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Algebraic parameter estimation of a multi-sinusoidal waveform signal
from noisy data*

Rosane Ushirobira1, Wilfrid Perruquetti2, Mamadou Mboup3 and Michel Fliess4

Abstract— In this paper, we apply an algebraic method to
estimate the amplitudes, phases and frequencies of a biased
and noisy sum of complex exponential sinusoidal signals. Let
us stress that the obtained estimates are integrals of the noisy
measured signal: these integrals act as time varying filters.
Compared to usual approaches, our algebraic method provides
a more robust estimation of these parameters within a fraction
of the signal’s period. We provide some computer simulations
to demonstrate the efficiency of our method.

I. INTRODUCTION

Numerous practical engineering problems involve the es-
timation of the frequencies of a biased and noisy sum of
complex exponential sinusoidal signals, e.g. signal demodu-
lation in communications, regulation of electronic converters
power, the circadian rhythm of biological cells and the
modal identification for flexible structures (see [51]). A
very motivating example, developed in [42], is the position
reconstruction of a human body in the sagittal plane using
only accelerometer measurements.

Several different methods have been elaborated to solve
this particular estimation problem, (see [25], [49] for sur-
veys), such as linear regression [5], [41], adaptive least
square method [47], subspace methods (high resolution) [12],
[22], [46], [24], the extended Kalman filter introduced in
[26], [27], [28] and refined in [2] where a simple tuning
rule is given, the notches filter introduced simultaneously in
[21] and [44] providing biased estimates of the frequency for
standard notch (see [48]) with a first improvement obtained
in [1] and an adaptive version in [9] (see also [45]), adaptive
sogi-filters [13], techniques borrowed from adaptive nonlin-
ear control [23], [38] or alternatively [29], [30] and more
recently [3], [6], [7], [56]. Let us stress that almost all the
above mentioned results (except [25], [5], [13] that needs half
of the period to recover the parameters and [51] that uses also
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algebraic techniques for a single sinusoidal) deal only with
the frequency estimation problem: here our method can be
extended to estimate all the parameters including amplitudes
and phases (see example in sections IV and V). Nevertheless,
obtaining a robust estimation in the presence of noise and
an unknown constant bias, continues to be an issue not quite
solved.

Other interesting feature of our algebraic approach is that
it is fast and online. Therefore, a comparison procedure with
offline methods, such as the maximum likelihood estimation
(see [11]), does not apply.

The algebraic methods used in this paper are inspired by
the fundamental work of M. Fliess et al. [20], [18], [17],
[19], [15], [35]. For more results in practical examples, we
refer to [40], [50], [51], [53].

The parameter estimation problem for a finite sum of
sinusoidal functions was notably studied by G. Riche de
Prony in his 1795 seminal paper [43] (see also [24], [41]).
In this paper, we are interested in Prony’s problem for the
estimation of frequencies in a sum of complex sinusoidal
functions. In other words, our first goal is to estimate the
frequencies of the signal

x(t) =

n∑

k=1

αk exp (i (ωkt+ φk)) (1)

from the biased and noisy output measure

y(t) = x(t) + β +$

where β is an unknown constant bias and $ is a noise.1

Let us remark that, in its generality, the problem of param-
eter estimation problem for x(t) consists on the estimation of
the triplet (αk, ωk, φk) for all k. For the sake of brevity, we
present here only the frequencies estimation in the general
case. However, an example in the case n = 3 is treated at
the end of this paper, where we also indicate how to proceed
for the calculation of the triplets (amplitude, frequencies,
phases).

II. PROBLEM FORMULATION

To formulate the problem of the parametric estimation, we
start with a signal depending on a set of parameters. We wish
to estimate some of these parameters. They form a vector that
denoted by Θ. Based on the observed noisy signal, our aim
is to obtain a “good” approximation of Θ.

1Here, the noise is interpreted as a fast oscillation and it does not depend
on any probabilistic modeling, as in [14], [15].



Let us denote by θk (1 ≤ k ≤ n) a multiple of the
elementary symmetric polynomial in n variables ω1, . . . , ωn:

θk := (−i)k
∑

1≤j1<j2<···<jk≤n

ωj1ωj2 . . . ωjk . (2)

That means that θ1, . . . , θn can be obtained as the coeffi-
cients of the polynomial in the variable X given by

n∏

`=1

(X − iω`) = Xn + θ1X
n−1 + θ2X

n−2 + · · ·+ θn.

It is easy to see that the signal z(t) = x(t) + β and the
vector Θ = {θ1, . . . , θn} satisfy a linear differential algebraic
relation provided by the differential equation:

z(n)(t) +

n−1∑

k=0

θk+1z
(k)(t)− θnβ = 0. (3)

The Laplace transform applied on the equation (3) gives the
following relation in the operational domain:

s

(
sn +

n−1∑

k=0

θk+1s
k

)
Z(s)− s2z(n−1)(0) (4)

−
n−2∑

j=0


sn−j +

n−1∑

k=j+1

θk+1s
k−j


 z(j)(0)− θnβ = 0.

We use the notation Θest := {θ1, θ2, . . . , θn}, rather than Θ
for the desired parameters. For 1 ≤ ` ≤ n, let us set θn+` :=
−x(`−1)(0). Since the bias θ2n+1 := β is not of interest,
we also define Θest := {θn+1, . . . , θ2n, θ2n+1}, the set of
undesired parameters. The frequencies ωk (1 ≤ k ≤ n) can
be deduced from Θest from a straightforward computation.

Now, consider the algebraic extensions CΘest := C(Θest)
and CΘest

:= C(Θest) and denote by CΘest [s] (respectively
CΘest

[s]) the polynomial ring in the variable s with coeffi-
cients in CΘest (respectively in CΘest

). We set

T (s) := sn +

n−1∑

k=0

θk+1s
k =

n∏

`=1

(s− iω`) ∈ CΘest [s].

The relation below arises naturally from equation (4):

R (s, Z(s),Θest,Θest) := P (s)Z(s) +Q(s) = 0 (5)

where P (s) = s T (s) ∈ CΘest [s] and

Q(s) = s

n−1∑
j=0

sn−j−1 +

n−1∑
k=j+1

θn−ks
k−j−1

 θn+j+1

−T (s)θ2n+1 ∈ CΘest [Θest][s] (6)

We start by eliminating Θest in equation (5). In other words,
the polynomial Q(s) must be annihilated. Then we shall
obtain a system of equations depending uniquely on Θest.
For that purpose, we proceed in three steps:

1) Algebraic elimination of Θest: we use the canonical
form of the minimal Q-annihilator, the operator in

CΘest(s)
[
d
ds

]
2 that generates all differential operators

annihilating Q.
2) Obtaining a system of equations on Θest: the canonical

forms of the differential operators generated by the
minimal Q-annihilator provide a system of equations
with good numerical properties in the time domain.

3) Resolution of the resulting system: to bring the equa-
tions back to the time domain, we use the inverse
Laplace transform

L−1

(
1

sm
dpZ(s)

dsp

)
=

(−1)p

(m− 1)!

∫ t

0

vm−1,p(τ)z(τ)dτ

(7)
with vm,p(τ) = (t − τ)mτp,∀ p,m ∈ N,m ≥ 1. To

reduce the noisy influence in our estimation, we choose
the integers m and p as small as possible.

The algebraic framework for our method is described in
Section III, where we also define the minimal annihilators
mentioned in the first point. In subsection III-A, we detail
the canonical form of the annihilators and recall some
well-known properties of the Weyl algebra. In Section IV,
we give the frequencies estimation. Numerical simulations
are given in Section V to illustrate the efficiency of our
algebraic method, using a comparison with the modified
Prony’s method.

III. ANNIHILATORS VIA THE WEYL ALGEBRA

As we have seen in the preceding Section, our goal is
to annihilate the polynomial Q, see (6). For that, we use
differential operators, that is, polynomials in the variable
d
ds with polynomial coefficients in the variable s. The
polynomial Q has degree n, therefore it is clear that any
differential operator of lowest degree, with respect to the
variable d

ds , greater than n annihilates Q, for example Π1 =(
s dds − n

)
◦ · · · ◦

(
s dds − 1

)
◦
(
s dds
)

and Π2 = dn

dsn . Some
natural questions arise such as whether these annihilators are
the same or if there exists a lower order 3 annihilator. The
structure of the Weyl algebra CΘ(s)

[
d
ds

]
helps answering

these questions.
Let us stress that this algebraic point of view is inspired

by the work of M. Fliess et al. [17], [18], [19], [15], [35] 4.
The algebraic notions defined below are detailed in [10] and
[37].

A. The Weyl Algebra

Definition 1: Let K be a field of characteristic zero. Let
k ∈ N \ {0}. The Weyl algebra Ak(K) is the C-algebra
generated by p1, q1, . . . , pk, qk satisfying the relations

[pi, qj ] = δij , [pi, pj ] = [qi, qj ] = 0,∀ 1 ≤ i, j ≤ k

where [·, ·] is the commutator defined by [u, v] := uv − vu,
for all u, v ∈ Ak(K). Sometimes we write simply Ak.

2The polynomial ring in d
ds

with coefficients in CΘest [s]
3The order of an operator Π ∈ CΘ(s)

[
d
ds

]
is its degree as a polynomial

in the variable d
ds

.
4Similar tools were used for numerical differentiation of noisy signal [36],

[33] and spike detection [16].



A very useful realization of the Weyl algebra Ak is to
consider it as the algebra of polynomial differential operators
on K[s1, . . . , sk] such that

pi =
∂

∂si
and qi = si×· ,∀ 1 ≤ i ≤ k.

As a consequence, we can write

Ak = K[q1, . . . , qk][p1, . . . , pk] = K[s1, . . . , sk]

[
∂

∂s1
, . . . ,

∂

∂sk

]
(remark that the same notation is used for the variable si

and for the operator “multiplication by si”).
A closely related algebra to Ak(K) is defined as the

differential operators on K[s1, . . . , sk] with coefficients in
the rational functions field K(s1, . . . , sk). We denote it by
Bk(K), or Bk for short. We can write

Bk := K(q1, . . . , qk)[p1, . . . , pk] = K(s1, . . . , sk)

[
∂

∂s1
, . . . ,

∂

∂sk

]
.

In the case k = 1 for instance, we have

A1 = 〈p, q | pq − qp = 1〉 = K[s]

[
d

ds

]
and B1 = K(s)

[
d

ds

]
Proposition 2: A basis for Ak is given by{
qIpJ | I, J ∈ Nk

}
where qI := qi11 . . . qikk and

pJ := pj11 . . . pjkk if I = (i1, . . . , ik) and J = (j1, . . . , jk).
Therefore an operator F ∈ Ak can be written in a canonical
form,

F =
∑

I,J

λIJq
IpJ with λIJ ∈ K.

Example 3: We need later the fallowing useful identity:

pnqm = qmpn +

n∑

k=1

(
n

i

)(
m

i

)
i!qm−ipn−i

An element F ∈ Bk can be similarly written as

F =
∑

I

λIgI(s)p
I , where gI(s) ∈ K(s1, . . . , sk).

The order of an element F ∈ Bk, F =
∑
I λIgI(s)p

I is
defined as ord(F ) := max{[I| | gI(s) 6= 0}. Notice that the
same definition holds for the Weyl algebra Ak since Ak ⊂
Bk. Some important properties of Ak and Bk are given by
the following propositions:

Proposition 4: Ak is a domain. Moreover, Ak is simple
and Noetherian.

These properties are shared by Bk. Furthermore, Ak is
neither a principal right domain, nor a principal left domain,
while this is true for Bk:

Proposition 5: B1 admits a left division algorithm, that
is, if F , G ∈ B1, then there exists Q, R ∈ B1 such that
F = QG+R and ord(R) < ord(G). Consequently, B1 is a
principal left domain.

Lastly, it follows from the fact that d
ds is a derivation:

Proposition 6 (Derivation): Given P1, P2 ∈ C[s], we
have (Leibniz rule):

dn

dsn
(P1 P2) =

n∑

k=0

(
n

k

)
dkP1

dsk
dn−kP2

dsn−k

B. Annihilator

We set B := B1(C) = C(s)
[
d
ds

]
.

Definition 7: Let Q ∈ CΘest
[s]. A Q-annihilator w.r.t. B

is an element of AnnB(Q) = {F ∈ B | F (Q) = 0}.
Since B is a left principal domain (see Proposition 5), then
AnnB(Q) is a left principal ideal, i.e. it is generated by
a unique Πmin ∈ B, up to multiplication by a polynomial
in B. That means AnnB(Q) = B Πmin. We call Πmin a
minimal Q-annihilator w.r.t. B. Remark that AnnB(Q)
contains annihilators in finite integral form, i.e. operators
with coefficients in C

[
1
s

]
. We have the following lemmas:

Lemma 8: Consider Q(s) = sn, n ∈ N. A minimal Q-
annihilator is given by

Πn = s
d

ds
− n.

For m, n ∈ N, the operators Πm and Πn commute. Thus,
one can use the following Lemma

Lemma 9: Let P1, P2 ∈ CΘest
[s]. Let Πi be a Pi-

annihilator (i = 1, 2) such that Π1Π2 = Π2Π1. Then Π1Π2

is a (µP1 + ηP2)-annihilator for all µ, η ∈ CΘest
.

Now, recall that

Q(s) = s

n−1∑
j=0

sn−j−1 +

n−1∑
k=j+1

θn−ks
k−j−1

 θn+j+1

−T (s)θ2n+1

So, the above Lemma provides a minimal Q-annihilator
w.r.t. B:

Πmin =

(
s
d

ds
− n

)
◦ · · · ◦

(
s
d

ds
− 1

)
◦
(
s
d

ds

)
. (8)

From the identity in Example 3, it results:

Πmin = sn
dn

dsn
. (9)

Lemma 10: Let Q ∈ CΘest [s]. Then a minimal Q-
annihilator w.r.t BΘest is Πmin = Q d

ds −
dQ
ds .

IV. PARAMETER ESTIMATION

The first step of the estimation is to determine a minimal
Q-annihilator Πmin. Then, we choose a suitable family of
annihilators F = (Πi)

r
i=1 in C(s)

[
d
ds

]
generated by Πmin so

that F applied to (5) provides a system of equations in Θest.
Finally, the frequencies are the solutions of this system in
the time domain. A similar procedure can be also applied to
estimate the remaining parameters (phases and amplitudes).

The order of the operators is one of the factors that must
be taken in account when choosing the family F : it must be
minimal to reduce noise sensitivity. Also, the use of finite-
integral form annihilators is justified by (7). In addition,
the choice of a well-balanced system of equations provides
“good” numerical properties.

Since the family F is generated by the minimal Q-
annihilator that Πmin, its elements are of the form:

Π =

(∑̀

i=0

fi(s)
di

dsi

)
Πmin(s), (10)



with fi(s) ∈ C(s),∀ 1 ≤ i ≤ `.
We have seen that a minimal Q-annihilator w.r.t. B is

Πmin = sn dn

dsn , that applied on the relation (5) gives

Πmin (P (s)Z(s)) =

n∑

j=0

Pj(s)
djZ(s)

dsj

where for all 1 ≤ j ≤ n,

Pj(s) =
(n+ 1)!

(n− j)!
sn+j+1 +

1

(n− j)!

n−1∑

k=n−1−j

θk+1 (k + 1)!sk+1+j

Given that Πmin annihilates Q, from the relation (5) follows
an algebraic relation involving θ1, . . . , θn:

n∑

j=0

Pj(s)
djZ(s)

dsj
= 0.

However, we need n independent equations to linearly iden-
tify Θest. One can show that this cannot be done in the
operational domain, see for instance [55] for a similar proof
in a low-dimensional case.

Therefore, the idea is to write the annihilator in (10) in a
canonical form:

Π =
∑̀

i=n

gi(s)
di

dsi
, with gi(s) ∈ C(s),∀ n ≤ i ≤ `.

A suitable choice of the rational functions gi brings a
consistent system of equations in the time domain : set
` = 2n − 1 and for 1 ≤ i ≤ 2n − 1, set gi(s) = 1 and
gk(s) = 0, if k 6= i. Then, it suffices to solve the system. In
the sequel, a very interesting example in the case of a sum of
three sinusoidal waveform signals illustrates the usefulness
of our algebraic method.

Remark 11: Let us note that in the case of a similar
parameter estimation problem of a single noisy sinusoidal
waveform signal, a consistent system can be found in the
operational domain (see [54]).

Example 12: We apply our method in the case of a sum
of three sinusoidal waveform signal, so n = 3. Since Q-
annihilators are of the form (10), we choose ` = 2 to obtain
a system with three equations. So the canonical form of the
annihilator of order 6 is:

Π = g0(s)
d4

ds4
+ g1(s)

d5

ds5
+ g2(s)

d6

ds6
,

where g0(s), g1(s), g2(s) ∈ C(s). Choosing g0(s) = 1,
g1(s) = 0, g2(s) ; g0(s) = 0, g1(s) = 1, g2(s) = 0 and
g0(s) = 0, g1(s) = 0, g2(s) = 1 gives three equations in the
operational domain leading to the following system in the
time domain:



1
6J1

1
6J2 J3

− 1
24J4 − 1

6J5 − 1
2J6

1
12J7

1
4J8 J9






θ1

θ2

θ3


 = −



J10

J11

J12




where we set vm,n = vm,n(u) = (t− u)mun, for m,n ∈ N
and Ji =

∫ t
0
Ii z(u) du, for 1 ≤ i ≤ 12,

I1 = 2v3,4 − t v3,3

I2 = 14 v2,4 − 14 tv2,3 + 3 t2 v2,2

I3 = 14 v1,4 − 21 t v1,3 + 9t2 v1,2 − t3 v1,1

I4 = 9 v3,5 − 5t v3,4

I5 = 18v2,5 − 20t v2,4 + 5t2 v2,3

I6 = 42 v1,5 − 70 t v1,4 + 35t2 v1,3 − 5t3 v1,2

I7 = 5 v3,6 − 3t v3,5

I8 = 15 v2,6 − 18t v2,5 + 5 t2 v2,4

I9 = 30v1,6 − 54t v1,5 + 30t2 v1,4 − 5t3 v1,3

I10 = −16 v1,3 + 36 v2,2 − 16v3,1 + v0,4 + v4,0

I11 = 20v1,4 − 60 v2,3 + 40 v3,2 − 5 v4,1 − v0,5

I12 = −24 v1,5 + 15 v4,2 + 90 v2,4 − 80 v3,3 + v0,6

Finally, the expressions for θ1, θ2 and θ3 are:

θ1 = 12
2 a J2 − 2 b J3 + d J10

Λ

θ2 = 12
−2 a J1 + c J3 + e J10

Λ

θ3 =
4 b J1 − 2 c J2 + f J10

Λ

where a = 2J9J11 + J6J12, b = 3J8J11 + 2J5J12,

c = 2J7J11 + J4J12, d = 4J5J9 − 3J6J8,

e = J6J7 − J4J9, f = 3J4J8 − 4J5J7,

Λ = 2 d J1 + 2 e J2 + f J3

In the general parameter estimation problem, we wish to
estimate all parameters giving the amplitudes, the frequencies
and the phases, that is the triplets (αk, ωk, φk), 1 ≤ k ≤ 3 in
(1). As mentioned in the Introduction, our algebraic method
works very properly in this case. We give an idea of how to
proceed:
• define two new vectors Θest = {θ1, θ2, θ3, θ4, θ5, θ6}

and Θest = {θ7} where θ1, θ2, θ3 are as in (2), θ4 =
β − z(0), θ5 = −ż(0), θ6 = −z̈(0) and θ7 = −β.

• according with the new Θest and Θest, we obtain a new
polynomial Q in the relation R (5):

Q(s) = T (s) θ7 ∈ CΘest
[s]

and polynomials in CΘest [s]:

T (s) = s3 + θ3s
2 + θ2s+ θ1

Q(s) = s3θ4 + s2(θ5 + θ3θ4) + s(θ6 + θ2θ4 + θ3θ5).

• choose a new minimal Q-annihilator and estimate the
frequencies {θ1, θ2, θ3} by a similar reasoning as above.

• to linearly identify the remaining θi define a minimal
Q-annihilator with coefficients in CΘest(s), that means
depending on the parameters θ1, θ2, θ3 that we just
calculated. In this case, the minimal Q-annihilator is

Π
Θest
min = T

d

ds
− T ′



that generates a family of annihilators of the form

Π =
∑̀

i=0

gi(s)
d

ds
◦Π

Θest
min

Once more, we apply the algebraic procedure and by a
suitable choice of annihilators, we obtain a system of
equations with coefficients depending on θ1, θ2, θ3 that
allows us to determine θ4, θ5 and θ6.

For more details in an encouraging example on the po-
sition reconstruction of a human body in the sagittal plane
using only accelerometer measurements, we refer to [42].

V. SIMULATIONS

The following figures show the estimation of parameters
θ1, θ2 and θ3 concerning the results concerning the normal-
ized mean values and variances. More precisely, the “true”
parameters are denoted by θ1, θ2 and θ3 and θ̂i,k denotes
the estimation of θi obtained at the k-th run. The modified
Prony’s method (PM) is used as a reference. Each point is
obtained by averaging the results over 100 trials.

Dotted line curves represent exact values, while solid
line curves show the estimations by our algebraic method
and dashed line curves, the results by the modified Prony’s
method.

Figure 1 shows the simulation results for the estimation
of the parameters θ1, θ2 and θ3 versus the estimation time.

In figure 2, we plot θ̂i = 1
100

∑
k θ̂i,k and var(θ̂i)

θ2i
versus

the estimation time. More simulation experiments will be
presented in the final version.

VI. CONCLUSION

In this paper, we study the parameter estimation of a multi-
sinusoidal waveform signal from noisy data. The methods
used in this paper are of algebraic flavor. They allow a robust
estimation, and very fast as well, within a fraction of the
signal’s period.

We emphasize an essential point: the estimation obtained
are based on integrals of measured signals. These particular
integrals play the role of time-varying filters.

The efficiency of our algebraic method is illustrated by
computer simulations.
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