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This paper investigates the vortex-induced vibrations (VIV) of a spring-mounted
circular cylinder. We compute analytically the leading-order equations describing the
nonlinear interaction of the fluid and structure modes by carrying out an asymptotic
analysis of the Navier–Stokes equations close to the threshold of instability of the
fluid-only system. We show that vortex-shedding can occur at subcritical Reynolds
numbers as a result of the coupled system being linearly unstable to the structure
mode. We also show that resonance occurs when the frequency of the nonlinear limit
cycle matches the natural frequency of the cylinder, the displacement being then in
phase with the flow-induced lift fluctuations. Using an extension of this model meant
to encompass the effect of the low-order added-mass and damping forces induced by
the displaced fluid, we show that the amount of energy that can be extracted from the
flow can be optimized by an appropriate choice of the structural parameters. Finally,
we suggest a possible connection between the present ‘exact’ model and the empirical
wake oscillator model used to study VIV at high Reynolds numbers. We show that
for the low Reynolds numbers considered here, the effect of the structure on the fluid
can be represented by a first coupling term proportional to the cylinder acceleration
in the fluid equation, and by a second term of lower magnitude, which can stem
either from an integral term or from a term proportional to the third derivative of
the cylinder position.

Key words: flow–structure interactions, instability, nonlinear dynamical systems

1. Introduction

Numerous studies have been devoted to the problem of the flow past a fixed cylinder.
It is now well established that the flow undergoes a global instability at a critical
Reynolds number, Re∗ ∼ 47, responsible for the onset of the time-periodic vortex-
shedding phenomenon (Mathis, Provansal & Boyer 1984; Provansal, Mathis & Boyer
1987). This causes the cylinder to experience unsteady lift and drag forces. If mounted
on elastic supports, the cylinder should then undergo vortex-induced vibrations (VIV);
see Williamson & Govardhan (2004), Sarpkaya (2004) and Gabbai & Benaroya (2005)
for a review of the recent progress achieved in this field.

Most studies about VIV of bluff bodies have been carried out at high Reynolds
numbers, where one usually has to resort to some empirical modelling of the wake
dynamics (Sarpkaya 1978; Blevins 1990). A restricted number of studies have been
devoted to the onset of VIV near the threshold of instability. Cossu & Morino
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(2000) have carried out a linear global stability analysis of the flow past a spring-
mounted cylinder and have identified two modes of interest: the nearly structural
mode, renamed here structure mode, and the von Kármán mode, renamed here wake
mode. These modes correspond to eigenvalues which, in the limit of very large solid-
to-fluid density ratios (i.e. very weak fluid–structure interaction), tend respectively
to the natural eigenvalue of the cylinder-only system and to the leading eigenvalue
that can be computed from the flow past a fixed cylinder. These authors have also
shown that vortex shedding can persist at subcritical conditions for low-density ratios
(i.e. strong fluid–structure interaction), and have provided evidence connecting this
phenomenon to an instability of the structure mode. Such a destabilization has since
then been confirmed by the experimental observations of Buffoni (2003) and the
numerical simulations of Mittal & Singh (2005).

The first objective of the present work is to investigate VIV close to the critical
Reynolds number Re∗ by combining asymptotic analyses and adjoint-based receptivity
methods. The main advantage of this approach, which is valid rigorously for small
departures from the instability threshold and small cylinder displacements, lies in the
fact that it defines a dominant balance justifying to treat the coupling between the
flow and the cylinder motions implicitly. This coupling results from a compatibility
condition applied to an expansion where the cylinder is fixed at leading-order, so
that no specific treatment is required in the numerics (for instance mesh deformation
schemes, as discussed by Tezduyar, Behr & Liou 1992a and Tezduyar et al. 1992b).
Such an approach also provides additional insight into the flow physics by giving
access to the second-order solution, which is essential when discussing some realistic
features of the coupled system, for instance its ability to sustain complex hysteretic
behaviours in the lock-in regime (Williamson & Govardhan 2004). The second
objective is to establish a connection between the present bifurcation theory based on
the Navier–Stokes equations and the wake oscillator model widely used for the study
of VIV at high Reynolds numbers (see Parkinson 1989; Blevins 1990, for a review).

This paper is organized as follows. The configuration under study is presented in
§ 2. The flow and structure models are discussed in § 3, where we detail the asymptotic
expansion used to derive the coupled model. The linear and nonlinear dynamics are
investigated in §§ 4–5, where the effect of the structural parameters is discussed. In § 6,
we propose an extension of the model meant for low-density ratios and mass-damping
parameters, where one must take into account added-mass and added damping forces
induced by the mass of displaced fluid. In § 7, we use the extended model to assess the
influence of the structural damping on the amount of energy that can be extracted
from the flow and dissipated by the structure, which is of practical interest when VIV
are thought to be used for energy production. Section 8 is ultimately devoted to the
connection between the present model and the wake oscillator model.

2. Configuration

We investigate the dynamics of a rigid circular cylinder of surface Υw , immersed in a
uniform flow, as illustrated in figure 1. The fluid is homogeneous and incompressible,
of density ρ and kinematic viscosity ν. In the following, all quantities are made
non-dimensional using the cylinder diameter 2R and the free-stream velocity u∞.
The Cartesian coordinate system (0, ex, ey), with ex and ey being the streamwise and
transverse directions, has its origin taken at the centre of the cylinder. The fluid
motion is described by the velocity field u = (u, v)T (u and v being the streamwise and
transverse components) and the pressure field p. The state vector q = (u, p)T obeys
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Figure 1. Schematic diagram of the spring-mounted, damped cylinder configuration.

the incompressible Navier–Stokes equations

∇ · u = 0,
∂u

∂t
+ ∇u · u + ∇p − 1

Re
∇

2u = 0, (2.1)

written formally as

N
∂q

∂t
+ M(q, Re) = 0, (2.2)

with Re being the Reynolds number and N and M being differential operators.
The cylinder is mounted on springs of identical stiffness in the streamwise and

transverse directions, its displacement being a simple translation with no rotation. It
is subjected to external damping and to the action of the fluid, so that its motion is
governed by the linear oscillator equations

d2xs

dt2
+ 2ωsγ

dxs

dt
+ ω2

s xs =
2

πm
cx,

d2ys

dt2
+ 2ωsγ

dys

dt
+ ω2

s ys =
2

πm
cy, (2.3)

where xs and ys stand for the non-dimensional streamwise and transverse
displacements of the cylinder centre. In (2.3), ωs is the dimensionless natural frequency
in vacuum, γ is the structural damping coefficient, and m is the mass ratio defined as
the ratio of the solid to the fluid density, i.e. m = ρs/ρ. Likewise, cx is the instantaneous
drag coefficient of the cylinder per unit length, defined as

cx = 2

∫

Υw

(

−pn +
1

Re

(
∇u + ∇uT

)
· n

)

· exdl, (2.4)

with n being the outward-pointing vector normal to the cylinder and dl being
the length element along Υw . Finally, cy is the instantaneous lift coefficient defined
similarly by substituting ex by ey in (2.4).

On the cylinder wall, we enforce that the fluid velocity differs from that of the
cylinder only when a blowing and suction control velocity uc is applied:

u(x + xs, y + ys) = uc(x + xs, y + ys) +

(
dxs

dt
,
dys

dt

)T

, ∀(x, y) ∈ Υw, (2.5)

all quantities being evaluated at the boundary of the moving cylinder.

3. Asymptotic expansion

The genesis of vortex shedding past a fixed circular cylinder has been widely studied
in the framework of the global stability theory, in which one characterizes the stability
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of the steady solution to small-amplitude perturbations q1, expanded as

q1(x, y, t) = q̂1(x, y)e(σ+iω)t + c.c. (3.1)

In (3.1), σ and ω are the growth rate and pulsation of the global eigenmode q̂1, and
c.c. denotes the complex conjugate of the preceding expression. For Reynolds numbers
Re � Re∗, the steady flow becomes unstable to a global mode of marginal pulsation
ω∗ ∼ 0.74, corresponding to a Strouhal number St∗ = ω∗/2π ∼ 0.118. Its eigenvector
q̂1A is a solution of the generalized eigenvalue problem

(iω∗ N + L∗)q̂1A = 0, (3.2)

L∗ being the Navier–Stokes operator linearized around q0 at the critical Reynolds
number (Jackson 1987; Barkley 2006; Giannetti & Luchini 2007; Sipp & Lebedev
2007).

We investigate here the coupled flow-structure system by means of a standard
multiple time-scale analysis. We introduce the fast time scale t and the slow time
scale T = ǫ2t and assume that Re departs from criticality at order ǫ2. We thus define
the order-one parameter δ, such that

1

Re
=

1

Re∗
− ǫ2δ, (3.3)

and expand the flow field q as

q = q0 + ǫq1 + ǫ2q2 + ǫ3q3 + · · · . (3.4)

Since the steady solution is symmetric with respect to the y =0 axis, i.e. it satisfies
(u, v, p) −→ (u, −v, p) under the y → −y reflection, it exerts a pure drag force on the
cylinder, whose centre reaches an equilibrium position defined by

ω2
s x

0
s =

2

πm
c0
x, y0

s = 0. (3.5)

It can be anticipated from the dominant balance that a small-amplitude cylinder
displacement at order ǫ3 around this equilibrium position is sufficient to force the
global mode at order ǫ when forcing is near-resonance. The displacement is therefore
written as

xs − x0
s = ǫ3X(T )eiω∗t + c.c., ys − y0

s = ǫ3Y (T )eiω∗t + c.c., (3.6)

where the two complex amplitudes X and Y are at this stage unknown functions of
the slow time T . This third-order scaling allows to decouple the flow and cylinder
dynamics at leading-order ǫ. It brings the forcing of the flow motion by the cylinder
displacement at the same order as the linear growth owing to the departure from
threshold and the resonant nonlinear terms, both being expected to occur on a time
scale of order 1/ǫ2, as would be the case if the cylinder were fixed. If the displacement
were chosen of larger order, both the flow and cylinder dynamics would be coupled
at leading order and the instability modes would have to be directly computed, as
in Cossu & Morino (2000). For the same reason, the control velocity at the cylinder
wall is also chosen of order ǫ3:

uc = ǫ3Uc(T )eiω∗t + c.c. (3.7)
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Substitution of the preceding expansions into (2.5) yields the series of boundary
conditions at the cylinder wall Υw:

ui = 0 (i = 0, . . . , 2), (3.8a)

u3 = (U
w
(T ) + Uc(T ))eiω∗t + c.c., with U

w
= (iω∗ I − ∇u0) · (X, Y )T. (3.8b)

Owing to the present balance, the flow problem is that of the wake past a fixed
cylinder, up to the second order ǫ2, meaning that, at this stage, no specific treatment
is required in the numerics to take into account the moving boundary. Coupling
arises at order ǫ3, as the flow motion is forced by an equivalent resonant blowing and
suction velocity that can be split into two distinct components issuing respectively
from the cylinder displacement and from the imposed control velocity, all quantities
in (3.8b) being evaluated at the boundary of the fixed cylinder.

Since the order ǫ3 cylinder displacement is forced near-resonance, and because the
flow-induced drag and lift fluctuations are proportional to the global mode amplitude
of order ǫ, we again anticipate from the dominant balance by imposing a large mass
ratio of order ǫ−4, i.e. such that

1

m
= ǫ4 1

M
, (3.9)

where M is the rescaled mass ratio of order one. In practice, this fourth-order scaling
is legitimate for steel in air, for which the assumption of a rigid cylinder with no
deformation holds. It is meant for the inertial and fluctuating forces to be in balance
in the oscillator equations (2.3), and it can be indeed checked that any larger order
would only yield trivial solutions in which the cylinder would either remain stationary
or be slaved to the lift fluctuations. Similarly, we set the detuning between the natural
and marginal frequencies and the structural damping at second order, for the restoring
and damping forces to be in balance with the inertial one in (2.3). This yields

ωs = ω∗(1 + ǫ2Ω), γ = ǫ2Γ, (3.10)

where Ω is the rescaled detuning parameter and Γ is the rescaled damping parameter,
both quantities being of order one.

The key non-trivial dominant balance is thus to assume a large mass ratio of order
1/ǫ4, at the same time as small departure from criticality, detuning and structural
damping of order ǫ2. Both the global mode q̂1A and the cylinder displacement are
forced close to resonance and amplify their respective forcing by a factor of 1/ǫ2,
thus yielding a strong coupling. This dominant balance is meant to set all possible
effects at the same order, meaning that the set of coupled equations derived in the
following is the most general possible.

Note that it is possible to express the reduced flow velocity ur classically used in
the literature as

ur =
2π

ωs

=
1

St∗(1 + ǫ2Ω)
. (3.11)

At leading order, this yields ur ∼ (1 − ǫ2Ω)/St∗, so that Ω can also be understood as
a measure of the departure from the reference reduced velocity defined as 1/St∗. Still,
in the following, results are presented in terms of 1/ur in order to keep the generality
of the problem.
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3.1. Flow model

At order ǫ0, the solution q0 is the steady flow developing past a fixed cylinder, solution
of the nonlinear equations

M(q0, Re∗) = 0. (3.12)

The equations at order ǫ are the linearized Navier–Stokes equations that define q1

as a superposition of global modes developing on q0. It can therefore be chosen as
the marginally stable mode q̂1A multiplied by some unknown complex amplitude A,
depending only on the slow time T , i.e.

q1 = A(T )q̂1Aeiω∗t + c.c. (3.13)

The second-order solution q2 can be computed as

q2 = δq̂2δ + |A|2q̂2|A|2 +
(
A2q̂2A2e

2iω∗t + c.c.
)
. (3.14)

In (3.14), q̂2δ , q̂
2|A|2 and q̂

2A2 are solutions of the forced linear problems

L∗ q̂2δ = (−∇
2u0, 0)T, (3.15a)

L∗ q̂2|A|2 = (−∇û1A · û1A − ∇û1A · û1A, 0)T, (3.15b)

(2iω∗ N + L∗)q̂2A2 = (−∇û1A · û1A, 0)T, (3.15c)

where the overbars indicate complex conjugate quantities. The first forcing term on the
right-hand side of (3.15a) is linear and arises from the change in the diffusion of the
base flow when the Reynolds number departs from threshold. The other two terms on
the right-hand sides of (3.15b) and (3.15c) are nonlinear and arise from the advection
of the first-order solution by itself, which yields both a steady and a harmonic forcing.
Physically, q̂2δ therefore represents the modification of the base flow observed when
the Reynolds number is varied, q̂

2|A|2 is the difference between the mean flow and the

base flow, whereas q̂2A2 is the second-order harmonic contribution (Sipp & Lebedev
2007). Since 0 and 2iω∗ are not eigenvalues for the fixed cylinder flow at the critical
Reynolds number Re∗, none of these forcing terms are resonant, meaning that (3.15)
can be solved numerically by carrying out a simple matrix inversion.

In contrast, a compatibility condition has to be enforced at order ǫ3, where resonant
forcing terms of frequency ω∗ set in. This requires to compute the adjoint global mode

q̂
†
1A solution of the adjoint eigenvalue problem

(−iω∗ N + L†
∗)q̂

†
1A = 0, (3.16)

where L†
∗ is the adjoint of operator L∗, obtained by integrating by parts system

(3.2) (see Schmid & Henningson 2001 for details). Owing to the present balance, the
flow–cylinder coupling directly adds on to the third-order resonant terms through
the resonant boundary condition (3.8b). All details of the procedure are provided
in Appendix B. In particular, we show that the compatibility condition imposes the
amplitudes A, X, Y to obey the relation

dA

dT
= λδA − µA|A|2 + αxX + αyY + η. (3.17)

In (3.17), λ and µ are the complex coefficients defined by

λ = S−1

∫

Σ

q̂
†
1A · F̂3Adx dy, µ = −S−1

∫

Σ

q̂
†
1A · F̂3A|A|2dx dy, (3.18)
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where F̂3A and F̂3A|A|2 are the resonant forcing terms respectively proportional to the

amplitudes A and A|A|2, whose expression is detailed in Appendix B, and S is the
scalar product between the direct and adjoint global modes

S =

∫

Σ

q̂
†
1A · q̂1Adx dy. (3.19)

In (3.19), αx is the receptivity to the cylinder x-displacement, i.e. the complex coefficient
defined by

αx = S−1

∫

Υw

(

p̂
†
1An +

1

Re∗
∇û

†
1A · n

)

· (iω∗ex − ∇u0 · ex) dl, (3.20)

and αy is the receptivity to the cylinder y-displacement, defined similarly by
substituting ex by ey in (3.20). Finally, η is the receptivity to the wall blowing
and suction velocity, i.e. the complex coefficient defined by

η = S−1

∫

Υw

(

p̂
†
1An +

1

Re∗
∇û

†
1A · n

)

· Uc dl. (3.21)

It can be seen from (3.20)–(3.21) that the action of a resonant wall velocity on
the global mode amplitude, which comes either from the retroaction of the cylinder
displacement or from the externally applied control velocity, is determined by two
distinct contributions associated with mass conservation and viscous effects: the first
term, involving the adjoint pressure p̂

†
1A taken at the wall, accounts for the effect

of the mass flux, whereas the second term, weighted by the inverse of the Reynolds
number, takes into account the modification of the viscous friction at the wall when
the cylinder is moving or when blowing and suction is applied.

3.2. Structure model

It can be checked that the linear oscillator equations (2.3) are straightforwardly
satisfied at order ǫ3 with the present balance. As stated previously, the order ǫ3

cylinder displacement is forced near-resonance by order ǫ5 drag and lift forces, thus
yielding the amplitude equations

dX

dT
= ω∗(−Γ + iΩ)X +

βx

ω∗M
A,

dY

dT
= ω∗(−Γ + iΩ)Y +

βy

ω∗M
A. (3.22)

In (3.22), βx is the complex drag coefficient defined by

βx =
2i

π

∫

Υw

(

p̂1An − 1

Re∗

(
∇û1A + ∇û1A

T
)

· n

)

· ex dl, (3.23)

and βy its lift counterpart obtained by substituting ex by ey is (3.23).

3.3. Coupled model

Since the global mode q̂1A is antisymmetric with respect to the y = 0 axis, i.e. it
satisfies (u, v, p) −→ (−u, v, −p) under the y → −y reflection, it can be shown that
αx = βx = 0, meaning that the linear oscillator equation in X is decoupled from the
flow motion. By choosing the phase of the initial displacement to be zero, its solution
reads as

X(T ) = X(0)exp[ω∗(−Γ + iΩ)T ],

i.e. xs(t) = x0
s +

(
xs(0) − x0

s

)
e−ω∗γ t cos(ωs t). (3.24)
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When γ = 0, the streamwise displacement is therefore time-periodic and the cylinder
oscillates with the natural frequency ωs . When γ �=0, the streamwise displacement is
underdamped: the cylinder then oscillates at the same frequency but returns to its
initial position with an exponential decay rate ω∗γ . Consequently, we set xs = 0 and
restrict in the following to a pure transverse displacement of the cylinder.

From now on, we consider only the uncontrolled case, for which η =0. In order to
ease the notation, we also drop the subscript y for αy and βy , so that the coupled
equations read as

dA

dT
= λδA − µA|A|2 + αY, (3.25a)

dY

dT
= ω∗(−Γ + iΩ)Y +

β

ω∗M
A. (3.25b)

System (3.25) is expressed in terms of the rescaled amplitudes A and Y , but can
be recast equivalently in terms of the physically meaningful amplitudes A = ǫA and
Y = ǫ3Y . The obtained system is similar and reads as

dA
dt

= λ

(
1

Re∗
− 1

Re

)

A − µA|A|2 + αY, (3.26a)

dY
dt

= [−ω∗γ + i(ωs − ω∗)]Y +
β

ω∗m
A. (3.26b)

System (3.25) is appropriate to identify the order in the expansion of each individual
effect, as it depends only on rescaled quantities of order one. In contrast, system
(3.26) is more convenient to discuss the physics, as it depends only on the physical
variables, namely the fast time t , the Reynolds number and the structural parameters.
In practice, all numerical results presented in the following issue from the resolution
of (3.26), for which no value of the expansion parameter ǫ needs to be prescribed in
the numerics.

3.4. Computation of the model parameters

The numerical approach retained to compute the coefficients λ, µ, α, β and the various
flow fields of interest is based on a finite element method and is similar to that used
by Sipp & Lebedev (2007) for a fixed cylinder. The computational domain used in
the numerics is delimited by the cylinder wall Υw and the boundaries Υin (inlet),
Υout (outlet) and Υext (external boundary), located respectively at x = x−∞, x = x∞ and
|y| = y∞ with presently x−∞ = −100, x∞ =150 and y∞ = 25. We impose a uniform inlet
condition u = (1, 0)T on Υin and no-stress conditions (−p I + Re−1

∇u) · n = 0 at the
outlet Υout . On the external boundary Υext , we impose a free-slip condition ∂yu = v =0,
so that the cylinder wall is the only source of vorticity, as would be the case without
this artificial boundary.

The FreeFem++ software (http://www.freefem.org) is used to generate a mesh
composed of triangular elements with the Delaunay–Voronoi algorithm. The mesh
refinement is controlled by the vertex densities on both external and internal
boundaries. The unknown velocity and pressure fields are spatially discretized using a
basis of Taylor–Hood elements, i.e. P2 elements (6 degrees of freedom) for velocities
and P1 elements (3 degrees of freedom) for pressure. The associated variational
formulations are derived and spatially discretized on the mesh, and the sparse matrices
resulting from the projection of the variational formulations onto the basis of finite
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elements are built with the FreeFem++ software. The complete resolution procedure
can be summarized as follows.

(a) The base flow q0 solution at order ǫ0 is obtained solving the nonlinear
equations (3.12) for a fixed cylinder. To this end, we use an iterative Newton
method (Barkley, Gomes & Henderson 2002) involving the resolution of simple
linear problems. The matrix inverses are then computed using the UMFPACK library,
which consists in a sparse direct LU solver (Davis & Duff 1997; Davis 2004; also
http://www.cise.ufl.edu/research/sparse/umfpack).

(b) To obtain the solution at order ǫ1, i.e. the direct mode q̂1A, we solve
the eigenvalue problem (3.2) along with homogeneous boundary conditions
using the ‘implicitly restarted Arnoldi method’ of the ARPACK library
(http://www.caam.rice.edu/software/ARPACK), based upon a shift and invert
strategy (Ehrenstein & Gallaire 2005). Here q̂1A is normalized so as to obtain a
coupling coefficient β =1, hence meaning that the phase of the fluctuating lift force
is simply equal to the phase of the complex amplitude A.

(c) The solution at order ǫ2 is obtained by solving the linear problems (3.15) with
the same boundary conditions as for the global mode, the matrix inversion being
again carried out using the UMFPACK library.

(d) Finally, the adjoint global mode q̂
†
1A needed to enforce the compatibility

condition is obtained solving the adjoint eigenvalue problem (3.16) with the Arnoldi
method already used for the direct mode. The adjoint boundary conditions to
be satisfied are such that all boundary terms arising during the integration by
parts are zero. We thus use the same boundary conditions as for the global
mode, except at the outlet, where we impose the adjoint outflow condition
(u0 · n)û†

1A +(p̂†
1A I +Re−1

∇û
†
1A) · n = 0. The phase and amplitude of the adjoint global

mode are then normalized so as to satisfy

S =

∫

Σ

q̂
†
1A · q̂1Adx dy = 1. (3.27)

The flow fields appearing at each order of the asymptotic expansion are presented
in figure 2. They exhibit a good agreement with those documented by Sipp & Lebedev
(2007, see figure 3 therein for comparison). The difference in the level of magnitude
observed for the various solutions results from the different normalization of the
global mode, as it can be seen from (3.15)–(3.27) that a change in q̂1A by a factor

Π leaves the second-order solution q̂2δ unchanged, but yields a change in q̂
†
1A, q̂

2|A|2
and q̂

2A2 by a factor 1/Π , |Π |2 and Π2, respectively. We find that the steady flow
becomes unstable at the critical Reynolds number Re∗ = 46.6, the marginal frequency
corresponding to a Strouhal number St∗ = 0.117. Such results are consistent with
those documented in the literature (Re∗ = 46.7, St∗ = 0.118 in Giannetti & Luchini
2007 and Re∗ = 46.6, St∗ =0.117 in Sipp & Lebedev 2007). Computing ultimately the
different parameter values, we obtain

λ = 9.153+3.239i, µ = 308.9−1025i, α = 0.03492+0.01472i, β = 1, (3.28)

these values being converged down to the third digit, as evidenced in Appendix A.
It can be shown that both the linear coefficient λ and the ratio µr/µi =–3.32 are
intrinsic quantities, i.e. they do not depend on the normalization of the global mode,
the present results being in excellent agreement with those reported by Sipp &
Lebedev (2007), namely λ= 9.1 + 3.3i and µi/µr = −3.4.
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Figure 2. Representation of the various flow fields appearing at each order in the weakly
nonlinear analysis: streamwise velocity components of the (a) base flow q0, (b) second-order
solution q̂2δ accounting for the modification of the base flow when the Reynolds number
is varied, (e) second-order solution q̂2|A|2 representing the difference between the mean flow
and the base flow and (f ) second-order harmonic contribution q̂2A2 . Cross-stream velocity
components of the (c) global mode q̂1A and (d) adjoint global mode q̂

†
1A.

4. Linear analysis

We investigate here the effect of the fluid–structure coupling on the transition to
linear instability. The linearization of system (3.25) yields

dA

dT
= λδA + αY, (4.1a)

dY

dT
= ω∗(−Γ + iΩ)Y +

β

ω∗M
A. (4.1b)

We thus seek the eigenvalues ξ of a 2 × 2 matrix
⎛

⎝

λδ α

β

ω∗M
ω∗(−Γ + iΩ)

⎞

⎠, (4.2)

which yields

2ξ = λδ + ω∗(−Γ + iΩ) ±
√

(λδ − ω∗(−Γ + iΩ))2 + 4
αβ

ω∗M
. (4.3)
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When recasting these results in terms of the fast time t , the eigenvalues of the coupled
system read as X = iω∗ + ǫ2ξ , meaning that the marginal eigenvalue iω∗ is modified
at second-order, both in growth rate and frequency, under the action of the Reynolds
number variation and the cylinder displacement. The system is thus stable when both
eigenvalues have negative real parts, and we note Rec the critical Reynolds number
of the coupled system for which the largest real part becomes zero.

In practice, the linear analysis is carried out in terms of the physical variables, for
which (4.2) is recast into

⎛

⎜
⎜
⎝

λ

(
1

Re∗
− 1

Re

)

α

β

ω∗m
−ω∗γ + i(ωs − ω∗)

⎞

⎟
⎟
⎠

, (4.4)

the eigenvalues being then

2X = λ

(
1

Re∗
− 1

Re

)

− ω∗γ + i(ωs + ω∗)

±
√

[

λ

(
1

Re∗
− 1

Re

)

+ ω∗γ − i(ωs − ω∗)

]2

+ 4
αβ

ω∗m
. (4.5)

It can be shown from (4.5) that for each couple (γ, ωs), the system admits a single
double root only for a unique parameter setting denoted by (Re0, m0). Provided the
Reynolds number is sufficiently different from Re0, it is therefore possible to follow
the eigenvalues continuously up to large mass ratios. In this case, we recover the
modes identified by Cossu & Morino (2000) by defining the wake mode and the
structure mode, such that the associated eigenvalues satisfy

lim
m→∞

X = iω∗ + λ

(
1

Re∗
− 1

Re

)

(wake mode), (4.6a)

lim
m→∞

X = −ω∗γ + iωs (structure mode). (4.6b)

Indeed, for large mass ratios, the flow-induced lift force becomes very small compared
with the structural ones and the fluid–structure interaction drops to negligible levels,
so that the eigenvalues are deduced straightforwardly from the diagonal terms of
(4.4), with iω∗ + λ(1/Re∗ − 1/Re) being the eigenvalue classically computed from
the flow past a fixed cylinder, and −ω∗γ + iωs being the natural eigenvalue of the
cylinder-only system.

We focus here on the effect of the mass ratio, keeping the structural damping and
natural frequency constant and equal to γ = 0.01, ωs = 0.75. Figure 3(a) presents the
critical Reynolds number Rec computed as a function of m. The flow is unstable
for combinations of parameters located in the shaded region labelled U, and stable
otherwise. The circle denotes the location of the Reynolds and mass ratios for which
the eigenvalue coalescence occurs, namely m0 = 1274 and Re0 = 45.5. For m � 5000,
the threshold value is asymptotic to Rec =Re∗, indicating that the mass ratio has
little influence on the stability of the system, as a result of the limited fluid–structure
interaction expected for such heavy cylinders. In contrast, for m � 1000, the critical
Reynolds number drops dramatically as the mass ratio decreases. For instance, for
m = 100, we obtain Rec =35.5, which represents a decrease by ∼25 %. Still, it should
be kept in mind that the present results are only qualitative, as the asymptotic
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Figure 3. (a) Boundary separating the unstable domain (shaded area labelled U) from the
stable domain (area labelled S) in the plane (Re,m), for γ = 0.01 and ωs = 0.75. The circle
indicates the setting (Re0,m0) for which the eigenvalue coalescence occurs. (b) Growth rate
of the wake mode (WM) and the structure mode (SM) as a function of the mass ratio, for
Re = 46.4 (rightmost vertical dotted line in a). (c) Same as (b) for Re = 42.9 (leftmost vertical
dotted line in a). (d) Same as (b) for Re0 at which the eigenvalue coalescence occurs (middle
vertical dotted line in a).

expansion is meant for large mass ratios. As a comparison, Cossu & Morino (2000)
reported that a mass ratio m =70 yields a decrease of the critical Reynolds by more
than 50 %, even though the forcing frequency is almost twice as large as the natural
frequency.

For a given mass ratio m, it is now possible to determine whether the instability
is led by the wake or the structure mode. Consider for instance the ratio m =2000
corresponding to the upper horizontal dotted line in figure 3(a). In order to identify
the leading mode, we set the critical Reynolds number to Rec(2000) ∼ 46.4 and
follow the eigenvalues continuously up to large mass ratios, hence moving along the
rightmost vertical dotted line in figure 3(a). The growth rates obtained by doing so
are presented in figure 3(b), where the WM and SM labels refer to the wake and
structure modes, respectively. We retrieve that the coupled system is unstable for
m � 2000 (grey shaded area) and stable otherwise. The asymptotic values expected in
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Figure 4. Locus of the cutoff ratio mT in the plane (ωs,m). This curve separates domains
where the transition to linear instability is led, respectively, by the structure mode (area labelled
SM) and the wake mode (area labelled WM).

the absence of coupling, are indicated by the symbols on the upper horizontal axis,
and show that the instability is led by the wake mode (triangle symbol), whereas
the structure mode (delta symbol) remains stable. Consider now the ratio m =300
corresponding to the lower horizontal dotted line in figure 3(a). Figure 3(c) presents
the growth rates obtained by repeating the above procedure, the Reynolds number
being set to Rec(300) ∼ 42.9. It can be seen that the instability is now led by the
structure mode, whereas the wake mode remains stable. The transition between these
two regimes occurs for the mass ratio mT , defined by Rec(mT ) =Re0 (mT = 645 for the
present parameter setting), for which results are shown in figure 3(d). In this case, no
distinction can be made between a wake and a structure mode, since both branches
exchange roles at m =m0, where the eigenvalue coalescence occurs. Results may thus
be summarized as follows.

(i) If m � mT , the instability is led by the wake mode.
(ii) If m � mT , the instability is led by the structure mode.
(iii) If m ∼ mT , no clear distinction can be made between a wake and a structure

mode. Detailed calculations show that the identification remains intricate if the
Reynolds number departs from Re0 by less than 0.5 %, a case for which the instability
can be seen as being led by mixed wake/structure modes.

A cutoff ratio mT can be computed similarly for each value of the couple (γ, ωs).
The results obtained by varying the natural frequency and keeping the structural
damping constant and equal to γ = 0.01 are synthesized in figure 4. The circles
denote computational points, whereas the connecting line has been obtained by a
spline interpolation. We find that the instability is led by the structure mode up to
m ∼ 950 for structural frequencies close to the marginal frequency ω∗ (indicated by
the vertical dotted line). In contrast, the instability is essentially led by the wake
mode when ωs departs from ω∗, a parameter range for which the cutoff ratio drops
dramatically.
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Figure 5. Effect of the natural frequency ωs on the growth rate (solid lines) and frequency
(dashed lines) of the wake and structure modes, for γ = 0.01. The range of instability is
indicated by the grey shaded area. (a) m= 2000 and Re = 46.4: the transition is led by the
wake mode. (b) m= 300 and Re = 42.9: the transition is led by the structure mode.

We present in figure 5(a) the growth rates and frequencies of the wake and structure
modes computed as functions of ωs for m =2000 at Re =46.4. Different scales are used
on the horizontal axis, which are labelled in terms of the frequency ωs and the reduced
velocity ur . Consistent with the results presented in figure 3, the structure mode
remains stable and the instability is sustained by the wake mode (as indicated by the
grey shaded area), in a range where the frequencies of both modes synchronize. Similar
results are observed in figure 5(b), where we present the eigenvalues of both modes
computed for m = 300 at Re = 42.9. The wake mode remains stable and the instability
is now sustained by the structure mode. Moreover, it can be seen that the frequencies
of both modes depart from their unforced values close to synchronization, but that
the maximum of instability is not reached at synchronization in the most general
case. Such results are reminiscent of those documented by de Langre (2006) using the
wake oscillator model, for which linear instability results from coupled-mode flutter.

Although the linear analysis does not allow to provide quantitative predictions
of the cylinder motion, the present results give credence to the interpretation of
VIV in terms of a linear instability causing the fluctuating amplitude of the cylinder
displacement to grow and ultimately saturate at a high but finite amplitude, under
the action of nonlinearities indeed described below.

5. Nonlinear analysis and limit cycles

We now study the nonlinear dynamics of the coupled system (3.25) by setting
A = |A|eiφA and Y = |Y |eiφY . In the following, we use the phase φ = φA − φY ,
representing the phase shift between the lift fluctuations induced by the vortex
shedding and the cylinder displacement, since the normalization of the fluid eigenmode
imposes the phase of the β-coefficient to be zero. Positive (respectively negative)
values of φ mean that the cylinder is in phase delay (respectively phase advance) with
respect to the lift fluctuations. This allows to recast (3.25) into a three-dimensional
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polar system for |A|, |Y | and φ as

d|A|
dT

= λrδ|A| − µr |A|3 + |α| cos(φ − φα )|Y |, (5.1a)

d|Y |
dT

= −ω∗Γ |Y | +
|β|

ω∗M
cosφ|A|, (5.1b)

(1 + tan2 φ)
dφ

dT
= F3 tan3 φ + F2 tan2 φ + F1 tan φ + F0, (5.1c)

with Fm (m = 0, . . . , 3) being the real coefficients reading

F3 = −ω∗Γ, F1 = F3 − |α|β
ω∗

2Γ M

(

cosφα +
µi

µr

sinφα

)

,

F2 =

(

λi − µi

µr

λr

)

δ − ω∗Ω, F0 = F2 +
|α|β

ω∗
2Γ M

(

sinφα − µi

µr

cosφα

)

,

⎫

⎪⎪⎬

⎪⎪⎭

(5.2)

and φα = arg(α) = 0.399 (22.9◦) with the present normalization.
The analysis is first carried out in terms of the rescaled variables, so as to establish

the order in the expansion of the quantities of interest. We restrict on to solutions
characterized by a constant phase shift, i.e. such that dφ/dT =0. In this case, (5.1c)
defines φ as the solution of a third-order polynomial equation in tan φ, which yields
either one or three real roots (note that φ is unique, as it comes from (5.1b) that
φ ∈ [−π/2; π/2] on the limit cycle). To each value of φ corresponds a solution on
the limit cycle, and it will be shown in § 5.2 that hysteretic behaviours result from the
existence of multiple roots, i.e. from the simultaneous existence of several limit cycles.
On a given cycle, the amplitude |A| and |Y | solutions of (5.1a, b) are obtained as

|A| =

√

λr

µr

δ +
|α|β

µrω∗
2Γ M

cos(φ − φα ) cosφ, (5.3a)

|Y | =
β

ω∗
2Γ M

cos φ|A|. (5.3b)

Since system (3.25) is to be satisfied, the individual phases φA and φY are eventually
recovered as

φA(T ) = ΩAT , φY (T ) = ΩY T − φ(0), (5.4)

where we have imposed the phase of the flow initial disturbance to be zero, and ΩA

and ΩY are detuning parameters defined by

ΩA =

(

λi − µi

µr

λr

)

δ − |α|β
ω∗

2Γ M
cosφ

(

sin(φ − φα ) +
µi

µr

cos(φ − φα )

)

, (5.5a)

ΩY = ω∗Ω + ω∗Γ tan φ. (5.5b)

Note that the phase φ is constant at all times for the present limit-cycle solutions.
This imposes ΩA =ΩY , which is equivalent to (5.1c).

When recasting these results in terms of the fast time t , the vortex-shedding
frequency on the limit cycle reads as ωv =ω∗ + ǫ2ΩA. The detuning ΩA therefore acts
as a second-order frequency shift stemming from three distinct origins. The first term
on the right-hand side of (5.5a) is due to linear mechanisms, namely the variation of
the global eigenmode frequency as the Reynolds number varies, the second term is
due to the nonlinear mechanisms, whereas the third term arises from the feedback
exerted by the displacement of the structure. If we define ωv,f as the saturated
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vortex-shedding frequency for a fixed cylinder, i.e.

ωv,f = ω∗ + ǫ2

(

λi − µi

µr

λr

)

δ, (5.6)

the vortex-shedding frequency of the coupled system can be rewritten as

ωv = ωv,f − ǫ2 |α|β
ω∗

2Γ M
cosφ

(

sin(φ − φα ) +
µi

µr

cos(φ − φα )

)

. (5.7)

Similarly, the cylinder frequency on the limit cycle can be written as ωcyl = ω∗ + ǫ2ΩY .

It can also be rewritten as a function of the natural frequency ωs = ω∗(1 + ǫ2Ω),
according to

ωcyl = ωs + ǫ2ω∗Γ tan φ. (5.8)

In practice, the nonlinear analysis is carried out in terms of the physical variables,
which requires to derive first the equivalent form of system (5.1), as has been done in
§§ 3.3 and 3.4. This step is straightforward and the analytical expression is voluntarily
omitted for conciseness, but it is worthwhile noting that the value of φ is identical in
both forms. Relation (5.3) can now be rewritten as

|A| =

√

λr

µr

(
1

Re∗
− 1

Re

)

+
|α|β

µrω∗
2γm

cos(φ − φα ) cosφ, (5.9a)

|Y| =
β

ω∗
2γm

cos φ |A|. (5.9b)

Similarly, the vortex-shedding and cylinder frequencies can be recast into

ωv,f = ω∗ +

(

λi − µi

µr

λr

)(
1

Re∗
− 1

Re

)

, (5.10a)

ωv = ωv,f − |α|β
ω∗

2γm
cosφ

(

sin(φ − φα ) +
µi

µr

cos(φ − φα )

)

, (5.10b)

ωcyl = ωs + ω∗γ tan φ. (5.10c)

The coupled solutions being synchronized, the limit-cycle frequencies are such that

ωv = ωcyl. (5.11)

5.1. Effect of the natural frequency

We set here γ = 0.01 and m =10000 and investigate the effect of the natural frequency
on the cylinder motion. We present in figure 6(a) the evolution of the vortex-shedding
frequency ωv at Re = 60. The dashed line is the bisector of the plane (ωv, ωs), where the
vortex-shedding frequency would be equal to the natural frequency of the structure.
The horizontal dotted line represents the vortex-shedding frequency ωv,f of the fixed
cylinder, which departs from ω∗ since the Reynolds number is supercritical. When
the natural frequency is close to ωv,f , the vortex-shedding frequency departs from
its unforced value and synchronizes onto the forcing frequency. The synchronization
happens when both curves cross, which occurs for a specific value denoted by ωmax

s

(middle vertical dotted line), hence defining a lock-in state. The solid line in figure 6(b)
depicts the evolution of the cylinder displacement amplitude |Y|, computed as a
function of ωs for the same Reynolds number (solid line): we find large displacement
amplitudes in the lock-in regime, as |Y| reaches a maximum precisely for ωs = ωmax

s .
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Figure 6. Effect of the natural frequency ωs for γ =0.01 and m= 10 000. (a) Vortex-shedding
frequency ωv as a function of ωs for Re = 60. The horizontal dotted line indicates the value of
the natural vortex-shedding frequency ωv,f in the wake of a fixed cylinder, whereas the dashed
line represents the bisector of the plane (ωv, ωs). (b) Amplitude of the cylinder displacement
|Y| as a function of ωs for Re = 47 (dash-dot-dotted line), Re = 50 (dash-dotted line), Re = 55
(dashed line) and Re = 60 (solid line). For both plots, the grey shaded areas correspond to
the resonance width �ωs = ω+

s − ω−
s , for which the displacement exceeds 10 % of its maximal

amplitude, whose lower and upper bounds are indicated by the circles.

In contrast, the structure is almost at rest at lock-out. Similar results are obtained
for Re =55 (dashed line), Re = 50 (dash-dotted line) and Re = 47 (dash-dot-dotted
line), the maximum amplitude of the cylinder displacement increasing monotonically
with the Reynolds number. A similar magnification is found for the amplitude of
the global mode |A| (not shown here). The frequency shift ωv − ωv,f observed in
figure 6(a) at lock-in may therefore be viewed as a nonlinear shift induced by this
increase in the vortex-shedding activity.

As for forced oscillators, we define a resonance width �ωs = ω+
s − ω−

s within
which the cylinder displacement amplitude is larger than a particular fraction of the
amplitude at resonance (chosen here as 10 %), which allows a quantitative description
of the lock-in state. The resonance width is shown for Re = 60 by the grey shaded
domain in figure 6, the position of ω+

s and ω−
s being indicated by the open circles.

Note that �ωs has also been computed as a function of the Reynolds number. The
resulting lock-in domain in the plane (ωs − Re) is indicated by the grey shade in
figure 7(a). We find that lock-in occurs for Re � 46.4. The resonance width then
increases monotonically with the Reynolds number and rapidly reaches an almost
constant value of �ωs ∼ 0.15.

We also show in figure 7(b) the evolution of the phase shift φ computed as a function
of ωs for the same Reynolds numbers as in figure 6(b). We observe systematically
that φ(ωmax

s ) ∼ 0, as indicated by the circles, meaning that the cylinder displacement
is in phase with respect to the lift fluctuations at lock-in. When the natural frequency
is smaller than the nonlinear vortex-shedding frequency, the cylinder is in retarded
quadrature with respect to the lift fluctuations, i.e. φ ∼ +π/2. When the natural
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Figure 7. Effect of the natural frequency ωs for γ = 0.01 and m= 10 000. (a) Boundary of the
resonance width �ωs as a function of the Reynolds number. The inner grey shade therefore
defines the lock-in state. (b) Phase shift φ as a function of ωs for the same Reynolds numbers
as in figure 6(b). The circles denote the value φ(ωmax

s ) at lock-in.

frequency is larger than the vortex-shedding frequency, the cylinder is in advanced
quadrature, i.e. φ ∼ −π/2.

5.2. Effect of the mass ratio

We now consider the effect of the mass ratio on the cylinder motion, the structural
damping being γ = 0.01. Figure 8(a) shows the evolution of the vortex-shedding
frequency for m =100 and Re = 50. As in figure 6(a), the dashed line is the bisector of
the plane (ωv, ωs) and the horizontal dotted line is the vortex-shedding frequency ωv,f

of the fixed cylinder. Results are somehow similar to those reported in § 5.1, although
we observe the onset of a hysteretic behaviour corresponding to the transition from
a one-real-root to a three-real-roots regime when solving for the phase shift equation
recast from (5.1c). As a consequence, the vortex-shedding frequency rapidly departs
from its unforced value and remains quasi-synchronized onto the forcing over a large
range of frequencies. Still, it is possible to define a lock-in state for the frequency
ωmax

s at which the exact synchronization occurs. We have checked that the phase shift
behaviour, although distorted by the simultaneous existence of distinct limit cycles,
is also similar, namely the cylinder displacement is in phase with respect to the lift
fluctuations at lock-in, and in quadrature at lock-out (not shown here for conciseness).

We also present in figure 8(b) the evolution of the normalized displacement
amplitude computed as a function of ωs for the same parameter setting (solid
line) and find that |Y| again reaches its maximum value precisely at the lock-
in frequency ωmax

s . Similar results are obtained for mass ratios m = 200 (dashed
line), m =500 (dash-dotted line) and m =1000 (dash-dot-dotted line), all distributions
having been normalized by their maximum value to ease the comparison. Interestingly,
the hysteretic behaviour, which occurs at mass ratios m � 2000 for the Reynolds
number and the damping parameter considered here, yields a monotonic increase
of the lock-in frequency. It also yields a significant increase of the resonance width,
whose upper bound is triggered by the tail-end of the hysteresis loop. For instance, we
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Figure 8. Effect of the mass ratio for γ = 0.01 and Re = 50. (a) Vortex-shedding frequency ωv

as a function of ωs for m= 100. The horizontal dotted line indicates the value of the natural
vortex-shedding frequency ωv,f in the wake of a fixed cylinder, whereas the dashed line is the

bisector of the plane (ωv, ωs). (b) Amplitude of the cylinder displacement |Y| as a function of
ωs , for m= 1000 (dash-dot-dotted line), m= 500 (dash-dotted line), m= 200 (dashed line) and
m= 100 (solid line). The amplitude on each curve has been normalized by its maximum value.

find �ωs ∼ 0.1 for m =500 but �ωs ∼ 0.26 for m =100, such results being consistent
with the generally acknowledged idea that the range of frequencies over which large-
amplitude vibrations can be observed increases at low mass ratios, as early reported
by Ramberg & Griffin (1981).

6. Extension of the model to small mass ratios and mass-damping parameters

When used along with low mass ratios, the model presented in § 3 yields somewhat
surprising results: for instance, there is no lower threshold to how much the magnitude
of the coupling can decrease the critical Reynolds numbers issuing from the linear
analysis. Similarly, there is no upper threshold to how much it can increase the cylinder
displacement amplitude predicted by the nonlinear analysis. The same remark holds
for vanishing structural damping, as one sees from (5.3b) that a finite damping is
required for the limit-cycle solution to saturate at a finite amplitude, a result classical
of oscillators forced near resonance (Landau & Lifshitz 1976).

Such results are not consistent with experimental observations, where one generally
expects the structure to exhibit an asymptotic, self-limiting response. This can be
explained simply by recalling that the structure equation has been obtained by setting
the inertial and lift forces in balance at order ǫ5. In particular, it can be seen from
(3.23) that the force exerted on the cylinder is that induced by the bifurcating global
mode, as would be the case if the cylinder were fixed. The model therefore fails to
capture two effects of practical importance for a body moving in a surrounding fluid.

(i) An accelerating or decelerating body displaces a certain mass of fluid responsible
for an added-mass force opposing the motion (Govardhan & Williamson 2000).

(ii) Owing to the body displacement, the relative free-stream velocity varies, which
induces a change of the exerted drag force responsible for an added damping force
(Blevins 1990).
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Both effects arise naturally for a solution to the Navier–Stokes equations. In the
present case, they arise from the flow response to the cylinder displacement which
comes at order ǫ3 in the asymptotic development. Since the mass ratio is of order ǫ−4,
the corresponding forces come at order ǫ7 and can be legitimately neglected when
compared with the retained lift force of order ǫ5. The original model is thus exact in
the range of mass ratios for which it has been derived rigorously.

We propose to derive an extended model relying on the same structure equation at
order ǫ5, now complemented by smaller terms issuing from the added-mass and added
damping forces. These terms are not computed from the exact flow responses arising
at successive orders, which would require intricate computations lying out of the
scope of the present study. As is classically done in the literature, their contribution
to the total lift force is accounted for by separate terms introduced by hand in the
linear oscillator equation for ys , which now reads as

d2ys

dt2
+ 2ωsγ

dys

dt
+ ω2

s ys =
2

πm
cy − ca

m

d2ys

dt2
− 4

πm
ωsζ

dys

dt
. (6.1)

In (6.1), ca is the added-mass coefficient, whose value depends only on the geometry
of the structure, the value usually reported for a circular cross-section being ca =1.
Likewise, ζ is the added damping coefficient, also referred as the stall parameter
(Skop & Balasubramanian 1997) and is defined from the mean drag coefficient of the
structure as ζ = c0

x/2ωs (Blevins 1990).
The system (3.25) remains invariant provided the structural parameters are

transformed according to

γ → m

m + ca

ωs

ω∗

(

γ +
2

πm
ζ

)

, (6.2a)

ωs →
√

m

m + ca

ωs, (6.2b)

m → m + ca. (6.2c)

Note that the so-called mass-damping parameter γm arises naturally on the right-
hand side of (6.2a). It can be checked that both sets of parameters are identical at
leading-order when using the balance defined in § 3, a limit in which the original
model is retrieved. Only in the limit of low mass ratios and low mass-damping
do the corrective terms acquire significance. In practice, they put an upper bound
on the effective mass and damping terms, which is believed to trigger the expected
self-limiting structural behaviour.

As an illustration, we present in figure 9(a) the critical Reynolds number, Rec,
computed as a function of m with the extended model, the flow being unstable
for combinations of parameters located in the shaded region labelled U, and stable
otherwise. The results are reminiscent of those provided in figure 3(a), as the critical
Reynolds numbers predicted by the exact and the extended models differ by less than
1 % for mass ratios m > 450, and by less than 5 % for m > 150. Still, the extended
model now predicts the existence of a threshold value Re ∼ 32, below which the
coupling cannot decrease the critical Reynolds number, no matter the value of the
mass ratio.

We now propose to further investigate the effect of the mass ratio on the lock-in
domain. Figure 9(b) presents the resonance width computed as a function of m using
the extended model. The results obtained using the original model are shown by the
dashed line in the range m > 100, both sets differing by less than 2 % for m > 450 and
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Figure 9. (a) Boundary separating the unstable domain from the stable domain in the plane
(Re,m) for γ = 0.01 and ωs = 0.75. (b) Boundary of the resonance width �ωs as a function of
the mass ratio, for γ =0.01 and Re =50. The solid and dashed lines show the results obtained
respectively using the extended model derived in § 6 and the original model derived in § 3.

by less than 5 % for m > 150. As discussed in § 5.2, we find that the lock-in domain
extends at low mass numbers, namely for m � 300 in the present case. If we further
decrease the mass ratio, the lower bound of the lock-in domain reaches the zero value
for m =1.7, although the magnitude of the cylinder displacement is now self-limited.
When recast in terms of the reduced velocity ur defined by (3.11), this means that
significant displacement amplitudes are expected even for arbitrarily large values of
ur . Such a result is thus reminiscent of that documented by Govardhan & Williamson
(2002), who reported the sudden onset of resonance over an infinitely large range of
velocities below a so-called critical mass ratio mcrit . Although qualitative, the obtained
value m = 1.7 is in reasonable agreement with that reported by these authors, who
predict a critical mass mcrit = 0.25 for Re = 100.

7. Application to energy production through VIV

The derivation of the extended model also allows to consider vortex-induced
vibrations of a cylinder in water streams for renewable energy production, as discussed
by Bernitsas et al. (2008). For instance, electrical energy will be produced if the
oscillation of the cylinder displaces periodically a magnet within a coil. On the
oscillator dynamics of the cylinder, the energy production device induces a structural
damping term proportional to dys/dt , of the form used in (2.3). The linear oscillator
equation governing the motion of the cylinder can be rewritten in the form of an
energy equation as

de

dt
= −d(t) + p(t). (7.1)

In (7.1), e is the mechanical energy of the cylinder defined as the sum of its kinematic
and potential energy:

e =
1

2

m + ca

m

(

dys

dt

)2

+
1

2
ω2

s y
2
s . (7.2)
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Similarly, d is the energy dissipated by damping and p is the energy extracted from
the flow, respectively,

d = 2

(

ωsγ +
2

πm
ω∗ζ

)(
dys

dt

)2

, p =
2

πm
cy

dys

dt
. (7.3)

Since the solution is periodic of period Tv = 2π/ωv on the limit cycle, the mean
mechanical energy averaged over a period is zero. In return, the mean energy lost by
damping is equal to the mean energy extracted from the flow. From the perspective
of energy production, one should note that the dissipated energy is determined by
two contributions associated with structural and added damping, but that only the
energy dissipated by structural damping is of practical interest. In contrast, the energy
dissipated by the fluid cannot be recovered and is responsible for a loss of efficiency
of the device. In practice, we obtain the leading-order energy dissipated by structural
damping over a period by computing the time derivative of the cylinder position from
system (3.25), along with the modified structural parameters (6.2), which yields

D = 2ωsγ
1

Tv

∫ Tv

0

(
dys

dt

)2

dt = 4ωsω
2
∗γ |Y|2. (7.4)

In the following, the latter will also be referred to as the efficient mean energy that
can be extracted from the flow.

We now set m =10, a mass ratio corresponding approximately to that of steel in
water, and investigate the effect of structural damping on the magnitude of the mean
energy D. Results obtained using the extended model are presented in figure 10(a)
for ωs = 0.8 and Re =50. The energy tends to zero in the limit γ ≫ 1, where the
work received from the lift force is limited by the low amplitude of the cylinder
displacement. It also tends to zero in the limit γ ≪ 1, where the cylinder amplitude
reaches an asymptotic limit, determined by the added damping force. Consequently,
the energy reaches a maximum for a finite value of the structural damping γ max ,
defined by

Dmax(ωs, m, Re) = max
γ

{D} = D(γ max, ωs, m, Re), (7.5)

with γ max ∼ 0.13 for the mass ratio and Reynolds numbers considered (vertical dotted
line in figure 10a).

It is possible to determine similarly an optimal value of Dmax and γ max for
each natural frequency, keeping the mass ratio and the Reynolds number equal
to m =10, Re = 50. Results are displayed in figure 10(b) by the solid and dashed
lines, respectively. The grey line corresponds to the value of the added damping term
2ζ/πm, meaning that the damping force is dominated by the structural term in the
resulting upper half-plane, and by the added damping term in the lower half-plane.
The maximum efficient energy extracted from the flow increases with ωs in the range
ωs < 1: since the structural damping dominates, its magnitude can be simply increased
by decreasing the value of γ . The structural coefficient drops to small values for ωs ∼ 1,
and the added damping term becomes dominant, which results in a saturation and a
further decrease in the energy. Finally, the discontinuity at ωs ∼ 1.2 corresponds to a
transition from a three-real-roots to a one-real-root regime when solving for the phase
shift equation. These results evidence the existence of a particular setting (γ opt , ωopt

s )
for which the extracted energy reaches an optimum

Dopt (m, Re) = max
ωs

{Dmax} = D(γ opt , ωopt
s , m, Re). (7.6)
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Figure 10. Effect of the structural parameters on the efficient mean energy D extracted from
the flow for m= 10 and Re = 50. (a) Energy as a function of the structural damping for
ωs = 0.8. The vertical dotted line marks the value γ max for which the maximum is reached.
(b) Maximum energy Dmax = D(γ max) as a function of the natural frequency ωs . The circles
indicate the values extracted from (a) for ωs = 0.8. The horizontal solid line indicates the value
of the added damping term 2ζ/πm, whereas the vertical and lower horizontal dotted lines
mark the optimal setting (ωopt

s ,γ opt ) for which the energy extracted from the flow is maximum.

For the mass ratio and Reynolds numbers considered, we obtain ωopt
s =1.08 and

γ opt = 0.023, this setting defining precisely the ‘tuning’ at which the system should
be operated to maximize the energy extracted from the free stream by an energy
production device.

We have computed the vortex-shedding frequency ωv(γ
max) as a function of

ωs , the results being shown in figure 11(a), along with the bisector of the plane
(ωv, ωs). Interestingly, we find that ωopt

v = ωv(γ
opt , ωopt

s ) < ωs , meaning that the cylinder
oscillates at a frequency smaller than its natural frequency when the optimality
condition is satisfied. Figure 11(b) finally presents the phase shift φ(γ max) similarly
computed as a function of ωs . When the natural frequency is smaller than the
nonlinear vortex-shedding frequency, the cylinder is in retarded half-quadrature with
respect to the lift fluctuations, i.e. φopt ∼ +π/4. When the natural frequency is larger
than the vortex-shedding frequency, the cylinder is in advanced half-quadrature, i.e.
φopt ∼ −π/4. In contrast, the phase shift drops to small values when the natural
frequency approaches that of vortex shedding, the cylinder and the lift fluctuations
being nearly in phase at optimality.

8. Discussion: connection with existing models

Numerous models have been developed for the study of VIV at practically
meaningful Reynolds numbers. From now on, we focus on the class of so-called wake
oscillator models in which the wake dynamics is described by a single flow variable
modelling the fluctuating nature of the vortex shedding (Birkoff & Zarantanello
1957; Bishop & Hassan 1964). This flow variable is assumed to satisfy a van der
Pol or Rayleigh equation which models a self-sustained, stable and nearly harmonic
oscillation of finite amplitude. In this section, we carry out the multiple time-scale
analysis of the wake oscillator model, and compare the resulting set of equations to
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Figure 11. (a) Vortex-shedding frequency ωv(γ
max) and (b) phase shift φ(γ max) as a function

of ωs for m= 10 and Re = 50. The vertical dotted line marks the optimal value ω
opt
s .

that issuing from the exact Navier–Stokes equations. It is worthwhile noting that such
an expansion is exact close to threshold, and should be considered as only qualitative
for higher Reynolds numbers.

8.1. Flow model

We consider an extension of the wake oscillator model based on a modified Duffing–
van der Pol equation

d2q

dt2
+ 2λr (q

2 − ǫ2δ)
dq

dt
+ ( 2λiω∗ǫ

2δ
︸ ︷︷ ︸

(i)

− 2

3
λr

µi

µr

ω∗q
2

︸ ︷︷ ︸

(ii)

+ω∗
2)q = f. (8.1)

This equation differs from the classical van der Pol equation by two terms noted
(i) and (ii), accounting respectively for the linear and nonlinear frequency shifts
of the saturated solution when the Reynolds number departs from threshold. As
discussed by Facchinetti, de Langre & Biolley (2004), the variable q describing the
wake oscillation should be defined as the lift magnification with respect to a fixed
structure experiencing vortex shedding, i.e.

q = 2ǫ
√

δ
cy

|cy,f | , (8.2)

where |cy,f | is the magnitude of the lift coefficient for a fixed cylinder. Note that the
discrepancy with respect to the expression documented by Facchinetti et al. (2004) is
due to a different normalization choice.

The right-hand side f in (8.1) models the action of the cylinder motion on the wake
oscillator, and various ad hoc forms have been postulated, including a displacement
coupling (Krenk & Nielsen 1999), a velocity coupling (Hartlen & Currie 1970) and
an acceleration coupling (Parkinson 1989) defined respectively as

f = Kys (disp.), f = K
dys

dt
(vel.), f = K

d2ys

dt2
(acc.), (8.3)
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Displacement Velocity Acceleration

|χ | 1

2ω∗
K

1

2
K

ω∗
2

K

φχ π − π

2
0

Table 1. Modulus and phase of the χ coefficient for a displacement, a velocity and an
acceleration coupling, as defined by (8.3).

K � 0 being a fixed parameter.

8.2. Structure model

For simplicity, we use here the rigorous asymptotic model derived in § 3. Nevertheless,
the approach can be generalized to account for the added forces, as has been done
in § 6. Assuming that the cylinder moves only in the transverse direction, the wake
oscillator interacts with the linear oscillator equation

d2ys

dt2
+ 2ωsγ

dys

dt
+ ω2

s ys = s. (8.4)

The right-hand-side term in (8.4) models the action of the fluid on the structure. For
consistency with the Navier–Stokes equations, it must therefore satisfy

s =
2

πm
cy =

2

πm
|cy,f | q

2ǫ
√

δ
. (8.5)

Since the lift force is proportional to the global mode of order ǫ, we define here the
leading-order lift coefficient Cy such that cy = ǫCy (respectively cy,f = ǫCy,f ), and the
coupling term finally reads as

s =
2

πm
|Cy,f | q

2
√

δ
. (8.6)

8.3. Weakly nonlinear expansion

The dimensionless wake variable q can now be sought as

q = ǫQ(T )eiω∗t + c.c., (8.7)

the other scaling laws being identical to those defined in § 3. The system of amplitude
equations for Q and Y can be obtained by carrying out a very similar weakly nonlinear
expansion. We obtain

dQ

dT
= λδQ − λr

(

1 + i
µi

µr

)

Q|Q|2 + iχY, (8.8a)

dY

dT
= ω∗(−Γ + iΩ)Y − i

|Cy,f |
πω∗M

Q

2
√

δ
. (8.8b)

The retroaction of the structure onto the flow is modelled by the coefficient χ in (8.8a),
whose modulus |χ | and phase φχ depend on the chosen modelling, as summarized in
table 1.
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8.4. Comparison and choice of the most appropriate model

The lift coefficients of interest can be expressed simply in terms of the global mode
amplitude as

cy = ǫCy = −2ǫπβ|A| sin(ω∗t + φA), (8.9a)

|cy,f | = ǫ|Cy,f | = 2ǫπβ|Af |, (8.9b)

where |Af | is the global mode amplitude for a fixed cylinder, i.e. |Af | = √
λrδ/µr . This

allows to define simply the wake complex amplitude Q as

Q = i

√
µr

λr

A. (8.10)

System of amplitude equations (8.8) can therefore be recast in terms of the amplitudes
A and Y . We now obtain

dA

dT
= λδA − µA|A|2 + χ

√

λr

µr

Y, (8.11a)

dY

dT
= ω∗(−Γ + iΩ)Y +

β

ω∗M
A. (8.11b)

The system (8.11) differs from (3.25) only by the coupling term in the fluid equation,
so that the relevance of a displacement, velocity or acceleration coupling can be
assessed by comparing the value of the exact phase φα = arg(α) computed from the
asymptotic analysis of the Navier–Stokes equations and that of the model phase
φχ = arg(χ). Since φα = 0.399, this yields the following conclusions:

(a) Since cosφα � 0, this value is consistent with the coupling coefficient predicted
by a wake oscillator model, provided one uses either a pure acceleration coupling or
an acceleration coupling combined with a displacement coupling of lower magnitude.

(b) Since sin φα � 0, this value cannot be obtained by combining any of the
couplings considered by Facchinetti et al. (2004). To reproduce the appropriate
coefficient, one must use either an additional integral or a third-order derivative
coupling, i.e.

f = K

∫

ysdt, or f = K
d3ys

dt3
, (8.12)

or combine such a coupling with a velocity coupling of lower magnitude.
(c) Since cosφα � sin φα , the overall coupling is dominated by acceleration.

Although the range of Reynolds number is not the same, these results are consistent
with the conclusions of Facchinetti et al. (2004), who recommended using the
acceleration model.

We now recall that the coupling coefficient α is determined by two distinct
contributions associated with mass conservation and viscous effects. The latter term
being weighted by the inverse of the Reynolds number, as seen from (3.20), it has
been argued in previous studies that for sufficiently large Reynolds numbers, the
viscous term should be neglected compared to the wall pressure p̂

†
1A, implying that

the coupling occurs only through the wall-normal component of the velocity (Marquet
et al. 2009). This yields a new expression for the coupling coefficient, which is now
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defined by

α ∼ S−1

∫

Υw

iω∗p̂
†
1Anydl = 0.00651 + 0.0528i, (8.13a)

φα = 1.448 (82.9◦). (8.13b)

The results so obtained are qualitatively similar to those discussed from the low-
Reynolds-number case, as we obtain again cos φα � 0 and sin φα � 0. However, we
now have cosφα ≪ sin φα , meaning that the coupling is dominated by the integral
or third-order term and no more by acceleration. Note that these conclusions are
only qualitative, since the expansion procedure is meant for small departures from
threshold. Moreover, when the flow becomes turbulent, the fluid viscosity should be
replaced by an appropriate eddy viscosity, and the tangential velocity may play a
significant role. Although this lies out of the scope of the present paper, the ability of
such a model to reproduce the physics of VIV at large Reynolds numbers therefore
deserves some further investigation.

9. Conclusion

In this study, we have considered the nonlinear dynamics of vortex-induced
vibrations in the wake of a damped, spring-mounted, circular cylinder. A multiple
time-scale expansion has been developed for Reynolds numbers close to the threshold
of instability of the flow past a fixed cylinder, and the system of nonlinear equations
governing the dynamics of the coupled flow-cylinder system has been derived. The key
dominant balance considers a solid-to-fluid density ratio of order ǫ−4, the departure
from criticality being classically assumed of order ǫ2. The cylinder displacement then
occurs at order ǫ3 in the expansion and yields the coupling under the form of a third-
order resonant boundary condition requiring an appropriate compatibility condition.
All coefficients of the model have been analytically expressed as scalar products
between a resonant forcing term arising at third order and the adjoint of the forced
mode.

Analysing the linear part of the resulting dynamics has allowed to identify two
modes of interest, namely a wake mode and a structure mode, the latter being
responsible for the onset of subcritical vortex shedding at low solid-to-fluid density
ratios. Analysing the nonlinear dynamics has demonstrated the ability of the present
adjoint-based model to describe the main features of vortex-induced vibrations, in
particular lock-in and hysteretic behaviours. We have shown that the cylinder motion
is in phase with the lift fluctuations at lock-in, and either in advanced or retarded
quadrature at lock-out. The exact model has been generalized to low mass ratios and
mass-damping parameters, where the added-mass and added damping terms arising
from the mass of displaced fluid must be taken into account. Using this extension, we
have considered the impact of the damping parameter on the energy dissipated by
the structure, which is of practical interest in the perspective of energy production,
since it represents the efficient energy extracted from the flow by transfer to the
cylinder motion. We have shown that there exists an optimal setting of the structural
parameter for which the extracted energy is maximum, the cylinder motion being
then in phase with the lift fluctuations.

Finally, we have discussed the connection between the present asymptotic, low-
Reynolds-number approach and the wake oscillator model used in the literature.
We have shown that if the dynamics of the model is analysed close to threshold
(which is by no way its domain of validity), it gives a system of amplitude equations
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nt d.o.f. λ µ α

M1 117 217 1 053 601 9.151 + 3.236i 308.9 − 1025i 0.03486 + 0.01477i
M2 180 896 1 626 100 9.153 + 3.239i 308.9 − 1025i 0.03492 + 0.01472i
M3 293 466 2 638 750 9.154 + 3.241i 308.9 − 1025i 0.03492 + 0.01472i

Table 2. Dependence of the model coefficients on different meshes differing by their spatial
resolution. Here nt is the number of triangles and d.o.f. is the number of degrees of freedom
for two-dimensional state vectors.

similar to the exact one presently computed. Comparing the exact and model coupling
terms in the fluid equation shows that the effect of the structure on the fluid can be
represented by a first coupling term proportional to the cylinder acceleration in the
fluid equation, and by a second term that can originate either from an integral term
or from a term proportional to the third derivative of the cylinder position. For low
Reynolds numbers, this coupling is dominated by the contribution of acceleration,
whereas the contribution of the integral or third-order term becomes dominant at
high Reynolds numbers. Such results seem promising from the perspective of further
investigating new high-Reynolds-number VIV models, for which no such coupling
has been studied.

The authors are grateful to R. Violette, whose enthusiasm and fruitful comments
have contributed to the present study.

Appendix A. Sensitivity results to mesh spacing

In order to assess convergence in the numerical results, the model coefficients have
been computed for three meshes M1 to M3 differing by their spatial resolution, all
results presented in the present study issuing from the intermediate mesh M2. Results
are detailed in table 2 for the values of λ, µ and α (the last coefficient β being set to
unity owing to the normalization of the global mode q̂1A), and show that nearly all
constants are converged down to the third digit.

Appendix B. Flow model and compatibility condition

We detail here the derivation of the flow amplitude equation. As discussed in § 3.1,
we recall that the solution is identical to that computed from the fixed cylinder flow,
up to order ǫ2. At order ǫ3, we find that the third-order solution q3 obeys the forced
linear Navier–Stokes equations

N∂t q3 + L∗q3 = (F̂3re
iω∗t + F3nr + c.c., 0)T. (B 1)

In (B 1), F̂3r is a bulk resonant forcing term depending only from the lower-order
solutions,

F̂3r = −dA

dT
û1A + δAF̂3A + A|A|2 F̂3A|A|2, (B 2)

and F3nr is a non-resonant forcing term, not explicitly stated here for conciseness.
The first resonant term of amplitude dA/dT in (B 2) corresponds to the slow time



An asymptotic expansion for the vortex-induced vibrations of a circular cylinder 165

evolution of the unknown amplitude A. The other resonant terms F̂3A and F̂3A|A|2 are

F̂3A = −∇
2û1A − ∇û1A · û2δ − ∇û2δ · û1A, (B 3a)

F̂3A|A|2 = −∇û1A · û2|A|2 − ∇û2|A|2 · û1A − ∇û1A · û2A2 − ∇û2A2 · û1A . (B 3b)

The first term arises from the change in the diffusion when the Reynolds number
varies, and the second term arises from the nonlinear interaction between the two
contributions of the first-order solution together with the three contributions of the
second-order solution. For further physical interpretations of these individual forcing
terms, the reader is referred to Sipp & Lebedev (2007).

The third-order solution q3 is sought as the superposition of a response to the

non-resonant forcing term F3nr and a response to the resonant forcing term F̂3r , i.e.

q3 = q̂3re
iω∗t + q3nr + c.c. (B 4)

The response q̂3r is thus the solution of the forced linear problem

(iω∗ N + L∗) q̂3r = (F̂3r , 0)T, (B 5)

along with the resonant condition (3.8b) at the cylinder wall, rewritten here as

û3r = U
w

+ Uc. (B 6)

Since iω∗ is an eigenvalue for the problem (3.2), the operator iω∗ N + L∗ cannot be
inverted in (B 5). To avoid secular terms, or in other words, to be able to solve the
expansion procedure at the third order, a compatibility condition has to be enforced.

We first consider the effect of bulk resonant terms only, as would be the case for
a fixed cylinder. In this case, one uses a standard Fredholm alternative (Friedrichs
1973), specifying that the resonant forcing terms must be orthogonal to the kernel of
the adjoint linearized Navier–Stokes operator, i.e.

∫

Σ

q̂
†
1A · (F̂3r , 0)Tdx dy = 0. (B 7)

In (B 7), q̂
†
1A is the adjoint global mode solution of the adjoint eigenvalue problem

(3.16) at the critical Reynolds number Re∗. Owing to the form of the resonant
forcing term (B 2), this yields the expression for the classical Stuart–Landau amplitude
equation as

dA

dT
= λδA − µA|A|2, (B 8)

with λ and µ being the complex coefficients defined from (3.18).
We now reintroduce the effect of the resonant boundary condition (B 6). By

construction of the adjoint operator L†
∗, we have, for any vector q̂ and q̂

† satisfying
the direct and adjoint boundary conditions,

∫

Σ

q̂
†

· (L∗q̂) dx dy =

∫

Σ

(L†
∗q̂

†) · q̂ dx dy. (B 9)

Owing to the resonant wall velocity (B 6), q̂3r does not satisfy the direct boundary
conditions, so the scalar product between the bulk resonant term and the adjoint
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global mode can be written as
∫

Σ

q̂
†
1A · (F̂3r , 0)Tdx dy =

∫

Σ

q̂
†
1A · (iω∗ N + L∗)q̂3rdx dy (B 10a)

=

∫

Σ

(−iω∗ N + L†
∗)q̂

†
1A · q̂3rdx dy

︸ ︷︷ ︸

=0

+BT, (B 10b)

since N is diagonal, with BT being a non-zero boundary term arising during the
integration by parts. As marked by the brace, the first term on the right-hand side of
(B 10b) is zero, since q̂

†
1A satisfies (3.16). A detailed calculation of the boundary term

can be found in Giannetti & Luchini (2007). We ultimately obtain
∫

Σ

q̂
†
1A · (F̂3r , 0)Tdx dy = −

∫

Υw

(

p̂
†
1An +

1

Re∗
∇û

†
1A · n

)

· (U
w

+ Uc) dl, (B 11)

thus yielding the amplitude equation (3.17).
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