Modelling the influence of temperature and relative humidity on the time-dependent mechanical behaviour of a short glass fibre reinforced polyamide - École polytechnique Access content directly
Journal Articles Mechanics of Materials Year : 2013

Modelling the influence of temperature and relative humidity on the time-dependent mechanical behaviour of a short glass fibre reinforced polyamide

Abstract

Polymer matrix composites, and especially short glass fibre reinforced polyamides, are widely used in the automotive industry. Their application on structural components requires a confident mechanical design taking into account the sensitivity of the mechanical response to both temperature T and relative humidity H. In this paper, the constitutive model already developed by the authors (Launay et al., 2011) is applied to describe the non-linear time-dependent behaviour of a PA66-GF35 under various hygrothermal conditions. The extensive experimental database involves testing conditions under and above the glass transition temperature Tg. An equivalence principle between temperature and relative humidity is applied and validated, since the non-linear mechanical response is shown to depend only on the temperature gap T-Tg(H).
Fichier principal
Vignette du fichier
LAUNAY-et-al-polyamide-humidity-Mechanics-of-Materials-56-2013.pdf (263.31 Ko) Télécharger le fichier
Origin : Publisher files allowed on an open archive
Loading...

Dates and versions

hal-00778275 , version 1 (19-01-2013)

Identifiers

Cite

Antoine Launay, Yann Marco, Habibou Maitournam, Ida Raoult. Modelling the influence of temperature and relative humidity on the time-dependent mechanical behaviour of a short glass fibre reinforced polyamide. Mechanics of Materials, 2013, 56, pp 1 - 10, issn = "0167-6636", url = "http://www.sciencedirect.com/science/article/pii/S016766361200. ⟨10.1016/j.mechmat.2012.08.008⟩. ⟨hal-00778275⟩
549 View
2055 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More