Service interruption on Monday 11 July from 12:30 to 13:00: all the sites of the CCSD (HAL, EpiSciences, SciencesConf, AureHAL) will be inaccessible (network hardware connection).
Skip to Main content Skip to Navigation
Journal articles

Coupled nonlinear vehicle control: Flatness-based setting with algebraic estimation techniques

Abstract : A combined nonlinear longitudinal and lateral vehicle control is investigated. Flatness-based nonlinear control and new algebraic estimation techniques for noise removal and numerical differentiation are the main theoretical tools. An accurate automatic path-tracking via vehicle steering angle and driving/braking wheel torque is thus ensured. It combines the control of the lateral and longitudinal motions in order to track straight or curved trajectories and to perform a combined lane-keeping and steering control during critical driving situations such as obstacle avoidance, stop-and-go control, lane-change maneuvers or any other maneuvers. Promising results have been obtained with noisy experimental data, which were acquired by a laboratory vehicle with high dynamic loads and high lateral accelerations.
Complete list of metadata

Cited literature [32 references]  Display  Hide  Download
Contributor : Michel Fliess Connect in order to contact the contributor
Submitted on : Wednesday, October 2, 2013 - 2:20:13 PM
Last modification on : Monday, June 27, 2022 - 3:02:08 AM
Long-term archiving on: : Friday, April 7, 2017 - 5:20:43 AM


Files produced by the author(s)



Lghani Menhour, Brigitte d'Andréa-Novel, Michel Fliess, Hugues Mounier. Coupled nonlinear vehicle control: Flatness-based setting with algebraic estimation techniques. Control Engineering Practice, Elsevier, 2014, 22, pp.135-146. ⟨10.1016/j.conengprac.2013.09.013⟩. ⟨hal-00869053⟩



Record views


Files downloads