G. Sucha, M. E. Fermann, D. J. Harter, and M. Hofer, A new method for rapid temporal scanning of ultrafast lasers, IEEE Journal of Selected Topics in Quantum Electronics, vol.2, issue.3, p.605, 1996.
DOI : 10.1109/2944.571759

M. A. Duguay and J. W. Hansen, OPTICAL SAMPLING OF SUBNANOSECOND LIGHT PULSES, Applied Physics Letters, vol.13, issue.5, p.178, 1968.
DOI : 10.1063/1.1652560

E. Lill, S. Schneider, and F. Dorr, Rapid optical sampling of relaxation-phenomena employing two time-correlated picosecond pulsetrains, Applied Physics, vol.37, issue.4, p.399, 1977.
DOI : 10.1007/BF00883446

P. A. Elzinga, R. J. Kneisler, F. E. Lytle, Y. Jiang, G. B. King et al., Pump/probe method for fast analysis of visible spectral signatures utilizing asynchronous optical sampling, Applied Optics, vol.26, issue.19, p.4303, 1987.
DOI : 10.1364/AO.26.004303

J. D. Kafka, J. W. Pieterse, and M. L. Watts, Two-color subpicosecond optical sampling technique, Optics Letters, vol.17, issue.18, p.1286, 1992.
DOI : 10.1364/OL.17.001286

F. Keilmann, C. Gohle, and R. Holzwarth, Time-domain mid-infrared frequency-comb spectrometer, Optics Letters, vol.29, issue.13, p.1542, 2004.
DOI : 10.1364/OL.29.001542

URL : http://hdl.handle.net/11858/00-001M-0000-000F-BE5C-2

A. Bartels, F. Hudert, C. Janke, T. Dekorsy, and K. Kohler, Femtosecond time-resolved optical pump-probe spectroscopy at kilohertz-scan-rates over nanosecond-time-delays without mechanical delay line, Applied Physics Letters, vol.88, issue.4, p.41117, 2006.
DOI : 10.1063/1.2167812

J. Davila-rodriguez, M. Bagnell, C. Williams, and P. J. Delfyett, Multiheterodyne Detection for Spectral Compression and Downconversion of Arbitrary Periodic Optical Signals, Journal of Lightwave Technology, vol.29, issue.20, p.3091, 2011.
DOI : 10.1109/JLT.2011.2165315

L. Antonucci, X. Solinas, A. Bonvalet, and M. Joffre, Asynchronous optical sampling with arbitrary detuning between laser repetition rates, Optics Express, vol.20, issue.16, p.17928, 2012.
DOI : 10.1364/OE.20.017928.m001

URL : https://hal.archives-ouvertes.fr/hal-00817166

A. Fernandez, T. Fuji, A. Poppe, A. Fürbach, F. Krausz et al., Chirped-pulse oscillators:???a route to high-power femtosecond pulses without external amplification, Optics Letters, vol.29, issue.12, p.1366, 2004.
DOI : 10.1364/OL.29.001366

M. H. Vos, J. Breton, and J. Martin, Electronic Energy Transfer within the Hexamer Cofactor System of Bacterial Reaction Centers, The Journal of Physical Chemistry B, vol.101, issue.47, p.9820, 1997.
DOI : 10.1021/jp971486h

K. Gibasiewicz, M. Pajzderska, M. Ziolek, J. Karolczak, and A. Dobek, Internal Electrostatic Control of the Primary Charge Separation and Recombination in Reaction Centers from Rhodobacter sphaeroides Revealed by Femtosecond Transient Absorption, The Journal of Physical Chemistry B, vol.113, issue.31, p.11023, 2009.
DOI : 10.1021/jp811234q

K. Gibasiewicz, M. Pajzderska, A. Dobek, K. Brettel, and M. R. Jones, Analysis of the kinetics of P+HA-recombination in membrane-embedded wild-type and mutant Rhodobacter sphaeroides reaction centers between 298 and 77 K indicates that the adjacent negatively charged QA ubiquinone modulates the free energy of P+HA-and may influence the rate of the protein dielectric response, J. Phys. Chem. B

. Fig, Time-resolved differential absorbance signal measured in RC. The horizontal axis is linear in the time interval [?20 ps, 40 ps] and logarithmic in the time interval [40 ps, 196 ns] Blue dots correspond to the data averaged in time bins of width 700 fs in the linear part of the plot and of increasing size in the logarithmic part of the plot, hence the improvement in signal-to-noise ratio with increasing time delay. The solid line shows a fit, with an exponential rising time of 3.7 ps and a three-exponential decay with 2, 42%), and 43 ns (5%) time constants, pp.0-53