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Abstract
Pyrazolidinones were prepared in a two-step sequence starting from α-hydrazonocarboxylic acids. After a four-component Ugi

coupling, the resulting hydrazone was engaged in a copper triggered [3 + 2] cycloaddition/aerobic oxidation cascade.
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Introduction
In the last twenty years, the Ugi reaction coupled with its

various post-condensations towards heterocyclic libraries has

established the success of isocyanide-based multicomponent

reactions [1-7]. Chemists in both academia and industry have

taken advantage of the functional group tolerance of the Ugi

coupling to apply to these adducts the various cyclizations

offered by the chemists toolkit. We became involved in the Ugi-

post-condensation field through our initial interest in radical

processes. We found that, compared with classical cycloaddi-

tions, cyclocondensations and organometalic couplings, there

was no existing description of radical processes on such

adducts. Thus, we decided to undertake various studies using

xanthate transfer [8-10], Mn(III) or copper(II) triggered oxida-

tive couplings [11,12].

We recently reported a new synthesis of fused pyrazolidinone

under oxidative conditions from simple hydrazone derivatives

(Scheme 1) [13]. The cascade features a [3 + 2] cycloaddition

coupled with an aerobic oxidation of the resulting pyrazolidine.

A further oxidative coupling may be observed according to the

substitution pattern of the starting acyl chloride. Considering

our interest in IMCR, we envisioned that a similar cascade
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could be performed on a properly functionalized Ugi adduct

allowing us to reach a new 4-component access to pyrazole

derivatives. The present letter summarizes our efforts in this

direction.

Scheme 1: Copper-catalyzed oxidative cyclization of alkenyl hydra-
zone.

Results and Discussion
Among the possible Ugi pathways to introduce an alkene

moiety that is prone to undergo an intramolecular [3 + 2] cyclo-

addition with a hydrazone, we selected the Ugi coupling

between α-hydrazonocarboxylic acids and allylamine as the

most straightforward path. There are several reports on the use

of hydrazones in Ugi reactions [14-23], however, to the best of

our knowledge, there is no report involving α-hydrazonocar-

boxylic acids.

Hydrazone 1a was prepared through condensation of pyruvic

acid with phenylhydrazine. Adding 1a to aqueous formalde-

hyde, allylamine and tert-butylisocyanide in MeOH under

standard Ugi conditions, led to the formation of the amide

2a in 64% isolated yield. The compatibility of the hydrazone

with this coupling is certainly due to the higher electrophilicity

of the intermediate iminium. The latter traps the isocyanide

before any interaction with the hydrazone. The first

attempted oxidative cyclization of 2a was made with one

equivalent of copper acetate in acetic acid as solvent and gave

the expected pyrazolidinone 3a in a 57% isolated yield

(Scheme 2, condition A). Based on our previous study, the yield

was improved to reach 84% with a mixture of acetic acid and

water (80/20). A combination of DMF, acetic acid and water

allowed us to optimize this reaction working with a reduced

20 mol % of copper (84% isolated yield, Scheme 2, condition

D). The reaction was performed at 80 °C, overnight, and under

argon. We believe that under these conditions a slow uptake of

oxygen helps to control the selective oxidation process. Reac-

tions performed under air were faster but led to intractable

mixtures.

Scheme 2: Pyrazolidinone 3a from Ugi adduct 2a.

Analogous hydrazones prepared from pyruvic acid and benzoyl-

formic acid with hydrazine derivatives were tested in this Ugi/

oxidative cyclization sequence under these optimized condi-

tions. Results are reported in Table 1. Surprisingly, the reaction

appears to be only efficient with Ugi adducts prepared with

formaldehyde as the carbonyl component (Table 1, entries 1–5).

With other aldehydes and ketones, even if the Ugi reaction was

performed easily, the following cyclization failed to give the

expected pyrazolidinones and resulted in complex mixture for-

mation. Intermediate Ugi adduct 3g (Table 1, entry 6) only

resulted in a small amount of ring-opened product 4g. The reac-

tion is also limited to N-aryl hydrazones due to the lower effi-

ciency of the Ugi reaction with N-alkyl hydrazones: An attempt

of Ugi coupling with hydrazone 1d, formaldehyde, allylamine

and tert-butylisocyanide failed to give any isolable adduct

(Scheme 3). This may be explained by an enhanced nucleo-

philicity of the N-monoalkyl hydrazone leading to a competi-

tion between the hydrazone and the amine component in the

Ugi steps.

In order to gain further insight into the reactivity of N-alkyl

derivatives, we decided to synthesize an initial hydrazone by a

more conventional route. Benzoylformic acid was converted

into its N-diallyl amide derivative. The latter failed to produce a

hydrazone with methylhydrazine under standard conditions

(EtOH, toluene, rt to reflux, with or without added acetic acid).

However, we were able to trigger the addition under microwave

conditions (in EtOH with 1.5 equiv of AcOH). The expected

hydrazone was still not synthesized, however, the cycloadduct 6
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Table 1: Cycloaddition/oxidation cascade from Ugi hydrazone adducts.

Entry Ugi Product Cycloadduct

1

2b, 79% 3b, 68%

2

2c, 78% 3c, 76%

3

2d, 71% 3d, 90%

4

2e, 94% 3e, 72%

5

2f, 37% 3f, 49%

6

3g, 58%
4g, 12%

7

3h, 52%

–

8

3i, 50%

–
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Scheme 3: Attempted reactions of N-methyl hydrazones.

Scheme 4: Proposed mechanism.

was obtained, probably through a [3 + 2] cycloaddition trig-

gered by acetic acid. The attempted oxidation of 6 with copper

acetate in DMF/AcOH/H2O gave only complex mixtures.

The oxidation sequence may be explained by the mechanism

depicted in Scheme 4. The process starts with a [3 + 2] cyclo-

addition triggered either by copper acetate or acetic acid [24-

29]. The resulting pyrazoline A may be oxidized by copper(II)

salts forming intermediate D after addition of water [30,31].

Two alternative paths may then be observed from D: Ring-

opening leading to azo or hydrazono derivatives such as 4g,

further oxidation without ring-opening giving the fused pyrazo-

lidinone 3.

Conclusion
In conclusion, we have disclosed a new Ugi coupling with

α-hydrazonocarboxylic acids. These Ugi adducts have been

used in an Ugi post-condensation involving a [3 + 2] cyclo-

addition followed by an oxidative cascade. Among potential

Ugi post-condensations, radical and oxidative processes repre-

sent a very promising route towards the formation of complex

scaffolds. We are currently exploring the reactivity of the N-aryl

Ugi–Smiles adducts using similar strategies.

Experimental
Typical procedure for the first step: (E)-N-allyl-N-(2-(tert-

butylamino)-2-oxoethyl)-2-(2-phenylhydrazono)propan-

amide (2a): To a solution of formaldehyde (210 μL, 2.8 mmol)

in methanol (1 M) were added successively allylamine (210 μL,

2.8 mmol), 2-(2-phenylhydrazono)propanoic acid (500 mg,

2.8 mmol), and tert-butylisocyanide (230 mg, 2.8 mmol). The

resulting mixture was stirred at 40 °C until completion of the

reaction (TLC). The solvent was removed under reduced pres-

sure. The product was isolated by flash chromatography on

silica gel (PE/Et2O) with a yield of 64%. 1H NMR (CDCl3,

400 MHz) δ 7.52 (br s, 1H), 7.29 (dd, J = 7.8, 7.3 Hz, 2H), 7.09

(d, J = 7.8 Hz, 2H), 6.95 (t, J = 7.3 Hz, 1H), 6.16 (br s, 1H),

5.96–5.88 (m, 1H), 5.28–5.23 (m, 2H), 4.34–4.00 (m, 4H), 2.14

(s, 3H), 1.35 (s, 9H); 13C NMR (CDCl3, 100.6 MHz) δ 168.7,

168.6, 143.9, 136.9, 132.8, 129.8, 122.0, 119.0, 114.0, 53.9,

51.7, 51.3, 29.1, 12.6.

Typical procedure for the oxidative cyclization: N-tert-

butyl-2-(6a-methyl-3,6-dioxo-2-phenylhexahydropyrrolo-

[3,4-c]pyrazol-5(1H)-yl)acetamide (3a): To a solution of

hydrazone 2a (100 mg, 0.3 mmol) in a 10/70/20 DMF/

CH3COOH/H2O mixture (0.06 M) was added Cu(OAc)2

(20 mol %). The resulting mixture was heated at 80 °C under

argon. The pH was adjusted to 6 with an aqueous sodium

hydrogencarbonate solution, and the aqueous phase was

extracted with AcOEt. Then the organic layers were washed ten

times with water, dried over anhydrous MgSO4, filtered and

concentrated in vacuo. The product was isolated by flash chro-

matography on silica gel (PE/Et2O with 1% of TEA) with a

yield of 84%. 1H NMR (CDCl3, 400 MHz) δ 7.83 (d, J =

8.3 Hz, 2H), 7.37 (dd, J = 8.3, 7.3 Hz, 2H), 7.17 (t, J = 7.3 Hz,

1H), 5.52 (br s, 1H, NH), 4.89 (br s, 1H), 3.93 (d, J = 16.2 Hz,
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1H), 3.85 (dd, J = 10.3, 6.3 Hz, 1H), 3.80 (d, J = 16.2 Hz, 1H),

3.76 (d, J = 10.3 Hz, 1H), 3.22 (d, J = 6.3 Hz, 1H), 1.63 (s,

3H), 1.25 (s, 9H); 13C NMR (CDCl3, 100.6 MHz) δ 174.6,

169.8, 166.3, 138.1, 129.2, 125.8, 119.5, 63.7, 52.0, 48.0, 47.6,

29.0, 18.9.

Supporting Information

Supporting Information File 1
Experimental procedures with characterization data for all

new compounds.
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