Diffraction from a subwavelength elliptic aperture:
Analytic approximate aperture fields
Jean-Baptiste Masson, Guilhem Gallot

To cite this version:

HAL Id: hal-00817155
https://hal-polytechnique.archives-ouvertes.fr/hal-00817155
Submitted on 23 May 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Diffraction from a subwavelength elliptic aperture: analytic approximate aperture fields

Jean-Baptiste Masson¹ and Guilhem Gallot²,³,*

¹Physics of biological systems, Institut Pasteur—CNRS URA 2171, Paris, France
²Laboratoire d’Optique et Biosciences, École Polytechnique, CNRS, 91128 Palaiseau, France
³INSERM U696, 91128 Palaiseau, France
*Corresponding author: guilhem.gallot@polytechnique.edu

Received May 16, 2012; revised July 12, 2012; accepted July 13, 2012; posted July 13, 2012 (Doc. ID 168604); published August 31, 2012

An analytical approximate solution of the electromagnetic field on a subwavelength elliptical hole in a thin perfectly conducting screen is presented. Illumination is a linear polarized, normally incident plane wave. A polynomial development method is used and allows one to obtain an easy-to-use analytical solution of the fields, which can be used to build analytical expressions of aperture fields for apertures in anisotropic structures. © 2012 Optical Society of America

1. INTRODUCTION

Diffraction by a subwavelength aperture on a plane screen is a classical problem in electromagnetism [1–3]. More recently, the question of the transmission through subwavelength structures has become central in metamaterials and subwavelength arrays [4–6]. Even though numerical calculations are often used to simulate subwavelength structures, analytical developments of the electromagnetic field propagation through apertures of various shapes are still of great interest. Elliptic-shaped apertures have a special interest because interactions between the radiation and the hole are strongly driven by the anisotropic geometry [7], yet they have enough symmetry to allow analytical approximations. These analytical solutions may also be useful to simulate the complex electromagnetic transmission through metamaterials allowing fast preconditioning of the fields propagation in the different subwavelength parts. One of the main issues in these simulations is the time to converge as both electric and magnetic fields tend to diverge near every boundary. Elliptical shapes are especially useful as they can be a good approximation of more complicated shapes.

The problem of diffraction by subwavelength circular aperture was the most investigated. Rayleigh [1] introduced the idea of solving the problem with power series in \(k \), and Bethe [2] found a scalar potential solution with a little error in the first-order approximation. Bouwkamp [3] and Eggimann [8] corrected Bethe’s solutions and gave exact power series development of the electromagnetic field in the near-field and far-field zone. These two authors also gave vast bibliographies [8,9] of diffraction problems, highlighting the most important aspects of these problems. For other shapes, far-field approximations based on magnetic and electric dipolar moments have been developed [6,10–12], but no satisfactory analytical solutions such as the ones found for circular apertures have been found. Yet, for a subwavelength square aperture a semi-analytical expression for the aperture was found for a linear polarized, normally incident planar wave, in a unique direction of polarization [13]. Obviously, vast numbers of numerical strategies [14–18] can be used to evaluate the aperture fields, yet analytical expansions are useful to investigate these diffractions problems, in particular for preconditioning conditions.

The problem, as Eggimann [8] wrote it, can be expressed in the following way: (i) Maxwell’s equation must be followed, (ii) the tangential magnetic field must vanish on the aperture, (iii) the electromagnetic field energy must remain finite inside the aperture, (iv) Sommerfeld’s [19] radiation conditions must be fulfilled. The problem is solved by expanding every field in the power series of \(ka \) and \(kb \), then every term is expanded in polynomial forms and finally all the fields are extracted by solving the linear systems linking all the developments coefficients together.

2. CALCULATION OF THE FIELDS IN THE ELLIPTICAL APERTURE

A perfectly reflecting screen \(S \) of vanishing thickness lies at \(z = 0 \) with an elliptic hole centered at \((x = 0, y = 0) \) with semimajor axis \(a \) and semiminor \(b \) (Fig. 1). A monochromatic electromagnetic plane wave field \(\vec{E}^0 \) is incident to the screen from \(z < 0 \). The transmitted electric field in \(z \geq 0 \) is \(\vec{E}^t \). Only the steady-state problem is discussed. It is tacitly understood that the time factor is \(e^{-j\omega t} \), where \(j \) is the imaginary unit, \(\omega \) the angular frequency, and \(t \) the time. The wavenumber is denoted by \(k = 2\pi/\lambda \) with \(\lambda \) the wavelength.

Copson [20] showed that the transmitted fields should be written, assuming \(\vec{r} = (x, y, z) \),

\[
\begin{align*}
\vec{E}^t(\vec{r}) &= \frac{1}{\varepsilon_0} \nabla \times \vec{F}(\vec{r}) \\
\vec{H}^t(\vec{r}) &= \frac{j}{\mu_0 \varepsilon_0 \omega} \nabla \times \vec{E}^t(\vec{r}),
\end{align*}
\]

where \(\varepsilon_0 \) is the permittivity of vacuum, \(\mu_0 \) the permeability of vacuum, \(c \) the celerity of light in vacuum, \(\vec{H}^t(\vec{r}) \) the
The transmitted field \vec{E} propagates in the $z > 0$ direction.

transmitted magnetic field, and $\vec{F}(\vec{r})$ a potential vector defined by

$$\vec{F}(\vec{r}) = \frac{\varepsilon_0}{2\pi} \iint_{\text{ellipse}} \vec{n} \times \vec{E}'(x', y') \, e^{i k R} \, dx' dy'$$

with $R = \sqrt{(x-x')^2 + (y-y')^2 + z^2}$.

and with \vec{n} the unit vector normal to the surface of the screen in the $z > 0$ direction. In the aperture, the boundary conditions are given by

$$\begin{align*}
\vec{F}^0 &= \frac{\varepsilon_0}{2\pi} \iint_{\text{ellipse}} \vec{J}^0 \, dx' dy' / R \\
\vec{F}^1 &= \frac{\varepsilon_0}{2\pi} \left(\iint_{\text{ellipse}} \vec{J}^1 \, dx' dy' / R + j \iint_{\text{ellipse}} \vec{J}^1 \, dx' dy' \right) \\
\vec{F}^2 &= \frac{\varepsilon_0}{2\pi} \left(\iint_{\text{ellipse}} \vec{J}^2 \, dx' dy' / R + j \iint_{\text{ellipse}} \vec{J}^2 \, dx' dy' - \frac{1}{2} \iint_{\text{ellipse}} \vec{J}^0 R \, dx' dy' \right) \\
\vec{F}^3 &= \frac{\varepsilon_0}{2\pi} \left(\iint_{\text{ellipse}} \vec{J}^3 \, dx' dy' / R + j \iint_{\text{ellipse}} \vec{J}^3 \, dx' dy' - \frac{1}{2} \iint_{\text{ellipse}} \vec{J}^1 R \, dx' dy' - \frac{1}{6} \iint_{\text{ellipse}} \vec{J}^0 R^2 \, dx' dy' \right)
\end{align*}$$

Using Maxwell’s equations and (2) lead to the following set of equations in the aperture:

$$\begin{align*}
\nabla^2_{xy} F_x + \varepsilon_0 \frac{\partial F_y}{\partial x} &= -\varepsilon_0 \frac{\partial E_x}{\partial y} \\
\nabla^2_{xy} F_y + \varepsilon_0 \frac{\partial F_x}{\partial y} &= \varepsilon_0 \frac{\partial E_y}{\partial x} \\
\frac{\partial E_x}{\partial y} - \frac{\partial E_y}{\partial x} &= \varepsilon_0 F_z
\end{align*}$$

with $\nabla^2_{xy} = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$. Thus, in order to find the electromagnetic field inside the aperture, we must seek \vec{F} inside the aperture and then solve (2). The last requirement is the fulfillment of Sommerfeld’s divergence conditions [19] on the metal edge; namely, that the normal electric field component increases as $1/\sqrt{R}$.

The strategy to solve this problem is as follows: (i) the fields $\vec{n} \times \vec{E}'$ and \vec{F} are expanded in series of ka and kb, (ii) their components are developed with polynomials in x and y, (iii) Sommerfeld's boundary conditions are applied, (iv) the condition that the field remains finite at the rim of the disk imposes that the transmitted electric fields are to be found in the form $D(x, y) / \sqrt{1 - x^2/a^2 - y^2/b^2}$, where $D(x, y)$ is a polynomial whose degrees and coefficients are calculated.

A. Series Expansion

In the following, we attempt to find a power series expansion of the electric field in terms of ka and kb, which is expected to converge well for small elliptical apertures since $ka \ll 1$ and $kb \ll 1$. Let $J(x', y') = \vec{n} \times \vec{E}'(x', y', 0)$. J and \vec{F} are developed in series of k

$$\begin{align*}
\vec{J} &= J^0 + k J^1 + k^2 J^2 + k^3 J^3 + \ldots \\
\vec{F} &= F^0 + k F^1 + k^2 F^2 + k^3 F^3 + \ldots
\end{align*}$$

We then obtain

$$\begin{align*}
J_0 e^{ikr} &= J^0 + k(J^1 + jr J^2) + k^2 \left(J^2 + jr J^1 - \frac{1}{2} \frac{\partial^2}{\partial x^2} \right) \\
&+ k^3 \left(J^3 + jr J^2 - \frac{1}{2} \frac{\partial^2}{\partial x^2} J^1 - \frac{1}{6} \frac{\partial^4}{\partial x^4} \right) + \ldots
\end{align*}$$

Thus, including (1), and limiting to the third order:

$$\begin{align*}
H_x'(\vec{r}) &= -H_y'(\vec{r}) \\
H_y'(\vec{r}) &= -H_x'(\vec{r}) \\
E_z'(\vec{r}) &= -E_x'(\vec{r})
\end{align*}$$

1. Zeroth-Order Development

We will demonstrate that, at zeroth order, both J^0 and F^0 are null, as well as all even orders in the series expansions of the fields. For a linearly polarized, normally incident plane wave, introducing (5) in (4) reduces to

$$\begin{align*}
\nabla^2_{xy} F^0_x &= \nabla^2_{xy} F^0_y = -\varepsilon_0 \frac{\partial F^0_y}{\partial x} - \frac{\partial F^0_x}{\partial y} = 0.
\end{align*}$$

Thus, both F^0_x and F^0_y are linear in variables x and y. In order to obtain the electric field at zeroth order, the first equation of (7) has to be solved. It is first kind Fredholm problem [21], and
its general solution is given in Appendix A. It follows that \(\hat{J}^0 \) may be written in the following form:

\[
\hat{J}^0(x', y') = \frac{D^0_x(x', y')}{\sqrt{1 - \frac{x'^2}{a^2} - \frac{y'^2}{b^2}}} \hat{\epsilon} \cdot \nabla \psi^0 + \frac{D^0_y(x', y')}{\sqrt{1 - \frac{x'^2}{a^2} - \frac{y'^2}{b^2}}} \hat{\epsilon} \cdot \nabla \psi^0,
\]

(9)

where \(D^0_x(x', y') \) and \(D^0_y(x', y') \) are polynomials. In Appendix A, we show in (A.1.1) that the two polynomials have the same degree as \(F^0_x \) and \(F^0_y \). Furthermore, the supplementary condition of finiteness of the electromagnetic energy, corresponding to Sommerfeld’s condition \([8,19] \), is satisfied if

\[
x' D^0_x(x', y') + y' D^0_y(x', y') = K^0(x', y') \left(1 - \frac{x'^2}{a^2} - \frac{y'^2}{b^2}\right),
\]

(10)

where \(K^0(x', y') \) is a polynomial. So, at zeroth-order approximation \(\hat{J}^0 \) and \(\hat{F}^0 \) must vanish. Bouwkamp found the same result for a circular aperture \([22] \). Note that if the electromagnetic field were not normal to the surface the two fields would not vanish (see section C). Furthermore, equations (4) with a normally incident plane wave lead to the nullity of all even orders development of all the fields.

2. First-Order Development

Equations (4) reduce to

\[
\begin{align*}
\nabla_x F^1_x &= -j\epsilon_0 E^i \sin(\psi), \\
\nabla_y F^1_y &= j\epsilon_0 E^i \cos(\psi), \\
\frac{\partial F^1_x}{\partial x} &= \frac{\partial F^1_y}{\partial y},
\end{align*}
\]

(11)

where \(\psi \) is the polarization angle of the incident plane wave, as seen in Fig. 2. Then Sommerfeld’s conditions now become

\[
x' D^1_x(x', y') + y' D^1_y(x', y') = K^1(x', y') \left(1 - \frac{x'^2}{a^2} - \frac{y'^2}{b^2}\right),
\]

(12)

where \(K^1 \) is a polynomial. Since we showed that \(\hat{J}^0 = 0 \), (7) reduces at the first order to
\[F^3 = \frac{\varepsilon_0}{2\pi} \int_{\text{ellipse}} J^3 \frac{dx\,dy}{R}. \] (13)

We again write \(F \) as a polynomial in \(x \) and \(y \) as
\[
F_x = a_0 + a_1 x + a_2 y + a_3 x^2 + a_4 xy + a_5 y^2,
F_y = b_0 + b_1 y + b_2 x^2 + b_3 xy + b_4 y^2.
\] (14)

and using (11), this leads to
\[
2a_3 + 2a_0 = -j\varepsilon_0 E^3 \sin(\psi), \quad 2b_3 + 2b_0 = j\varepsilon_0 E^3 \cos(\psi).
\]
\[\beta_1 = a_3, \quad 2\beta_3 = a_1, \quad 2\beta_0 = b_1. \] (15)

Finally, we write
\[
\begin{align*}
J^3_x(x', y') &= \frac{(\alpha_1 + \alpha_2 x' + \alpha_3 x'^2 + \alpha_4 y' + \alpha_5 y'^2)}{\sqrt{1 - \frac{x'^2}{a^2} - \frac{y'^2}{b^2}}}, \\
J^3_y(x', y') &= \frac{(\beta_1 + \beta_2 y' + \beta_3 x'^2 + \beta_4 y'^2 + \beta_5 x'^2 y')}{\sqrt{1 - \frac{x'^2}{a^2} - \frac{y'^2}{b^2}}}.
\end{align*}
\] (16)

Solving \(\eta^i_1 \) and \(\theta^i_1 \), where \(i \) ranges from 0 to 5, will provide the solution at the first-order development. Equation (12) leads to
\[
\begin{align*}
\eta^1_1 &= -\theta^1_1 = 0, \quad \eta^2_1 = -\theta^2_1 = 0, \\
\eta^3_1 + \theta^3_1 &= -\frac{\eta^1_0}{a^2}, \quad \eta^4_1 + \theta^4_1 = -\frac{\eta^2_0}{b^2}, \quad \eta^5_1 + \theta^5_1 = -\frac{\eta^3_0}{b^2}.
\end{align*}
\] (17)

Here are the equations linking the \((\alpha^i, \beta^i)\) to the \((\eta^i, \theta^i)\), using Table 1 and Eqs. (13), (14), and (16):
\[
\begin{align*}
\alpha^0_0 &= x^2 g_0 \eta^1_0 + x^2 C_0 \eta^2_0 + x^2 C_0 \eta^3_0, \\
\alpha^1_0 &= x^2 C_0 \eta^1_0 + x^2 C_0 \eta^3_0, \\
\beta^0_0 &= x^2 g_0 \theta^1_0 + x^2 C_0 \theta^2_0 + x^2 C_0 \theta^3_0, \\
\beta^1_0 &= x^2 C_0 \theta^1_0 + x^2 C_0 \theta^3_0, \\
\beta^2_0 &= x^2 C_0 \theta^2_0, \\
\beta^3_0 &= x^2 C_0 \theta^3_0.
\end{align*}
\] (18)

The next steps are found in Appendix A and lead to the transmitted electric field in the elliptical aperture at the third order:
\[
\begin{align*}
E^3_x &= \frac{\theta^0_1 + \theta^0_1 y' + \theta^0_1 x' + \theta^0_1 x'^2}{\sqrt{1 - \frac{x'^2}{a^2} - \frac{y'^2}{b^2}}}, \\
E^3_y &= \frac{\theta^0_1 + \theta^0_1 x' + \theta^0_1 y' + \theta^0_1 x'^2}{\sqrt{1 - \frac{x'^2}{a^2} - \frac{y'^2}{b^2}}}.
\end{align*}
\] (19)

where the values of \((\eta, \theta)\) are given in Table 3.

3. Third-Order Development

We now consider the third-order development in (7). As we stated before, the second-order fields will vanish. Let us evaluate the third-order fields. Equation (4) now becomes
\[
\nabla^2_{yy} F^3_x + F^3_y = 0, \quad \nabla^2_{xx} F^3_x + F^3_y = 0, \quad \frac{\partial F^3_x}{\partial x} = \frac{\partial F^3_y}{\partial y}.
\] (20)

Both \((F^3_x, F^3_y)\) are fourth-order polynomials and so both \((E^3_x, E^3_y)\) have a fourth-order numerator. The procedure to find the coefficients is similar to the one used before. Using (4), (7), and (10) with the help of Tables A1 and A2 leads to 30 linear equations for the coefficients of \((E^3_x, E^3_y)\).

We write
\[
F^3_x(x, y) = \sum_{(i+j)=4} \alpha_{i,j} x^i y^j \quad \text{and} \quad F^3_y(x, y) = \sum_{(i+j)=4} \beta_{i,j} x^i y^j.
\] (21)

\[
J^3_x(x', y') = \sum_{(i+j)=4} \frac{\eta_{i,j} x^i y^j}{\sqrt{1 - \frac{x'^2}{a^2} - \frac{y'^2}{b^2}}} \quad \text{and} \quad J^3_y(x', y') = \sum_{(i+j)=4} \frac{\theta_{i,j} x^i y^j}{\sqrt{1 - \frac{x'^2}{a^2} - \frac{y'^2}{b^2}}}.
\] (22)

with \(f(i, j) = \frac{(i+j)(i+j+1)}{2} + j \). In a way similar as in first-order development, (4), (7), and (10) lead to 30 independent linear equations involving \((\eta^3, \theta^3)\). The system may be solved in a specific order to ease the solving procedure: \((\eta^3_0, \theta^3_0, \eta^3_1, \theta^3_1, \eta^3_2, \theta^3_2, \eta^3_3, \theta^3_3, \eta^3_4, \theta^3_4), (\eta^3_5, \theta^3_5), (\eta^3_6, \theta^3_6), (\eta^3_7, \theta^3_7), (\eta^3_8, \theta^3_8), (\eta^3_9, \theta^3_9), (\eta^3_{10}, \theta^3_{10}), (\eta^3_{11}, \theta^3_{11}), \theta^3_{12}, \theta^3_{13}, \theta^3_{14}) \), and finally \((\eta^3_0, \eta^3_1, \eta^3_2, \eta^3_3, \eta^3_4, \eta^3_5, \eta^3_6, \eta^3_7, \eta^3_8, \eta^3_9, \eta^3_{10}, \eta^3_{11}), \eta^3_{12}, \eta^3_{13}, \eta^3_{14}, \theta^3_{15}, \theta^3_{16}, \theta^3_{17}, \theta^3_{18}, \theta^3_{19}, \theta^3_{20}, \theta^3_{21}, \theta^3_{22}, \theta^3_{23}, \theta^3_{24}, \theta^3_{25}, \theta^3_{26}, \theta^3_{27}, \theta^3_{28}, \theta^3_{29}, \theta^3_{30}) \).

The first four steps in the solving procedure lead to
\[
\begin{align*}
\eta^3_1 &= \eta^3_2 = \eta^3_3 = \eta^3_4 = \eta^3_5 = \eta^3_6 = \eta^3_7 = \eta^3_8 = \eta^3_9 = \eta^3_{10} = 0, \\
\theta^3_1 &= \theta^3_2 = \theta^3_3 = \theta^3_4 = \theta^3_5 = \theta^3_6 = 0.
\end{align*}
\] (23)
\[\begin{align*}
E_x &= kE_x^{(1)} + k^3E_x^{(3)}, \\
E_y &= kE_y^{(1)} + k^3E_y^{(3)}.
\end{align*} \] (25)

Electric field patterns can be found in Fig. 2.

B. Diffraction by an Elliptical Disk

The case of an elliptical disk can easily be solved with the generalized Babinet’s principle [22–23]. We define the diffracted potential vector as

\[\vec{A}(r) = \frac{\mu}{4\pi} \int_{\text{ellipse}} \vec{\sigma}(x', y') e^{-i\vec{kr}r} dx' dy', \] (26)

with \(\vec{\sigma}(x', y') \) the electric surface current on the elliptic disk. The boundary conditions on the disk are

\[\begin{align*}
E_x(x', y', 0) &= -E_x^0(x', y', 0), \\
E_y(x', y', 0) &= -E_y^0(x', y', 0), \\
H_x(x', y', 0) &= -H_x^0(x', y', 0), \\
H_y(x', y', 0) &= -H_y^0(x', y', 0),
\end{align*} \] (27)

leading to the following set of equations:

\[\begin{align*}
\nabla_x^2A_x + k^2A_x &= \mu_0 \frac{\partial E^0_x}{\partial x}, \\
\nabla_y^2A_y + k^2A_y &= -\mu_0 \frac{\partial E^0_y}{\partial y}, \\
\frac{\partial A_x}{\partial x} - \frac{\partial A_y}{\partial y} &= -\mu_0 H_y^0.
\end{align*} \] (28)

Thus, the disk and aperture problems are equivalent if the following substitution is made:

\[\begin{align*}
\vec{F} &\leftrightarrow \vec{A}, \\
-\varepsilon_0 \vec{E}^0 &\leftrightarrow \mu_0 \vec{H}^0, \\
\vec{\sigma} &\leftrightarrow \vec{n} \times \vec{E}.
\end{align*} \] (29)

C. Nonplane Incident Electromagnetic Wave

We now briefly describe the case of a nonplane incident electromagnetic wave. We limit the polynomial development of the fields to the first order.

1. Zeroth-Order Development

Equation (5) becomes

\[\begin{align*}
\nabla_x^2F_x^0 &= -\varepsilon_0 \frac{\partial E^0_x}{\partial x}, \\
\nabla_y^2F_y^0 &= -\varepsilon_0 \frac{\partial E^0_y}{\partial y}, \\
\frac{\partial F_x^0}{\partial x} - \frac{\partial F_y^0}{\partial y} &= \varepsilon_0 E_x^0 + \varepsilon_0 \frac{\partial E^0_x}{\partial x} + \varepsilon_0 \frac{\partial E^0_y}{\partial y}.
\end{align*} \] (30)

We use the same procedure, and then

\[\begin{align*}
E_x^0 &= \frac{\theta_0 + \kappa x + \kappa y + \kappa^2 x y + \kappa^2 x^2 + \kappa^2 y^2}{\sqrt{x^2 + y^2}}, \\
E_y^0 &= \frac{-\theta_0 + \kappa x + \kappa y + \kappa^2 x y + \kappa^2 x^2 + \kappa^2 y^2}{\sqrt{x^2 + y^2}}.
\end{align*} \] (31)

where the coefficients \(\theta_0 \) and \(\eta_0 \) are found in Table 4.

2. First-Order Development

Equation (5) becomes

\[\begin{align*}
\nabla_x^2F_x^1 &= -\varepsilon_0 \frac{\partial E^1_x}{\partial x}, \\
\nabla_y^2F_y^1 &= -\varepsilon_0 \frac{\partial E^1_y}{\partial y}, \\
\frac{\partial F_x^1}{\partial x} - \frac{\partial F_y^1}{\partial y} &= \varepsilon_0 E_x^0 + \varepsilon_0 \frac{\partial E^0_x}{\partial x} + \varepsilon_0 \frac{\partial E^0_y}{\partial y}.
\end{align*} \] (32)

With a notation similar to (16), it then follows that

\[\begin{align*}
\eta_0 &= \frac{\partial E^0_y}{\partial k}, \\
\eta_1 &= 0, \\
\eta_2 &= \frac{\partial \eta_0}{\partial k}, \\
\eta_3 &= \frac{\partial \eta_1}{\partial k}, \\
\eta_4 &= \frac{\partial \eta_2}{\partial k}, \\
\eta_5 &= \frac{\partial \eta_3}{\partial k}, \\
\eta_6 &= \frac{\partial \eta_4}{\partial k}, \quad \eta_1 = 0, \\
\theta_2 &= \frac{\partial \theta_0}{\partial k}, \\
\theta_3 &= \frac{\partial \theta_1}{\partial k}, \\
\theta_4 &= \frac{\partial \theta_2}{\partial k}, \quad \theta_1 = 0, \\
\theta_5 &= \frac{\partial \theta_3}{\partial k}, \\
\theta_6 &= \frac{\partial \theta_4}{\partial k}.
\end{align*} \] (33)

and so

\[\begin{align*}
E_x^0 &= \frac{\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^2 y + \theta_4 x^2 + \theta_5 y^2 + \theta_6 y^2}{\sqrt{x^2 + y^2}}, \\
E_y^0 &= \frac{-\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^2 y + \theta_4 x^2 + \theta_5 y^2 + \theta_6 y^2}{\sqrt{x^2 + y^2}}.
\end{align*} \] (34)

Due to the structure of Eqs. (4), (7), and (10), we know that for all orders of development in \(k \) the coefficients \(\eta_i, \theta_i \) will have the same structure, only the degree in \(k \)-differentiation will change. This property only holds if the degree of the polynomial development remains the same for all orders of \(k \). Eggimann [8] was the first to point out this property for the circular disk diffraction.

3. DISCUSSION

In the degenerate case of a circular aperture, (19) reduces to

\[\begin{align*}
E_x^{(1)} &= \frac{4i}{\pi} \frac{2x^2 \cos \psi - x^2 \cos \psi + y \sin \psi - 2x^2 \cos \psi \sin \psi}{\sqrt{x^2 - y^2}}, \\
E_y^{(1)} &= \frac{4i}{\pi} \frac{2x \sin \psi - 2x^2 \sin \psi + y \cos \psi - 2x^2 \cos \psi \cos \psi}{\sqrt{x^2 - y^2}},
\end{align*} \] (35)

which for \(\psi = 0 \) leads to

\[\begin{align*}
E_x^{(1)} &= -\frac{4i}{\pi} \frac{2x^2 - 2y^2}{\sqrt{x^2 - y^2}} E^0, \\
E_y^{(1)} &= -\frac{4i}{\pi} \frac{2y}{\sqrt{x^2 - y^2}} E^0.
\end{align*} \] (36)

This is the same solution found by Bouwkamp [24] Eq. (35) [the factor \(k \) is absent here because it is in Eq. (25) of this paper].

In acoustics, mixed boundary conditions are common problems and recent development in subwavelength optics has spurred similar research in acoustics. Due to the numerous similarities between electromagnetic and acoustic propagation the results and calculi found here can find applications into the acoustic field.
4. CONCLUSION

We have presented an analytical approximate solution of the aperture fields for a subwavelength elliptical aperture in a thin perfectly conducting screen. We used Copson’s formulation combined with Bouwkamp/Eggimann procedure and adapted it to elliptical geometry. Results are interesting because they lead to interesting insights into analytical expressions of electromagnetic interactions with anisotropic subwavelength structures. Results may be used to build analytical expressions of aperture fields for aperture with more anisotropy, and can also find some use in vibration theory. Finally, accessing higher-order terms could easily be done using symbolic programming.

APPENDIX A

A.1. Evaluation of the Integrals in Eq. (2)

The strategy is to use a change of variables to switch from elliptical to circular geometry. We define the following set of polar coordinates:

\[
\begin{align*}
 x &= a \rho \cos(\varphi) \\
 y &= b \rho \sin(\varphi)
\end{align*}
\]

(\(A1\))

Nonvanishing integrals encountered in Eq. (7) are of the forms

\[
\mathcal{F} = \frac{\varepsilon_0}{2\pi} \int_{\text{ellipse}} J_\varphi \frac{dx\,dy}{R} \quad \text{(A2)}
\]

or

\[
\mathcal{F} = \frac{\varepsilon_0}{2\pi} \int_{\text{ellipse}} J_\varphi \frac{d\rho\,d\varphi}{R} \quad \text{(A3)}
\]

where we recall that \(R = \sqrt{(x-x_0)^2 + (y-y_0)^2} \) at \(z = 0\).

A.1.1. Integral \(\mathcal{F}\)

The first integral \((A1)\) reads in polar coordinates

\[
G(x, y) = \frac{\varepsilon_0}{2\pi} \int_{\text{ellipse}} J_\varphi \frac{d\rho\,d\varphi}{R}.
\]

(A4)

which can be rewritten in a circular geometry as

\[
G(x, y) = \frac{\varepsilon_0 \rho}{2\pi} \int_{\text{circle}} \frac{J_\varphi \,d\rho\,d\varphi}{\sqrt{1 - \rho^2 \sin^2(\theta)}}.
\]

(A5)

with \(p = \sqrt{1 - \varphi^2}\). The general solution was given by Boersma and Daniecki [21], by expanding Wolfe’s work [25]. In order to evaluate the integral \((A4)\) we define \(g(\varphi)\) and decompose it on a Fourier basis \(g(\theta) = \sum_{j=0}^{\infty} g_j e^{ij\theta}\) with

\[
g_0 = \frac{\varepsilon_0}{2\pi} K(p)
\]

\[
g_{a2} = \frac{2\varepsilon_0}{\pi \rho^2} \left(E(p) - \left(1 - \frac{1}{2} \rho^2 \right) K(p) \right)
\]

\[
g_{a4} = \frac{\varepsilon_0}{3\pi \rho^4} \left([3 \rho^4 - 16 \rho^2 + 16] K(p) + (8 \rho^2 - 16) E(p) \right)
\]

\[
g_{a6} = \frac{\varepsilon_0}{15\pi \rho^6} \left([15 \rho^6 - 158 \rho^4 + 384 \rho^2 - 256] K(p) + (46 \rho^4 - 256 \rho^2 + 256) \right)
\]

\[
g_{a8} = \frac{\varepsilon_0}{105\pi \rho^8} \left([105 \rho^8 - 1856 \rho^6 + 8000 \rho^4 - 12288 \rho^2 + 6144] K(p) + (352 \rho^6 - 3776 \rho^4 + 9216 \rho^2 - 6144) E(p) \right).
\]

(A6)

where \(K(p)\) and \(E(p)\) are the elliptic integrals of the first and second kind, respectively [26]. We only evaluate up the eighth order because the polynomial numerator of \(J(x', y')\) won’t exceed the fourth degree.

We evaluate the integrals of type \((A3)\) and \((A4)\) with \(J(x', y') = \frac{\varepsilon_0 \rho^m}{\sqrt{1 - \varphi^2}}\), where \(i\) and \(j\) are integers. To do so, the polynomial term is expressed as series of Legendre functions multiplied by the complex exponential \(e^{im\varphi}\) and the following formula are used:

\[
\int_0^2 \int_0^{\varphi_{n+1}} \frac{P_n}{\sqrt{1 - \varphi^2}} e^{im\varphi} d\varphi' \, d\varphi = 0 \quad \text{if } |m + l| > n
\]

(A7)

\[
\int_0^2 \int_0^{\varphi_{n+1}} \frac{P_n}{\sqrt{1 - \varphi^2}} \rho' \, d\rho' \, d\varphi' = \frac{\varphi_{n+1}^{m+l}}{\sqrt{1 - \varphi_{n+1}^2}} e^{(m+l)\varphi_{n+1}} \quad \text{if } |m + l| \leq n
\]

with \(n, l, m\) integers, \(P_n\) Legendre functions, and

\[
L_{m,n} = 2^{-2\frac{l}{\varphi_{n+1}}} \frac{\varphi_{n+1}^{m+l}}{\sqrt{1 - \varphi_{n+1}^2}} e^{(m+l)\varphi_{n+1}} \quad \text{if } |m + l| \leq n
\]

(A8)

Finally, the integral is expressed in \((x, y)\) coordinates. Table 1 provides the value of \(G(x, y)\) for various \(J(x', y')\). Most interestingly, the degree of \(G(x, y)\) is identical to the degree of the numerator of \(J(x', y')\).

A.1.2. Integral \(\mathcal{F}\)

The second integral \((A2)\) reads

\[
H(x, y) = \frac{\varepsilon_0}{2\pi} \int_{\text{ellipse}} J_\varphi \sqrt{(x-x_0)^2 + (y-y_0)^2} \, dx \, dy.
\]

(A9)

They are evaluated in three steps:

\[
H(0, 0) = \frac{\varepsilon_0}{2\pi} \int_{\text{ellipse}} J_\varphi \sqrt{x^2 + y^2} \, dx \, dy.
\]

(A10)

which is expressed as elliptic integrals and

\[
\frac{\partial H(x, y)}{\partial x} = \frac{\varepsilon_0}{2\pi} \int_{\text{ellipse}} \frac{J_\varphi' (x', y')}{\sqrt{(x-x')^2 + (y-y')^2}} \, dx' \, dy
\]

\[
\frac{\partial H(x, y)}{\partial y} = \frac{\varepsilon_0}{2\pi} \int_{\text{ellipse}} \frac{J_\varphi' (x', y')}{\sqrt{(x-x')^2 + (y-y')^2}} \, dy' \, dx
\]

(A11)
Table 1. $G(x, y) = \frac{\partial}{\partial x} \iint \frac{1}{J(x', y') + (y - y')^2} \, dx' \, dy'$

<table>
<thead>
<tr>
<th>$J(x', y')$</th>
<th>$G(x, y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x^2g_0</td>
</tr>
<tr>
<td>x'</td>
<td>$\frac{1}{2}x^2(g_0 - g_2)x = x^2C_{-1}x$</td>
</tr>
<tr>
<td>y</td>
<td>$\frac{1}{2}x^2g_0 + (g_2 + g_4)x = x^2C_{0}y$</td>
</tr>
<tr>
<td>x^2</td>
<td>$x^2[(g_0 + g_2 - \frac{1}{2}g_4)x^2 + (\frac{1}{4}g_0 - \frac{1}{2}g_2 - \frac{3}{2}g_4)\frac{1}{2}x^2] = x^2[C_{+2}x^2 + C_{+2}y + C_{+2}]$</td>
</tr>
<tr>
<td>y^2</td>
<td>$x^2[(g_0 + g_2 - \frac{1}{2}g_4)x^2 + (\frac{1}{4}g_0 - \frac{1}{2}g_2 - \frac{3}{2}g_4)\frac{1}{2}x^2] = x^2[C_{+2}x^2 + C_{+2}y + C_{+2}]$</td>
</tr>
<tr>
<td>$x'y$</td>
<td>$\frac{1}{2}x^2g_0 - g_2xy = x^2C_{xy}$</td>
</tr>
<tr>
<td>x^3</td>
<td>$x^3[(g_0 + g_2 - \frac{1}{2}g_4)x + (\frac{1}{4}g_0 - \frac{1}{2}g_2 - \frac{3}{2}g_4)\frac{1}{3}x] + \frac{1}{2}x^2g_0y = x^3[C_{+3}x + C_{+3}y + C_{+3}]$</td>
</tr>
<tr>
<td>y^3</td>
<td>$x^3[(g_0 + g_2 - \frac{1}{2}g_4)x + (\frac{1}{4}g_0 - \frac{1}{2}g_2 - \frac{3}{2}g_4)\frac{1}{3}x] + \frac{1}{2}x^2g_0y = x^3[C_{+3}x + C_{+3}y + C_{+3}]$</td>
</tr>
<tr>
<td>x^4</td>
<td>$x^4[(\frac{1}{4}g_0 + \frac{1}{2}g_2 - \frac{7}{8}g_4)x + (\frac{1}{8}g_0 - \frac{1}{2}g_2 - \frac{3}{2}g_4)\frac{1}{4}x] + \frac{1}{2}x^2g_0y = x^4[C_{+4}x + C_{+4}y + C_{+4}]$</td>
</tr>
</tbody>
</table>

It can be evaluated using Table 1. Results are found in Table 2 with

\[
\begin{align*}
1 & \quad h_0 + \frac{1}{4}g_0a^2bE(p) \\
1 & \quad h_1 = \frac{bg_0}{16g_0}[(p^2 - 1)K(p) + (p^2 + 1)E(p)] \\
h_2 & \quad = \frac{bg_0}{16g_0}[(1 - p^2)K(p) + (2p^2 - 1)E(p)]
\end{align*}
\]

where K and E are the elliptic integrals previously defined. Note that Bouwkamp formula \([22, 24, 27] \), modified to be used in elliptical geometry, could also have been used to evaluate these integrals.

A.2. Third-Order Development

At third-order development, \((4), (7), \) and \((30) \) lead to 30 independent linear equations involving \(\psi^3, \theta^3 \). The system can be solved in a specific order to case the solving procedure:

\[
(n_1, \theta_1, \theta_2, \theta_3), (n_2, \theta_2, \theta_3, \theta_4), (n_3, \theta_3, \theta_4, \theta_5), (n_4, \theta_4, \theta_5, \theta_6), (n_5, \theta_5, \theta_6, \theta_7), \text{ and finally } (n_6, \theta_6, \theta_7, \theta_8, \theta_9, \theta_{10})
\]

The first four steps in the solving procedure lead to

\[
\begin{align*}
n_1 & = n_2 = n_3 = n_4 = n_5 = n_6 = 0 \\
\theta_1 & = \theta_2 = \theta_3 = \theta_4 = \theta_5 = \theta_6 = 0. \quad \text{(A12)}
\end{align*}
\]

It follows

Table 2. $H(x, y) = \frac{\partial}{\partial y} \iint \frac{1}{J(x', y') + (x - x')^2} \, dx' \, dy'$

<table>
<thead>
<tr>
<th>$J(x', y')$</th>
<th>$H(x, y)$</th>
</tr>
</thead>
</table>
| 1 | $h_0 + \frac{1}{4}g_0a^2bE(p) \\
1 & \quad h_1 = \frac{bg_0}{16g_0}[(p^2 - 1)K(p) + (p^2 + 1)E(p)] \\
h_2 & \quad = \frac{bg_0}{16g_0}[(1 - p^2)K(p) + (2p^2 - 1)E(p)]
\end{align*}
\]

Table 3. First-Order Development

<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n_0)</td>
</tr>
<tr>
<td>(x^{(1)}(1 + \frac{1}{2}b^2)p^2 + \frac{1}{2}b^2a^2)</td>
</tr>
<tr>
<td>(\frac{1}{2}b^2a^2)</td>
</tr>
<tr>
<td>(n_1)</td>
</tr>
<tr>
<td>(x^{(1)}(1 + \frac{1}{2}b^2)p^2 + \frac{1}{2}b^2a^2)</td>
</tr>
<tr>
<td>(\frac{1}{2}b^2a^2)</td>
</tr>
<tr>
<td>(n_2)</td>
</tr>
<tr>
<td>(x^{(1)}(1 + \frac{1}{2}b^2)p^2 + \frac{1}{2}b^2a^2)</td>
</tr>
<tr>
<td>(\frac{1}{2}b^2a^2)</td>
</tr>
<tr>
<td>(n_3)</td>
</tr>
<tr>
<td>(x^{(1)}(1 + \frac{1}{2}b^2)p^2 + \frac{1}{2}b^2a^2)</td>
</tr>
<tr>
<td>(\frac{1}{2}b^2a^2)</td>
</tr>
<tr>
<td>(n_4)</td>
</tr>
<tr>
<td>(x^{(1)}(1 + \frac{1}{2}b^2)p^2 + \frac{1}{2}b^2a^2)</td>
</tr>
<tr>
<td>(\frac{1}{2}b^2a^2)</td>
</tr>
<tr>
<td>(n_5)</td>
</tr>
<tr>
<td>(x^{(1)}(1 + \frac{1}{2}b^2)p^2 + \frac{1}{2}b^2a^2)</td>
</tr>
<tr>
<td>(\frac{1}{2}b^2a^2)</td>
</tr>
<tr>
<td>(n_6)</td>
</tr>
<tr>
<td>(x^{(1)}(1 + \frac{1}{2}b^2)p^2 + \frac{1}{2}b^2a^2)</td>
</tr>
<tr>
<td>(\frac{1}{2}b^2a^2)</td>
</tr>
</tbody>
</table>

Table 3. First-Order Development
\[
\eta_{10} = |S_1 D_2 D_3 D_4 D_5 D_6 D_7 D_8 D_9 D_{10}| \psi
\]
\[
\eta_{11} = |D_1 S_1 D_3 D_4 D_5 D_6 D_7 D_8 D_9 D_{10}| \psi
\]
\[
\eta_{12} = |D_1 D_2 S_1 D_4 D_5 D_6 D_7 D_8 D_9 D_{10}| \psi
\]
\[
\eta_{13} = |D_1 D_2 D_3 S_1 D_6 D_7 D_8 D_9 D_{10}| \psi
\]
\[
\eta_{14} = |D_1 D_2 D_3 D_4 S_1 D_6 D_7 D_8 D_9 D_{10}| \psi
\]
\[
\theta_{10} = |D_1 D_2 D_3 D_4 D_5 S_1 D_7 D_8 D_9 D_{10}| \psi
\]
\[
\theta_{11} = |D_1 D_2 D_3 D_4 D_5 D_6 S_1 D_8 D_9 D_{10}| \psi
\]
\[
\theta_{12} = |D_1 D_2 D_3 D_4 D_5 D_6 D_7 S_1 D_9 D_{10}| \psi
\]
\[
\theta_{13} = |D_1 D_2 D_3 D_4 D_5 D_6 D_7 D_8 S_1 D_{10}| \psi
\]
\[
\theta_{14} = |D_1 D_2 D_3 D_4 D_5 D_6 D_7 D_8 D_9 S_1| \psi.
\] (A13)

with \(| | \) being the determinant, and

\[
D_1 = [\pi^2 C_{20}^{21} 0 \pi^2 C_{21}^{21} 0 0 -2\pi^2 C_{21} 0 -4\pi^2 C_{24} -a^2/b^2 0]^T
\]
\[
D_2 = [0 \pi^2 C_{20}^{27} 0 0 -\pi^2 C_{30} 0 -3\pi^2 C_{37} 0 0 -a^2/b^2]^T
\]
\[
D_3 = [\pi^2 C_{20}^{31} 0 \pi^2 C_{31}^{31} 0 0 -2\pi^2 C_{31} 0 -4\pi^2 C_{39} 1 0]^T
\]
\[
D_4 = [0 \pi^2 C_{35}^{36} 0 0 \pi^2 C_{35} 0 -3\pi^2 C_{36} 0 0 1]^T
\]
\[
D_5 = [\pi^2 C_{40}^{30} 0 \pi^2 C_{40}^{30} 0 0 -2\pi^2 C_{40} 0 -4\pi^2 C_{39} -b^2/a^2 0]^T
\]
\[
D_6 = [0 0 0 \pi^2 C_{30}^{30} 4\pi^2 C_{38} 0 2\pi^2 C_{40} 0 0 -b^2/a^2]^T
\]
\[
D_7 = [0 0 0 0 3\pi^2 C_{35} 0 \pi^2 C_{36} -b^2/a^2 0]^T
\]
\[
D_8 = [0 0 0 \pi^2 C_{30}^{30} 4\pi^2 C_{29} 0 2\pi^2 C_{31} 0 0 1]^T
\]
\[
D_9 = [0 0 0 0 3\pi^2 C_{26} 0 \pi^2 C_{27} 1 0]^T
\]
\[
D_{10} = [0 0 0 \pi^2 C_{24}^{24} 4\pi^2 C_{20} 0 2\pi^2 C_{21} 0 0 -a^2/b^2]^T
\]
\[
S_1 = [\xi_1^j \xi_2^j \xi_3^j \xi_4^j \xi_5^j \xi_6^j \xi_7^j \xi_8^j 0 0]^T
\]
\[
\psi = |D_1 D_2 D_3 D_4 D_5 D_6 D_7 D_8 D_9 D_{10}|.
\] (A14)

where \(T \) stands for transposition, with

\[
\delta_{10}^1 = 1/8\pi^2(-C_1 + C_3)\eta_3^1 + 1/8\pi^2(-C_5 + C_14)\eta_3^1 \quad \delta_{11}^1 = 1/6\pi^2(-C_7 + C_{12})\eta_4^1
\]
\[
\delta_{12}^1 = 1/4\pi^2(-C_2 + C_3)\eta_3^1 + 1/4\pi^2(C_{15} - C_1)\eta_3^1 \quad \delta_{13}^1 = 1/2\pi^2(C_{11} - \eta_4^1
\]
\[
\delta_{14}^1 = 1/8\pi^2(C_{11} - C_9)\eta_3^1 + 1/8\pi^2(C_{17} - C_5)\eta_3^1
\]
\[
\lambda_{10}^1 = 1/8\pi^2(C_{17} - C_2)\theta_1^1 + 1/8\pi^2(C_{11} - C_2)\theta_2^1 \quad \lambda_{11}^1 = 1/2\pi^2(C_{11} - \theta_1^1
\]
\[
\lambda_{12}^1 = 1/4\pi^2(C_{15} - C_9)\theta_1^1 + 1/4\pi^2(C_9 - C_2)\theta_2^1 \quad \lambda_{13}^1 = 1/6\pi^2(C_{12} - C_7)\theta_4^1
\]
\[
\lambda_{14}^1 = 1/8\pi^2(C_{14} - C_9)\theta_1^1 + 1/8\pi^2(C_8 - C_1)\theta_5^1
\] (A15)

and

\[
C_{01}^0 = 1/2(g_0 - C_{-1}) \quad C_{01}^{0-1} = g_0 - 1/2C_{-1} - 1/2C_0 \quad C_{01}^0 = 1/2(C_0 - g_0) \quad C_{21}^2 = 1/2(C_6 + C_{-1})
\]
\[
C_{02}^3 = 1/2(C_3 - C_{10}) \quad C_{02}^{31} = 1/2(C_{13} - C_3) \quad C_{02}^3 = 1/2(C_6 + C_{-1}) \quad C_{10}^4 = 1/2(C_6 - C_{10})
\]
\[
C_{03}^3 = 1/2(C_{19} - C_6) \quad C_{03}^{313} = 1/2(C_{13} + C_3) - 1/2C_{10} \quad C_{10}^{36} = -1/2C_{19} - C_6 - 1/2C_{16} \quad C_{21}^{30} = 12C_{20} + 2C_{21}
\]
\[
C_{04}^{32} = 2C_{21} + 12C_{24} \quad C_{11}^{32} = -2C_{21} - 2C_{22} \quad C_{21}^{32} = 6C_{20} + 6C_{27} \quad C_{31}^{32} = 12C_{20} + 2C_{21}
\]
\[
C_{05}^{33} = 2C_{31} + 12C_{30} \quad C_{12}^{33} = -2C_{33} - 2C_{32} \quad C_{22}^{33} = 6C_{35} + 6C_{36} \quad C_{32}^{33} = 12C_{28} + 2C_{40}
\]
\[
C_{06}^{34} = 2C_{40} + 12C_{39} \quad C_{23}^{41} = -2C_{42} - 2C_{41} \quad (A16)
\]

Finally, one obtains

\[
\xi_1 = -a_1^4 - 12d_{12}^0 - 2\delta_{12}^1 \quad \xi_2 = -a_1^4 - 6\delta_{11}^1 - 6\delta_{13}^1 \quad \xi_3 = -a_1^4 - 2\delta_{12}^1 - 12\delta_{14}^1
\]
\[
\xi_4 = -a_1^4 - 2\delta_{11}^1 - 12\delta_{10}^1 \quad \xi_5 = -a_1^4 - 2\delta_{14}^1 \quad \xi_6 = 2\delta_{12}^1 - 3\delta_{13}^1
\] (A17)

with
\[a_0^2 = \eta_1^2 \pi^2 y_0 + \eta_3^2 \pi^2 C_3 + \eta_5^2 \pi^2 C_6 + \eta_1^2 \pi^2 C_{25} + \eta_2^2 \pi^2 C_{34} + \eta_3^4 \pi^2 C_{43} - \frac{1}{2} \eta_4^3 h_1 - \frac{1}{2} \eta_4^3 h_0 - \frac{1}{2} \eta_5^3 h_2. \]
\[a_1^2 = \frac{1}{2} \eta_1^2 y^2 C_3, \quad a_2^2 = \frac{1}{2} \eta_2^2 y^2 C_6. \]
\[a_3^2 = \eta_3^2 \pi^2 C_1 + \eta_4^2 \pi^2 C_5 + \eta_5^2 \pi^2 C_{22} + \eta_6^2 \pi^2 C_{32} + \eta_7^2 \pi^2 C_{41} - \frac{1}{2} \eta_8^{10} \pi^2 \eta_1 - \frac{1}{2} \eta_7^{10} \pi^2 \eta_0 - \frac{1}{2} C_6 \pi^2 \eta_5. \]
\[a_4^2 = \eta_1^3 \pi^2 C_7 + \eta_2^3 \pi^2 C_{28} + \eta_3^3 \pi^2 C_{37} + \eta_4^3 \pi^2 y_1 + \eta_5^3 \pi^2 y_4. \]
\[a_5^2 = \frac{1}{6} \pi^2 (C_1 - C_1 y_1), \quad a_6^2 = \frac{1}{2} \eta_1^3 \pi^2 C_5, \quad a_7^2 = \frac{1}{2} \eta_2^3 \pi^2 C_2, \quad a_8^2 = \frac{1}{6} \pi^2 \eta_3^3 (C_4 - C_0). \]
\[a_{10}^2 = \eta_9^3 \pi^2 C_{20} + \eta_{10}^3 \pi^2 C_{29} + \eta_{11}^3 \pi^2 C_{38} + \delta_1^1 \]
\[a_{11}^2 = \eta_{12}^3 \pi^2 C_{36} + \eta_{13}^3 \pi^2 C_{35} + \delta_1^1 \]
\[a_{12}^2 = \eta_{12}^3 \pi^2 C_{31} + \eta_{13}^3 \pi^2 C_{40} + \delta_1^1 \]
\[a_{13}^2 = \eta_{13}^3 \pi^2 C_{37} + \eta_{12}^3 \pi^2 C_{38} + \delta_1^1 \]
\[a_{14}^2 = \eta_{14}^3 \pi^2 C_{24} + \eta_{15}^3 \pi^2 C_{30} + \eta_{14}^3 \pi^2 C_{39} + \delta_1^1 \]

(A18)

and

\[\beta_0^3 = \theta_3^3 \pi^2 y_0 + \theta_2^3 \pi^2 C_5 + \theta_1^3 \pi^2 C_3 + \theta_0^3 \pi^2 C_{43} + \theta_2^3 \pi^2 C_{34} + \theta_3^3 \pi^2 C_{25} - \frac{1}{2} \theta_4^3 h_0 - \frac{1}{2} \theta_5^3 h_2 - \frac{1}{2} \theta_6^3 h_1. \]
\[\beta_1^3 = \frac{1}{2} \theta_1^3 \pi^2 C_6, \quad \beta_2^3 = \frac{1}{2} \theta_2^3 \pi^2 C_3. \]
\[\beta_3^3 = \eta_2^3 \pi^2 C_4 + \theta_3^3 \pi^2 C_2 + \theta_4^3 \pi^2 C_42 + \theta_5^3 \pi^2 C_{33} + \theta_6^3 \pi^2 C_{23} - \frac{1}{2} \eta_7^{10} \pi^2 \theta_1 - \frac{1}{2} \eta_8^{10} \pi^2 \theta_0 - \frac{1}{2} C_6 \pi^2 \theta_5. \]
\[\beta_4^3 = \eta_1^3 \pi^2 C_7 + \theta_1^3 \pi^2 C_{37} + \theta_2^3 \pi^2 C_{38} + \frac{1}{2} C_3 \pi^2 \theta_4. \]
\[\beta_5^3 = \theta_0^3 \pi^2 C_5 + \theta_0^3 \pi^2 C_4 + \theta_1^3 \pi^2 C_{41} + \theta_2^3 \pi^2 C_{32} + \theta_3^3 \pi^2 C_{22} - \frac{1}{2} \eta_4^{30} \pi^2 \theta_0 - \frac{1}{2} C_6 \pi^2 \theta_3 - \frac{1}{2} C_3 \pi^2 \theta_5. \]
\[\beta_6^3 = \frac{1}{6} \pi^2 (C_4 - C_1) \theta_1, \quad \beta_7^3 = \frac{1}{2} \theta_1^3 \pi^2 C_2, \quad \beta_8^3 = \frac{1}{2} \theta_2^3 \pi^2 C_5, \quad \beta_9^3 = \frac{1}{6} \pi^2 \theta_3^3 (C_1 - C_1). \]
\[\beta_{10}^3 = \eta_1^3 \pi^2 C_{20} + \eta_2^3 \pi^2 C_{29} + \eta_3^3 \pi^2 C_{38} + \eta_4^3 \pi^2 C_{39} + \delta_1^1 \]
\[\beta_{11}^3 = \eta_1^3 \pi^2 C_36 + \eta_3^3 \pi^2 C_{35} + \delta_1^1 \]
\[\beta_{12}^3 = \eta_2^3 \pi^2 C_{31} + \eta_4^3 \pi^2 C_{40} + \delta_1^1 \]
\[\beta_{13}^3 = \eta_3^3 \pi^2 C_{37} + \eta_2^3 \pi^2 C_{38} + \delta_1^1 \]
\[\beta_{14}^3 = \eta_4^3 \pi^2 C_{24} + \eta_5^3 \pi^2 C_{30} + \eta_4^3 \pi^2 C_{39} + \delta_1^1 \]

(A19)

with

\[\kappa_1 = \pi^2 C_{00} \eta_0 + \pi^2 C_{01} \eta_1 - \frac{1}{2} \pi^2 C_{13} \theta_1 \gamma_1 + \pi^2 C_{20} \eta_0 + \pi^2 C_{33} \eta_1 + \frac{1}{2} C_{30} \gamma_0 - \frac{1}{2} C_{33} \gamma_1 + \frac{1}{2} \pi^2 C_{00} \eta_0 + \pi^2 C_{01} \eta_1 - \frac{1}{2} \pi^2 C_{13} \theta_1 \gamma_1 + \pi^2 C_{20} \eta_0 + \pi^2 C_{33} \eta_1 + \frac{1}{2} C_{30} \gamma_0 - \frac{1}{2} C_{33} \gamma_1. \]
\[\kappa_2 = \frac{1}{2} \pi x^2 C_{13} \theta_1 \gamma_1 + \pi^2 C_{01} \gamma_0 + \pi^2 C_{00} \gamma_0 \eta_1 + \pi^2 C_{01} \gamma_0 \eta_1 + \pi^2 C_{20} \gamma_0 \eta_1 + \pi^2 C_{30} \gamma_0 \eta_1 + \pi^2 C_{30} \gamma_0 \eta_1 - \frac{1}{2} \pi^2 C_{13} \theta_1 \gamma_1 + \pi^2 C_{20} \theta_1 \gamma_1 \]
\[\kappa_3 = -\eta_0^3 + \pi^2 C_{00} \theta_0 + \pi^2 C_{01} \eta_1 + \pi^2 C_{01} \eta_1 + \pi^2 C_{13} \eta_0 + \pi^2 C_{20} \theta_0 + \pi^2 C_{30} \theta_0 + \pi^2 C_{33} \theta_0 + \pi^2 C_{40} \eta_1. \]
\[\kappa_4 = -\eta_0^3 + \pi^2 C_{00} \theta_0 + \pi^2 C_{01} \eta_1 + \pi^2 C_{01} \eta_1 + \pi^2 C_{13} \eta_0 + \pi^2 C_{20} \theta_0 + \pi^2 C_{30} \theta_0 + \pi^2 C_{33} \theta_0 + \pi^2 C_{40} \eta_1. \]
\[\kappa_5 = -\eta_0^3 \]
\[\kappa_6 = -\eta_1^3 - \theta_1 \]
\[\kappa_7 = -\eta_1^3 - \theta_1 \]
\[\kappa_8 = -\theta_1 \]

(A20)
Table 4. Arbitrary Incident Electromagnetic Field

<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_1^0 = $-\frac{1}{2} \frac{1}{\rho(z^3 - C_0 z^3 + 2C_0 2^{3/8} \rho^2 + C_0 + 2^{3/8} \rho^2)}$</td>
</tr>
<tr>
<td>θ_2^0 = $\frac{1}{2} \frac{1}{\rho(z^3 - C_0 z^3 + 2C_0 2^{3/8} \rho^2 + C_0 + 2^{3/8} \rho^2)}$</td>
</tr>
<tr>
<td>θ_3^0 = $\frac{1}{2} \frac{1}{\rho(z^3 - C_0 z^3 + 2C_0 2^{3/8} \rho^2 + C_0 + 2^{3/8} \rho^2)}$</td>
</tr>
<tr>
<td>θ_4^0 = $\frac{1}{2} \frac{1}{\rho(z^3 - C_0 z^3 + 2C_0 2^{3/8} \rho^2 + C_0 + 2^{3/8} \rho^2)}$</td>
</tr>
<tr>
<td>θ_5^0 = $\frac{1}{2} \frac{1}{\rho(z^3 - C_0 z^3 + 2C_0 2^{3/8} \rho^2 + C_0 + 2^{3/8} \rho^2)}$</td>
</tr>
</tbody>
</table>

Table 5. Arbitrary Incident Electromagnetic Field

<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_1^0 = $\frac{1}{2} \frac{1}{\rho(z^3 - C_0 z^3 + 2C_0 2^{3/8} \rho^2 + C_0 + 2^{3/8} \rho^2)}$</td>
</tr>
<tr>
<td>θ_2^0 = $\frac{1}{2} \frac{1}{\rho(z^3 - C_0 z^3 + 2C_0 2^{3/8} \rho^2 + C_0 + 2^{3/8} \rho^2)}$</td>
</tr>
<tr>
<td>θ_3^0 = $\frac{1}{2} \frac{1}{\rho(z^3 - C_0 z^3 + 2C_0 2^{3/8} \rho^2 + C_0 + 2^{3/8} \rho^2)}$</td>
</tr>
<tr>
<td>θ_4^0 = $\frac{1}{2} \frac{1}{\rho(z^3 - C_0 z^3 + 2C_0 2^{3/8} \rho^2 + C_0 + 2^{3/8} \rho^2)}$</td>
</tr>
<tr>
<td>θ_5^0 = $\frac{1}{2} \frac{1}{\rho(z^3 - C_0 z^3 + 2C_0 2^{3/8} \rho^2 + C_0 + 2^{3/8} \rho^2)}$</td>
</tr>
</tbody>
</table>

ACKNOWLEDGMENT
This research was supported by C’Nano Network (Ile-de-France, France) research funds.

REFERENCES