. Etwiller et al., The Pfam Protein Families Database, Nucleic Acids Research, vol.30, issue.1, pp.276-280, 2002.
DOI : 10.1093/nar/30.1.276

URL : https://hal.archives-ouvertes.fr/hal-01294685

B. Naim, A. , and Y. Marcus, Solvation thermodynamics of nonionic solutes, The Journal of Chemical Physics, vol.81, issue.4, p.2016, 1984.
DOI : 10.1063/1.447824

H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat et al., The Protein Data Bank, Nucleic Acids Research, vol.28, issue.1, pp.235-242, 2000.
DOI : 10.1093/nar/28.1.235

B. Brooks, R. Bruccoleri, B. Olafson, D. States, S. Swaminathan et al., CHARMM: A program for macromolecular energy, minimization, and dynamics calculations, Journal of Computational Chemistry, vol.I, issue.2, pp.187-217, 1983.
DOI : 10.1002/jcc.540040211

F. Colonna-cesari and C. Sander, Excluded volume approximation to protein-solvent interaction. The solvent contact model, Biophysical Journal, vol.57, issue.5, pp.1103-1107, 1990.
DOI : 10.1016/S0006-3495(90)82630-8

B. I. Dahiyat, C. A. Sarisky, and S. L. Mayo, De Novo protein design: towards fully automated sequence selection, Journal of Molecular Biology, vol.273, issue.4, pp.789-796, 1997.
DOI : 10.1006/jmbi.1997.1341

J. R. Desjarlais and T. M. Handel, Side-chain and backbone flexibility in protein core design, Journal of Molecular Biology, vol.290, issue.1, pp.305-318, 1999.
DOI : 10.1006/jmbi.1999.2866

B. N. Dominy and C. L. Brooks, Development of a Generalized Born Model Parametrization for Proteins and Nucleic Acids, The Journal of Physical Chemistry B, vol.103, issue.18, pp.3765-3773, 1999.
DOI : 10.1021/jp984440c

R. L. Dunbrack, M. Jr, and . Karplus, Backbone-dependent Rotamer Library for Proteins Application to Side-chain Prediction, Journal of Molecular Biology, vol.230, issue.2, pp.543-574, 1993.
DOI : 10.1006/jmbi.1993.1170

S. Edinger, C. Cortis, P. Shenkin, and R. Freisner, Solvation Free Energies of Peptides:?? Comparison of Approximate Continuum Solvation Models with Accurate Solution of the Poisson???Boltzmann Equation, The Journal of Physical Chemistry B, vol.101, issue.7, pp.1190-1197, 1997.
DOI : 10.1021/jp962156k

D. Eisenberg and A. D. Mclachlan, Solvation energy in protein folding and binding, Nature, vol.32, issue.6050, pp.199-203, 1986.
DOI : 10.1038/319199a0

A. H. Elcock, Realistic modeling of the denatured states of proteins allows accurate calculations of the ph dependence of protein stability, Journal of Molecular Biology, vol.294, issue.4, pp.1051-1062, 1999.
DOI : 10.1006/jmbi.1999.3305

D. M. Engelman and T. A. Steitz, The spontaneous insertion of proteins into and across membranes: The helical hairpin hypothesis, Cell, vol.23, issue.2, pp.411-422, 1981.
DOI : 10.1016/0092-8674(81)90136-7

M. Feig, W. Im, and C. L. Boorks-3rd, Implicit solvation based on generalized Born theory in different dielectric environments, The Journal of Chemical Physics, vol.120, issue.2, pp.903-911, 2004.
DOI : 10.1063/1.1631258

M. Feig and C. L. Brooks, Recent advances in the development and application of implicit solvent models in biomolecule simulations, Current Opinion in Structural Biology, vol.14, issue.2, pp.217-224, 2004.
DOI : 10.1016/j.sbi.2004.03.009

K. D. Gibson and H. A. Scheraga, Minimization of polypeptide energy. II. Preliminary structures of oxytocin, vasopressin, and an octapeptide from ribonuclease., Proc. Natl. Acad. Sci. USA, pp.1317-1323, 1967.
DOI : 10.1073/pnas.58.4.1317

M. K. Gilson, M. E. Davis, B. A. Luty, and J. A. Mccammon, Computation of electrostatic forces on solvated molecules using the Poisson-Boltzmann equation, The Journal of Physical Chemistry, vol.97, issue.14, pp.3591-3600, 1993.
DOI : 10.1021/j100116a025

R. A. Goldstein, Z. A. Luthey-schulten, and P. G. Wolynes, Protein tertiary structure recognition using optimized Hamiltonians with local interactions., Proc. Natl. Acad. Sci. USA, pp.9029-9033, 1992.
DOI : 10.1073/pnas.89.19.9029

D. B. Gordon, S. A. Marshall, and S. L. Mayo, Energy functions for protein design, Current Opinion in Structural Biology, vol.9, issue.4, pp.509-513, 1999.
DOI : 10.1016/S0959-440X(99)80072-4

K. Henrick and J. M. Thornton, PQS: a protein quaternary structure file server, Trends in Biochemical Sciences, vol.23, issue.9, pp.358-361, 1998.
DOI : 10.1016/S0968-0004(98)01253-5

B. Honig and A. Nicholls, Classical electrostatics in biology and chemistry, Science, vol.268, issue.5214, pp.1144-1149, 1995.
DOI : 10.1126/science.7761829

A. Jaramillo, L. Wernisch, S. Hery, and S. J. Wodak, Automatic Procedures for Protein Design, Combinatorial Chemistry & High Throughput Screening, vol.4, issue.8, pp.643-659, 2001.
DOI : 10.2174/1386207013330724

A. Jaramillo, L. Wernisch, S. Hery, and S. J. Wodak, Native protein sequences are near optimal for their structures in the protein core but not on the surface, Proc. Natl. Acad. Sci. USA, pp.13554-13559, 2002.

B. Jayaram, Y. Liu, and D. Beveridge, A modification of the generalized Born theory for improved estimates of solvation energies and pK shifts, The Journal of Chemical Physics, vol.109, issue.4, pp.1465-1471, 1998.
DOI : 10.1063/1.476697

Y. K. Kang, K. D. Gibson, G. Nemethy, and H. A. Scheraga, Free energies of hydration of solute molecules. 4. Revised treatment of the hydration shell model, The Journal of Physical Chemistry, vol.92, issue.16, pp.4739-4742, 1988.
DOI : 10.1021/j100327a036

N. N. Khechinashvili, J. Janin, and F. Rodier, Thermodynamics of the temperature-induced unfolding of globular proteins, Protein Science, vol.193, issue.7, pp.1315-1324, 1995.
DOI : 10.1002/pro.5560040707

J. G. Kirkwood and F. H. Westheimer, The Electrostatic Influence of Substituents on the Dissociation Constants of Organic Acids. I, The Journal of Chemical Physics, vol.6, issue.9, pp.506-517, 1938.
DOI : 10.1063/1.1750302

P. Koehl and M. Levitt, De novo protein design. I. in search of stability and specificity11Edited by F. E. Cohen, Journal of Molecular Biology, vol.293, issue.5, pp.1161-1181, 1999.
DOI : 10.1006/jmbi.1999.3211

P. Koehl and M. Levitt, De novo protein design. II. plasticity in sequence space11Edited by F. E. Cohen, Journal of Molecular Biology, vol.293, issue.5, pp.1183-1193, 1999.
DOI : 10.1006/jmbi.1999.3212

C. M. Kraemer-pecore, A. M. Wollacott, and J. R. Desjarlais, Computational protein design, Current Opinion in Chemical Biology, vol.5, issue.6, pp.690-695, 2001.
DOI : 10.1016/S1367-5931(01)00267-8

B. Kuhlman and D. Baker, Native protein sequences are close to optimal for their structures, Erratum in Proc. Natl. Acad. Sci. USA. 97, pp.10383-1038813460, 2000.
DOI : 10.1073/pnas.97.19.10383

G. A. Lazar, S. A. Marshall, J. J. Plecs, S. L. Mayo, and J. R. Desjarlais, Designing proteins for therapeutic applications, Current Opinion in Structural Biology, vol.13, issue.4, pp.513-518, 2003.
DOI : 10.1016/S0959-440X(03)00104-0

T. Lazaridis and M. Karplus, "New View" of Protein Folding Reconciled with the Old Through Multiple Unfolding Simulations, Science, vol.278, issue.5345, pp.1928-1931, 1997.
DOI : 10.1126/science.278.5345.1928

T. Lazaridis and M. Karplus, Effective energy function for proteins in solution, Proteins: Structure, Function, and Genetics, vol.37, issue.2, pp.133-152, 1999.
DOI : 10.1002/(SICI)1097-0134(19990501)35:2<133::AID-PROT1>3.0.CO;2-N

T. Lazaridis and M. Karplus, Discrimination of the native from misfolded protein models with an energy function including implicit solvation, Journal of Molecular Biology, vol.288, issue.3, pp.477-487, 1999.
DOI : 10.1006/jmbi.1999.2685

M. S. Lee, F. R. Salsbury, and C. L. Brooks, Novel generalized Born methods, The Journal of Chemical Physics, vol.116, issue.24, pp.10606-10614, 2002.
DOI : 10.1063/1.1480013

R. Luo, L. David, and M. K. Gilson, Accelerated Poisson-Boltzmann calculations for static and dynamic systems, Journal of Computational Chemistry, vol.53, issue.13, pp.1244-1253, 2002.
DOI : 10.1002/jcc.10120

M. Roux, J. C. Schlenkrich, . Smith, J. Stote, M. Straub et al., All-atom empirical potential for molecular modeling and dynamics studies of proteins, J. Phys. Chem. B, vol.102, pp.3586-3616, 1998.

G. I. Makhatadze and P. L. Privalov, Contribution of hydration to protein folding thermodynamics. II., The entropy and Gibbs energy of hydration, J. Mol. Biol, vol.232, pp.660-679, 1993.

M. Nina, W. Im, and B. Roux, Optimized atomic radii for protein continuum electrostatics solvation forces, Biophysical Chemistry, vol.78, issue.1-2, pp.89-96, 1999.
DOI : 10.1016/S0301-4622(98)00236-1

J. Novotny, A. A. Rashin, and R. E. Bruccoleri, Criteria that discriminate between native proteins and incorrectly folded models, Proteins: Structure, Function, and Genetics, vol.216, issue.1, pp.19-30, 1988.
DOI : 10.1002/prot.340040105

A. Onufriev, D. A. Case, and D. Bashford, Effective Born radii in the generalized Born approximation: The importance of being perfect, Journal of Computational Chemistry, vol.45, issue.14, pp.1297-1304, 2002.
DOI : 10.1002/jcc.10126

T. Ooi, M. Oobatake, G. Nemethy, and H. A. Scheraga, Accessible surface areas as a measure of the thermodynamic parameters of hydration of peptides., Proc. Natl. Acad. Sci. USA, pp.3086-3090, 1987.
DOI : 10.1073/pnas.84.10.3086

P. L. Privalov and G. I. Makhatadze, Contribution of hydration to protein folding thermodynamics I. The enthalpy of hydration, J. Mol. Biol, vol.232, pp.639-659, 1993.

K. Raha, A. M. Wollacott, M. J. Italia, and J. R. Desjarlais, Prediction of amino acid sequence from structure, Protein Science, vol.106, issue.8, pp.1106-1119, 2000.
DOI : 10.1110/ps.9.6.1106

B. Roux and T. Simonson, Implicit solvent models, Biophysical Chemistry, vol.78, issue.1-2, pp.1-20, 1999.
DOI : 10.1016/S0301-4622(98)00226-9

C. Sagui and T. A. Darden, MOLECULAR DYNAMICS SIMULATIONS OF BIOMOLECULES: Long-Range Electrostatic Effects, Annual Review of Biophysics and Biomolecular Structure, vol.28, issue.1, pp.155-179, 1999.
DOI : 10.1146/annurev.biophys.28.1.155

A. Sali, E. Shakhnovich, and M. Karplus, How does a protein fold?, Nature, vol.369, pp.248-251, 1994.

R. Samudrala, E. S. Huang, P. Koehl, and M. Levitt, Constructing side chains on near-native main chains for ab initio protein structure prediction, Protein Engineering Design and Selection, vol.13, issue.7, pp.453-457, 2000.
DOI : 10.1093/protein/13.7.453

M. Schaefer, C. Bartels, and M. Karplus, Solution conformations and thermodynamics of structured peptides: molecular dynamics simulation with an implicit solvation model, Journal of Molecular Biology, vol.284, issue.3, pp.835-848, 1998.
DOI : 10.1006/jmbi.1998.2172

M. Schaefer and M. Karplus, A Comprehensive Analytical Treatment of Continuum Electrostatics, The Journal of Physical Chemistry, vol.100, issue.5, pp.1578-1599, 1996.
DOI : 10.1021/jp9521621

C. A. Schiffer, J. W. Caldwell, R. M. Striud, and P. A. Kollman, Inclusion of solvation free energy with molecular mechanics energy: Alanyl dipeptide as a test case, Protein Science, vol.1, issue.2, pp.396-400, 1992.
DOI : 10.1002/pro.5560010311

T. Simonson, Macromolecular electrostatics: continuum models and their growing pains, Current Opinion in Structural Biology, vol.11, issue.2, pp.243-252, 2001.
DOI : 10.1016/S0959-440X(00)00197-4

D. Sitkoff, D. J. Lockhart, K. A. Sharp, and B. Honig, Calculation of electrostatic effects at the amino terminus of an alpha helix, Biophysical Journal, vol.67, issue.6, pp.2251-2260, 1996.
DOI : 10.1016/S0006-3495(94)80709-X

D. Sitkoff, K. A. Sharp, and B. Honig, Correlating solvation free energies and surface tensions of hydrocarbon solutes, Biophysical Chemistry, vol.51, issue.2-3, pp.397-403404, 1994.
DOI : 10.1016/0301-4622(94)00062-X

A. G. Street and S. L. Mayo, Pairwise calculation of protein solvent-accessible surface areas, Folding and Design, vol.3, issue.4, pp.253-258, 1998.
DOI : 10.1016/S1359-0278(98)00036-4

V. Tsui and D. A. Case, Theory and applications of the generalized born solvation model in macromolecular simulations, Biopolymers, vol.2, issue.4, pp.275-291, 2000.
DOI : 10.1002/1097-0282(2000)56:4<275::AID-BIP10024>3.0.CO;2-E

F. Wagner and T. Simonson, Implicit solvent models: Combining an analytical formulation of continuum electrostatics with simple models of the hydrophobic effect, Journal of Computational Chemistry, vol.24, issue.3, pp.322-335, 1999.
DOI : 10.1002/(SICI)1096-987X(199902)20:3<322::AID-JCC4>3.0.CO;2-Q

G. Wang, R. L. Dunbrack, and J. , PISCES: a protein sequence culling server, Bioinformatics, vol.19, issue.12, pp.1589-1591, 2003.
DOI : 10.1093/bioinformatics/btg224

L. Wernisch, S. Hery, and S. J. Wodak, Automatic protein design with all atom force-fields by exact and heuristic optimization, Journal of Molecular Biology, vol.301, issue.3, pp.713-736, 2000.
DOI : 10.1006/jmbi.2000.3984

L. Wesson and D. Eisenberg, Atomic solvation parameters applied to molecular dynamics of proteins in solution, Protein Science, vol.20, issue.4, pp.227-235, 1992.
DOI : 10.1002/pro.5560010204

D. Williams and H. Hall, Unrestrained Stochastic Dynamics Simulations of the UUCG Tetraloop Using an Implicit Solvation Model, Biophysical Journal, vol.76, issue.6, pp.3192-3205, 1999.
DOI : 10.1016/S0006-3495(99)77471-0

S. J. Wodak and M. J. Rooman, Generating and testing protein folds, Current Opinion in Structural Biology, vol.3, issue.2, pp.247-259, 1993.
DOI : 10.1016/S0959-440X(05)80160-5

X. Zou, Y. Sun, and I. D. Kuntz, Inclusion of Solvation in Ligand Binding Free Energy Calculations Using the Generalized-Born Model, Journal of the American Chemical Society, vol.121, issue.35, pp.8033-8043, 1999.
DOI : 10.1021/ja984102p