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The mobility matrix of a spherical particle moving in a spherical cavity, filled with a viscous

incompressible fluid, and with no-slip boundary condition at the wall of the cavity, is evaluated from

the Oseen tensor for the cavity by the method used by Lorentz for a particle near a planar wall.

For the case that the particle is a rigid sphere with no-slip boundary condition the comparison with

exact calculations shows that the approximation is quite accurate, provided the radius of the particle

is small relative to that of the cavity, and provided the particle is not too close to the wall. The

translational mobility is used to derive the diffusion tensor of a Brownian particle via an Einstein

relation. The approximate result for the diffusion tensor is employed to estimate the rate of escape of

a Brownian particle from a cavity with semipermeable wall. © 2012 American Institute of Physics.

[doi:10.1063/1.3681368]

I. INTRODUCTION

Fluid flow on a small length scale is usually well de-

scribed by low Reynolds number hydrodynamics. In the the-

oretical description, inertia is neglected and the fluid is as-

sumed to be incompressible. The flow is dominated by shear

viscosity. Flow velocity and pressure satisfy the steady state

Stokes equations.1, 2

A suspended particle moving in the fluid under the in-

fluence of an applied force causes a long range flow pattern,

decaying at large distance in unbounded fluid only inversely

with distance, as described by the well-known Oseen tensor.

Hence, one expects that confinement in a vessel has a strong

influence on the flow pattern and the mobility of the particle.

The microrheology of a particle moving in a cavity is of great

interest in technology, chemical physics, and biology.

In the following we consider a particle moving in a spher-

ical cell, with fluid flow velocity satisfying the no-slip condi-

tion at the inner cell boundary. If the particle is a rigid sphere

with no-slip boundary condition at its own surface, then the

Stokes mobility functions for translation and rotation of the

particle and the corresponding fluid flow pattern are com-

pletely known. The results are simple only when the particle is

located at the center of the cavity.1 The large amount of work

for arbitrary distance from the wall has been summarized and

corrected by Jones,3 who also devised an efficient numerical

scheme of computation. However, the exact solution of the

problem is complicated and cumbersome. For practical pur-

poses, it will be useful to have simple approximations to the

mobility functions.

We derive an approximation to the mobility functions

similar to that derived by Lorentz for a particle near a plane

wall.4 Lorentz started by deriving an expression for the Green

a)Electronic mail: ufelder@physik.rwth-aachen.de.
b)Electronic mail: sellier@ladhyx.polytechnique.fr.

function of the Stokes equations for a fluid bounded by a

plane wall with no-slip boundary condition. The expression

was later analyzed by Blake,5 and cast in a different form by

Kim and Karrila.6 One can use the Green function to derive a

first correction to the Stokes value for the mobility, by assum-

ing the particle to be small in comparison with the distance to

the wall. Lorentz’ results for the translational mobility tensor,

and similar ones derived for various geometries, have been

summarized by Happel and Brenner.7

We use the Lorentz scheme for a spherical cell, employ-

ing the Green function derived by Oseen for a spherical cavity

with no-slip boundary condition.8, 9 A comparison of the mo-

bility functions with the exact results3 shows that for a parti-

cle with radius one-tenth of the cell radius the approximation

leads to surprisingly accurate results, except near the bound-

ary. For the case of translational motion due to an applied

force along a radius vector, we derive an improved approx-

imation by taking account of a lubrication theory result for

positions near the cell boundary.

The Lorentz scheme can also be used to derive an ap-

proximation to the mobility functions of a spherical particle of

different structure, for example, a rigid particle with a mixed

slip-stick boundary condition, a porous particle, or a droplet.

This allows application to situations where no exact results

are available. We expect that the approximate mobility func-

tions are reasonably accurate.

We apply the derived translational mobility tensor to cal-

culate the rate of escape from the cell for a diffusing particle

with no-slip boundary condition at its surface. The position

dependence of the diffusion tensor is found from the mobility

tensor by means of an Einstein relation. We consider a spher-

ically symmetric steady-state situation and show that confine-

ment leads to a significantly reduced rate of escape, in com-

parison with a description with constant diffusion coefficient.

The steady-state distribution is also strongly affected by the

radial dependence of the translational mobility function.

0021-9606/2012/136(5)/054703/6/$30.00 © 2012 American Institute of Physics136, 054703-1
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II. MOBILITY MATRIX

We consider a rigid spherical particle of radius a im-

mersed in a viscous incompressible fluid contained in a mo-

tionless spherical cell of radius R. We use a Cartesian system

of coordinates with the origin at the center of the cell. The par-

ticle is subjected to a force F and/or a torque T . We assume

that the resulting fluid flow satisfies the no-slip boundary con-

dition at the inner surface S of the cell. For the time being, we

assume also a no-slip boundary condition at the surface of the

particle. In Sec. III, we shall extend the theory to a spherically

symmetric particle with a more general boundary condition,

to a porous particle, and to a droplet.

With neglect of inertia the flow velocity v and the pres-

sure p satisfy the Stokes equations

η∇2v − ∇p = 0, ∇ · v = 0, (2.1)

where η is the shear viscosity. As a consequence of the force

F and the torque T , the particle translates with velocity U and

rotates with angular velocity �, given by the linear relation,
(

U

�

)

=

(

μt t μtr

μrt μrr

) (

F

T

)

, (2.2)

with a symmetric 6 × 6 mobility matrix μ, which depends on

the position vector r0 of the particle center. By spherical sym-

metry we can decompose the mobility tensors μab in terms of

scalar functions as

μt t
ργ = αt t (r0)eρeγ + β t t (r0)(δργ − eρeγ ),

μtr
ργ = β tr (r0)εργ σ eσ , μrt

ργ = βrt (r0)εργ σ eσ , (2.3)

μrr
ργ = αrr (r0)eρeγ + βrr (r0)(δργ − eρeγ ),

with radial unit vector e = r0/r0 and Levi-Civita tensor ǫργ σ .

By symmetry βrt = −β tr. It is convenient to introduce dimen-

sionless functions as

α̃t t = 6πηaαt t , β̃ t t = 6πηaβ t t ,

β̃ tr = 8πηa2β tr , β̃rt = 8πηa2βrt , (2.4)

α̃rr = 8πηa3αt t , β̃rr = 8πηa3β t t .

The so-called scalar mobility functions are known in explicit

form from the solution of the flow problem in bipolar coor-

dinates, see Ref. 3 and references cited there. However, the

exact solution is quite complex. In this work, we aim rather at

obtaining a simple approximation valid for a ≪ R.

If only the force F is applied, then for a ≪ R and

|r − r0| ≫ a, the solution of the flow Eq. (2.1), with v = 0

at the inner surface of the cell, takes the form

v(r, r0) = T(r, r0) · F, p(r, r0) = Q(r, r0) · F,

(2.5)

with second-rank tensor field T(r, r0) and vector field

Q(r, r0) independent of F. These fields constitute the Green

function solution of Eq. (2.1) for the geometry under con-

sideration. In infinite space the Green function which tends

to zero at infinity depends only on the vector distance d

= r − r0 and takes the well-known Oseen form1, 2

T0(r, r0) =
1

8πη

I + d̂ d̂

d
, Q0(r, r0) =

1

4π

d̂

d2
, (2.6)

where I is the unit tensor and d̂ = d/d. We write the actual

Green function as

T(r, r0) = T0(r, r0) + TR(r, r0),

(2.7)

Q(r, r0) = Q0(r, r0) + QR(r, r0),

where the reflection terms TR(r, r0) and QR(r, r0) account

for the reflected flow at the surface S. Thus, the tensor field

T(r, r0) satisfies the no-slip boundary condition

T(r, r0)
∣

∣

r∈ S
= 0, r0 ∈ V, (2.8)

for any point r0 inside the cell volume V. The first terms T0

and Q0 take care of the singular part of the Green function.

The reflection terms TR and QR are analytic in the compo-

nents of r and r0 for r ∈ V and r0 ∈ V . The explicit expres-

sions for the tensor TR(r, r0) and the vector QR(r, r0) have

been derived by Oseen,8 and were later cast into an alternative

form.9

We consider first the mobility tensor μt t (r0). The approx-

imate value is

μt t (r0) ≈
1

6πηa
I + F(r0), (2.9)

where F is the reaction field tensor defined by10

F(r0) = TR(r0, r0). (2.10)

This takes account of the velocity of the lowest order reflected

flow at the particle center. The correction term can be com-

pared with that derived by Lorentz4 for a plane wall. The con-

tribution which would follow from Faxén’s law1 is omitted,

since it would be proportional to a2/R2 and of the same order

as that found from the reflection of the dipolar contribution to

the Stokes flow of the particle. The Oseen tensor TR(r0, r0)

satisfies the reciprocity relation

TR(r, r0) = T̃R(r0, r), (2.11)

where the tilde indicates the transpose, so that the approxi-

mation (2.9) is compatible with the symmetry of the mobility

tensor μt t (r0).

In the same approximation the value of the tensor μrt (r0)

is found as

μrt (r0) ≈
1

2
((∇×)(I)TR(r, r0))|r=r0

, (2.12)

where we have used a shorthand notation implying that the

first factor (∇×) acts on the argument r and the first index of

the tensor TR , whereas the second factor (I) leaves the second

index of the tensor TR unchanged. The approximation takes

account of the curl of the lowest order reflected flow at the

particle center. Similarly, the tensor μtr (r0) is found as

μtr (r0) ≈
1

2
((I)(∇0×)TR(r, r0))|r=r0

, (2.13)

where the second factor (∇0×) acts on the argument r0 and

the second index of the tensor TR . The curl at the source point

takes account of the action of a couplet.11 It follows again

by use of the reciprocity relation (2.11) that the expressions

(2.12) and (2.13) are compatible with the symmetry of the mo-

bility matrix.
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Finally, we consider the tensor μrr (r0). In the same ap-

proximation as above this is found as

μrr (r0) ≈
1

8πηa3
I +

1

4
((∇×)(∇0×)TR(r, r0))|r=r0

.

(2.14)

It follows from the reciprocity relation (2.11) that the approx-

imate tensor is symmetric.

III. EXPLICIT EXPRESSIONS

In order to derive explicit expressions for the approxi-

mate mobility tensors, we use the explicit form of the reflec-

tion tensor TR(r, r0) for the case of a spherical cavity with

no-slip boundary condition, derived by Oseen.8, 9 His result

reads

TR(r, r0)

=
−1

8πη

[

R

r0d
I +

R3

r3
0 d 3

(r − r0)(r − r0)

+
r2

0 − R2

r0

(

1

R3d
r0 r0 −

R

r2
0 d 3

(

r0(r − r0)

+ (r − r0)r0

)

−
2

R3
r0 r0 r0 · ∇

1

d

)

+ (r2 − R2)∇φ

]

,

(3.1)

where the image point r0 is defined by

r0 =
R2

r2
0

r0, (3.2)

and d is the distance from the field point r to the image point

d = |r − r0|. (3.3)

Furthermore, with a slight simplification of Oseen’s expres-

sion, the vector function φ is given by

φ(r, r0) =
r2

0 − R2

2r3
0

(

3

Rr0

r0 +
R

d
3

(r − r0) +
2

R
r0 r0 · ∇

1

d

+
3r

Rd

r − rm

r2r0
2 − (r · r0)2

(R2r − r · r0 r0)

)

, (3.4)

with the abbreviation

rm = (R2 − r0d)
r · r0

rr2
0

. (3.5)

The corresponding vector function QR(r, r0) is given by

QR(r, r0)

=
1

4π

[(

2

d3
−

2R3

r3
0 d 3

)

(r − r0) − 2
(

φ + 2r · ∇φ
)

]

. (3.6)

From the reflection tensor TR , we find for the scalar func-

tions defined in Sec. II

α̃t t
1 (r) = 1 −

9a

4R

R2

R2 − r2
,

β̃ t t
1 (r) = 1 −

9a

16R3

4R4 − 3R2r2 + r4

R2 − r2
,

0 0.2 0.4 0.6 0.8

r/R

0

0.2

0.4

0.6

0.8

Α̃
tt

FIG. 1. Plot of α̃t t (r) as a function of r/R for a = 0.1 R, exact (solid) and

approximate (long dashes). The exact function vanishes at r = R − a. We

also plot the approximation α̃t t
2 (r), given by Eq. (4.12) (short dashes).

β̃ tr
1 (r) =

3a2r

4R3

2R2 − r2

R2 − r2
, (3.7)

α̃rr
1 (r) = 1 − a3 R3

(R2 − r2)3
,

β̃rr
1 (r) = 1 −

a3

4R3

4R6 + 12R4r2 − 9R2r4 + 3r6

(R2 − r2)3
,

where the subscript 1 is a reminder that this is only a first ap-

proximation. The functions are singular at r = R, but they are

relevant only for r < R − a, since R − a is the distance of clos-

est approach. For r = 0, the expressions for α̃t t
1 (r) and β̃ t t

1 (r)

reduce to 1 − (9a)/(4R) in agreement with Eq. (4-22.11) of

Happel and Brenner1 to first order in λ = a/R. The exact value

is given by a ratio of two polynomials in λ of degree 5 and 4,

respectively. For r = 0 the expressions for α̃rr
1 (r) and β̃rr

1 (r)

reduce to 1 − λ3 in agreement with Eq. (7-8.20) of Happel

and Brenner.1 This result is exact. The exact functions tend to

zero as r → R − a, except α̃rr . The approximate functions in

Eq. (3.7) do not vanish at r = R − a.

The function β̃ tr
1 (r) vanishes at r = 0 and increases

monotonically as r tends to R − a. A particle subject to a con-

stant torque perpendicular to the radial direction will move

on a circle in the plane of the torque and the radial unit vec-

tor. The translational velocity increases with r according to

the approximate calculation. The calculation of Jones3 shows

that the exact function β̃ tr (r) reaches a maximum at a value

rmax, which depends on the ratio a/R. If a < R/4 the function

reverses sign in the interval rmax < r < R − a, corresponding

to a rolling motion near the spherical surface, and it tends to

zero as r → R − a. If a > R/4 there is no sign reversal. In

Figs. 1–5, we show the approximate mobility functions as

functions of r/R for a/R = 0.1, and compare with the exact

ones. The agreement is quite good, except for r close to R − a.

It is clear from Eqs. (2.9)–(2.14) that the results derived

above also yield approximate expressions for the scalar mo-

bility functions of other types of spherical particle. We need

to only replace Eq. (2.9) by

μt t (r0) ≈ μt I + F(r0), (3.8)
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0 0.2 0.4 0.6 0.8

r/R

0.8

0.85

0.9

0.95

1

1.05

Α̃
rr

FIG. 2. Plot of α̃rr (r) as a function of r/R for a = 0.1 R, exact (solid) and

approximate (dashed). The exact function is finite at r = R − a.

where μt is the translational mobility of the particle in infinite

space. Similarly, Eq. (2.14) is replaced by

μrr (r0) ≈ μr I +
1

4

(

(∇×)(∇0×)TR(r, r0)
)
∣

∣

r=r0
, (3.9)

where μr is the rotational mobility of the particle in infinite

space. The explicit expressions are

μt =
1

4πηA10

, μr =
1

8πηA11

, (3.10)

where A10 and A11 are so-called hydrodynamic scattering co-

efficients. Explicit expressions have been derived for various

examples of spherical particles, and have been summarized

elsewhere.12–14 The translational mobility tensor for a spheri-

cal particle can be expressed as

μt t (r0) = μt I −
1

6πηa
[(1 − α̃t t (r0))r̂0 r̂0

+ (1 − β̃ t t (r0))(I − r̂0 r̂0)], (3.11)

where in our approximation the functions α̃t t (r0) and β̃ t t (r0)

are replaced by α̃t t
1 (r0) and β̃ t t

1 (r0), as given by Eq. (3.7). Sim-

ilarly, the rotational mobility tensor can be expressed as

μrr (r0) = μr I −
1

8πηa3
[(1 − α̃rr (r0))r̂0 r̂0

+ (1 − β̃rr (r0))(I − r̂0 r̂0)], (3.12)

where in our approximation the functions α̃rr (r0) and β̃rr (r0)

are replaced by α̃rr
1 (r0) and β̃rr

1 (r0), as given by Eq. (3.7).

0 0.2 0.4 0.6 0.8

r/R

0.4

0.5

0.6

0.7

0.8

Β̃
tt

FIG. 3. Plot of β̃ t t (r) as a function of r/R for a = 0.1 R, exact (solid) and

approximate (dashed). The exact function vanishes at r = R − a.

0 0.2 0.4 0.6 0.8

r/R

0.02

0.01

0

0.01

0.02

0.03

0.04

0.05

Β
tr

FIG. 4. Plot of β̃ tr (r) as a function of r/R for a = 0.1 R, exact (solid) and

approximate (dashed). The exact function vanishes at r = R − a.

Note that in our approximation the second term in

Eqs. (3.11) and (3.12) is independent of the particle radius a.

The coupling tensors μtr and μrt are given by

Eqs. (2.3) and (2.4) with the scalar mobility function β̃ tr (r0)

replaced in our approximation by β̃ tr
1 (r0), as given by

Eq. (3.7). Note that in our approximation the mobility ten-

sors μtr and μrt are independent of the particle radius a and

of the particle structure. A constant torque applied to the par-

ticle will cause circular orbital motion parallel to the wall of

the cavity, with a period which depends only on the distance

from the center. Near the wall the approximate mobility func-

tion differs rather strongly from the exact one, as shown in

Fig. 4.

IV. ESCAPE FROM THE CELL

As an application we consider the situation where the cell

wall is a semipermeable membrane through which the particle

can escape. As a model we assume that the particle is created

at the origin at a certain rate and then diffuses in the cell by

thermal motion, as governed by the diffusion equation

∂n

∂t
= ∇ · D(r) · ∇n, 0 < r < R, (4.1)

with number density n and diffusion tensor D given by the

Einstein relation

D(r) = kBT μt t (r), (4.2)

0 0.2 0.4 0.6 0.8

r/R

0.5

0.6

0.7

0.8

0.9

1

1.1

Β
rr

ò

FIG. 5. Plot of β̃rr (r) as a function of r/R for a = 0.1 R, exact (solid) and

approximate (dashed). The exact function vanishes at r = R − a.
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where kB is Boltzmann’s constant and T is absolute temper-

ature. We assume that the particle is not subject to potential

interactions inside the cell.

The particle can escape through pores in the cell mem-

brane. It is assumed that these are distributed approximately

uniformly on the surface of the cell, so that the latter may be

taken to be isotropic. The escape is modeled by the boundary

condition

ξ
dn

dr
|Rc

+ n|Rc
= 0, (4.3)

where ξ is an absorption length and Rc is the escape radius.

The latter must be taken to be slightly less than the radius R
− a if the particle is modeled as a rigid sphere of radius a with

no-slip boundary condition, for then the radial component of

the translational mobility tensor behaves as3

μt t
rr (r) ≈

1

6πηa

(

1 −
a

R

)2(
R − r

a
− 1

)

, (4.4)

near the boundary. We must have R − Rc > a, otherwise the

particle will never escape. The absorption length ξ and the

escape radius Rc characterize the properties of the cell mem-

brane.

We consider a steady-state process in which n(r) satisfies

∇ · D(r) · ∇n = −Qδ(r), (4.5)

where Q is the production rate. By symmetry the solution of

Eq. (4.5) is radially symmetric, and can be integrated once to

yield

Drr (r)r2 dn

dr
= −J, 0 < r < Rc, (4.6)

where the constant J is the flux.

For constant diffusion coefficient D0 = kBT/6πηa the so-

lution would be

n0(r) =
Q

4πD0

(

1

r
−

1

Rc

+
ξ

R2
c

)

, (4.7)

corresponding to current density

j0(r) =
Q

4πr2
, (4.8)

and flux J = Q/4π . The number of particles passing per sec-

ond through any spherical surface centered about the origin is

Q. The number of particles in the sphere of radius Rc equals

N0 =

∫

r<Rc

n0 d r =
Q

6D0

Rc(Rc + 2ξ ). (4.9)

Hence, the escape rate is

γ0 =
Q

N0

=
6D0

Rc(Rc + 2ξ )
. (4.10)

The approximate scalar function α̃t t
1 (r), given by

Eq. (3.7), has the form

α̃t t
1 (r) =

b2 − r2

R2 − r2
, b =

√

R2 −
9

4
aR. (4.11)

This vanishes at r = b, rather than at r = R − a, as given by

Eq. (4.4). We improve the approximate mobility as a function

of r by slightly shifting the pole in Eq. (4.11). We require that

the improved approximation α̃t t
2 (r) vanishes at r = R − a,

has the value b2/R2 at r = 0, and the same coefficient of r2

as α̃t t
1 (r) in an expansion in powers of r2. These requirements

yield

α̃t t
2 (r) = 4

b4

R

(R − a)2 − r2

4b2R(R − a)2 − Cr2
, (4.12)

with coefficient

C = 4R3 − 18aR2 + 18a2R − 9a3. (4.13)

In Fig. 1, we also plot the function α̃t t
2 (r) for a = 0.1 R. This

shows that the approximate values are quite accurate. A sim-

ilar approximation does not work for the other hydrodynamic

functions in Eq. (3.7).

With use of the approximate diffusion coefficient

Drr (r) = D0α̃
t t
2 (r), (4.14)

the solution of Eq. (4.6) with J = Q/4π is

n(r) =
QR2

4πD0b2

[

1

r
−

A

Rc

+B log
(R − a − r)(R − a + Rc)

(R − a + r)(R − a − Rc)

]

, (4.15)

with coefficient B given by

B =
9a(R − a)

8b2R
. (4.16)

The boundary condition (4.3) yields for the coefficient A

A = 1 −
ξ

Rc

− 2ξ
(R − a)Rc

(R − a)2 − R2
c

B. (4.17)

From the integral

N =

∫

r<Rc

n d r, (4.18)

one finds the escape rate

γ =
Q

N
= D0

b2

R2

[

(1

2
−

1

3
A

)

R2
c

+
1

3
B

(

(R − a)3 log
(R − a)2

(R − a)2 − R2
c

− (R − a)R2
c

)]−1

.

(4.19)

In Fig. 6, we plot the reduced radial density r2ñ(r)

= 4πD0r
2n(r)/Q as a function of r/R for a = 0.1 R,

ξ = 0, and Rc = 0.89 R, and compare with r2ñ0(r)

= 4πD0r
2n0(r)/Q. We define the reduced rate as

γ̃ = R2
cγ /(6D0). (4.20)

For the values corresponding to Fig. 6, the reduced rate is γ̃

= 0.461 compared with γ̃0 = 1. In Fig. 7, we plot the reduced

radial density r2ñ(r) = 4πD0r
2n(r)/Q as a function of r/R

for a = 0.1 R, ξ = 2a, and Rc = 0.89 R, and compare with

r2ñ0(r) = 4πD0r
2n0(r)/Q. For these values the reduced rate

is γ̃ = 0.114 compared with γ̃0 = 0.690. In both cases the

additional hydrodynamic friction has a strong effect on the

distribution and on the rate of escape.
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FIG. 6. Plot of the reduced radial density r2ñ(r) = 4πD0r
2n(r)/Q as a

function of r/R for a = 0.1 R, ξ = 0, and Rc = 0.89 R (solid curve), com-

pared with r2ñ0(r) = 4πD0r
2n0(r)/Q (dashed curve).

V. DISCUSSION

We have found good agreement between approximate

and exact results for the mobility functions of a spherical

particle in a spherical cavity for the case where the particle

is a rigid sphere with no-slip boundary condition.3 This en-

courages one to use the approximation also for other types of

spherical particle confined to a spherical cavity, as discussed

at the end of Sec. III. The simplicity of the approximate mo-

bility functions allows easy application, as we have shown in

0 0.2 0.4 0.6 0.8

r R

0

0.5

1

1.5

2

2.5

3

3.5

r2
ñ

r

FIG. 7. Plot of the reduced radial density r2ñ(r) = 4πD0r
2n(r)/Q as a

function of r/R for a = 0.1 R, ξ = 0.2 a, and Rc = 0.89 R (solid curve), com-

pared with r2ñ0(r) = 4πD0r
2n0(r)/Q (dashed curve).

Sec. IV in the calculation of the rate of escape of a Brownian

particle from the cell.

Restricted diffusion is a common feature of many physic-

ochemical, biological, and industrial processes. Our calcula-

tion shows that the hydrodynamic interaction with the wall

of the cavity has a strong influence on steady-state diffusion.

It will be of interest to study also the effect on the dynamics

of Brownian motion of the confined particle. This requires a

discussion of the time-dependent diffusion process in the con-

fined space.15

The approximate translational-rotational mobility tensor

is particularly simple. As discussed at the end of Sec. III, it is

independent of the structure of the spherical particle, and of

its radius. In the approximation, a constant torque applied to

the particle will cause circular orbital motion parallel to the

wall of the cavity, with a period which depends only on the

distance from the center. For the case where the particle is a

sphere with no-slip boundary condition the exact motion has

been studied by Jones.3 It follows from the exact calculation

that for fixed torque the particle reverses direction if the or-

bit is close to the wall. This curious effect is missed in the

approximate calculation.
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