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The classical Squire transformation is extended to the entire eigenfunction structure
of both Orr–Sommerfeld and Squire modes. For arbitrary Reynolds numbers Re,
this transformation allows the solution of the initial-value problem for an arbitrary
three-dimensional (3D) disturbance via a two-dimensional (2D) initial-value problem
at a smaller Reynolds number Re2D. Its implications for the transient growth of
arbitrary 3D disturbances is studied. Using the Squire transformation, the general
solution of the initial-value problem is shown to predict large-Reynolds-number
scaling for the optimal gain at all optimization times t with t/Re finite or large. This
result is an extension of the well-known scaling laws first obtained by Gustavsson
(J. Fluid Mech., vol. 224, 1991, pp. 241–260) and Reddy & Henningson (J. Fluid
Mech., vol. 252, 1993, pp. 209–238) for arbitrary αRe, where α is the streamwise
wavenumber. The Squire transformation is also extended to the adjoint problem
and, hence, the adjoint Orr–Sommerfeld and Squire modes. It is, thus, demonstrated
that the long-time optimal growth of 3D perturbations as given by the exponential
growth (or decay) of the leading eigenmode times an extra gain representing its
receptivity, may be decomposed as a product of the gains arising from purely 2D
mechanisms and an analytical contribution representing 3D growth mechanisms equal
to 1 + (βRe/Re2D)

2 G , where β is the spanwise wavenumber and G is a known
expression. For example, when the leading eigenmode is an Orr–Sommerfeld mode,
it is given by the product of respective gains from the 2D Orr mechanism and an
analytical expression representing the 3D lift-up mechanism. Whereas if the leading
eigenmode is a Squire mode, the extra gain is shown to be solely due to the 3D
lift-up mechanism. Direct numerical solutions of the optimal gain for plane Poiseuille
and plane Couette flow confirm the novel predictions of the Squire transformation
extended to the initial-value problem. These results are also extended to confined
shear flows in the presence of a temperature gradient.
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1. Introduction
For over two decades now, the linear stability analysis of shear flows has followed

two lines of thought, namely, modal stability analysis and non-modal stability
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analysis. The former considers solutions of the linearized Navier–Stokes equations
(LNS) that grow, or decay, exponentially in time (Lin 1955; Chandrasekhar 1961;
Joseph 1976; Drazin & Reid 1981), whereas the latter investigates the dynamics of
disturbances over a finite-time horizon without assuming exponential time dependence
(Farrell 1988; Reddy & Henningson 1993; Schmid & Henningson 2001; Schmid
2007). In the case of parallel shear flows, the celebrated Squire transformation
(Squire 1933) relates any arbitrarily oriented three-dimensional (3D) modal solution
of non-zero streamwise wavenumber at a given Reynolds number to a two-dimensional
(2D) modal solution with the same total wavelength but zero spanwise wavenumber
(hereafter referred to as spanwise disturbances) at a smaller Reynolds number. Since
in the transformation the growth rate of 3D perturbations is smaller than that of 2D
perturbations, it leads to the well-known Squire theorem which states that 2D modes
are more unstable than 3D modes of the same total wavelength, implying that the
modal stability analysis can be restricted to only 2D disturbances without loss of
generality.

The modal stability analysis for wall-bounded parallel shear flows predicts that 2D
spanwise disturbances, in the form of Tollmien–Schlichting (TS) waves, are the most
unstable modes (Tollmien 1929; Schlichting 1933). Using a novel vibrating ribbon
experiment, Schubauer & Skramstad (1947) measured and compared the growth rate
of TS waves with the modal stability theory. Later, Klebanoff, Tidstrom & Sargent
(1962) described how the onset of 2D TS instability waves can lead to 3D turbulent
fluctuations. In a laminar boundary layer, they also used a vibrating ribbon to generate
and follow the slow evolution of 2D TS waves in a controlled environment. As the
TS wave amplitude exceeded 1 % of the free-stream velocity, they observed that the
spanwise-uniform TS waves exhibit a rapid growth of spanwise variations, thereby
leading to longitudinal vortices. Herbert (1988) used the Floquet theory of secondary
instability to describe the evolution of such spanwise periodic disturbances from 2D
TS waves. Bayly, Orszag & Herbert (1988), Kachanov (1994), Schlichting & Gersten
(2000) provide a review of the resulting transition scenario and its consequences
for turbulence shear flows. On the other hand, experiments in the presence of
high free-stream turbulence (Morkovin 1968; Klebanoff 1971; Morkovin 1978, 1984;
Kendall 1985; Matsubara & Alfredsson 2001) show that transition is usually preceded
by the presence of streamwise motion in the form of streaks and not via TS waves as
predicted by modal stability analysis. For example, Matsubara & Alfredsson (2001)
demonstrated that a boundary layer which is subjected to free-stream turbulence
levels in the range 1–6 % develops streamwise elongated regions of high and low
streamwise velocity which lead to secondary instability and transition to turbulence.
Such perturbation dynamics at the onset of transition have been analysed by numerous
experimental and direct numerical studies confirming this so-called bypass transition
scenario (see the review by Saric, Reed & Kerschen (2002) and references therein).

Ellingsen & Palm (1975) considered a streamwise-uniform disturbance in an
inviscid shear flow to deduce that the streamwise velocity of these disturbances can
grow linearly in time. They cite that it was E. Hølland who originally suggested in
his lecture notes that certain 3D disturbances can grow transiently in inviscid shear
flows. Landhal (1980) generalized their result to all parallel inviscid constant-density
shear flows by showing that a wide range of initial infinitesimal 3D disturbances
(in particular, those disturbances with a non-zero wall-normal velocity component)
exhibit algebraic growth. Hultgren & Gustavsson (1981) were the first to consider
such three-dimensional perturbations in the case of viscous parallel shear flows.
They studied the temporal evolution of small 3D disturbances with large streamwise
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wavelength (i.e. nearly streamwise-uniform) in viscous boundary layers. It was
deduced that, at short time, the streamwise perturbation velocity evolves according to
the inviscid initial-value problem analysed by Ellingsen & Palm (1975) and Landhal
(1980). Later, viscous dissipation dominates and the disturbance eventually decays.
Further studies showed that such transient growth of disturbances exists in many
parallel viscous shear flows. Using a variational approach, Farrell (1988) computed
the optimal 3D perturbations that give rise to the maximum possible transient growth
at a given time interval. The kinetic energy of certain optimal perturbations can grow
as large as O(Re2) in plane Poiseuille (Gustavsson 1991; Reddy & Henningson 1993)
and plane Couette flows (Farrell & Ioannou 1993). Depending on the initial conditions
and the Reynolds number, nonlinear effects may become important during the transient
growth of disturbances in these flows. Waleffe (1995) proposed a self-sustaining
process for turbulent shear flows consisting of finite-amplitude streamwise rolls that
create nonlinear streaks via transient growth and the nonlinear streaks undergo a
secondary modal instability to form wall-normal vortices that, in turn, regenerate
streamwise rolls via vortex tilting. It is now widely accepted that such self-sustaining
processes form the basis of the so-called bypass transition.

The process of short-time growth of disturbance kinetic energy in the absence
of nonlinear effects can be associated with the non-normality of the governing
linear operator (Boberg & Brosa 1988; Farrell 1988; Butler & Farrell 1992; Reddy
& Henningson 1993), i.e. the non-orthogonality of the associated eigenfunctions.
Even though each eigenfunction may decay at its own growth rate (related to
its eigenvalue), a superposition of non-orthogonal eigenfunctions may produce
large transient growth before eventually decreasing at the rate of the least stable
eigenfunction. Transient growth can also occur when an eigenvalue is degenerate
and the operator is non-diagonal (Gustavsson & Hultgren 1980; Shanthini 1989). For
unbounded or semi-bounded shear flows, the continuous spectrum may also contribute
to transient growth (Hultgren & Gustavsson 1981). But these cases are outside the
scope of the present study, since we consider bounded shear flows wherein the
spectrum is discrete; and we also assume the spectrum to be non-degenerate since
this occurs on a set of control parameters of zero measure (Schmid & Henningson
2001).

The lift-up mechanism (Moffatt 1967; Ellingsen & Palm 1975; Landhal 1980) and
the Orr mechanism (Orr 1907) are two such commonly identified disturbance growth
phenomena in a shear flow. The lift-up mechanism is considered to be the dominant
mechanism in many wall-bounded shear flows. According to the lift-up mechanism,
an infinitesimal streamwise-uniform vortex superimposed on a parallel shear flow can
lift-up low-speed fluid from the wall and push high-velocity fluid towards the wall
until viscous dissipation becomes important at times of the order of the Reynolds
number Re. The Orr mechanism is associated with the increase in disturbance kinetic
energy due to an initial disturbance field that consists of spanwise-uniform vortices
that are tilted against the direction of the base flow. Such a disturbance can grow
by extracting the base-flow kinetic energy via the Reynolds stress production term.
Considering plane wave solutions for arbitrary 3D perturbations, Farrell & Ioannou
(1993) demonstrated that any growth in wall-normal velocity via the Orr mechanism
can eventually lead to large amplification of the streamwise velocity through the lift-up
mechanism. In a more recent study, Vitoshkin et al. (2012) explained that 3D optimal
growth arises when the spanwise vorticity and the 2D spanwise divergence field are
in/out phase when the mean flow shear is positive/negative.

In the case of confined viscous shear flows, disturbance growth over a finite-time
horizon (or non-modal behaviour) can be computed via an eigenfunction expansion
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(Schmid & Henningson 2001; Schmid 2007). In this context, the present article
extends the classical Squire transformation to the wall-normal vorticity component of
both the Orr–Sommerfeld and the Squire modes. The implications of this extended
Squire transformation for the arbitrary initial-value problem of the LNS equation are
then explored. As a result, a large-Reynolds-number transformation that relates the
entire optimal gain curve of any 3D perturbation to a generic 2D problem is obtained
(§ 5). The extended Squire transformation and the resulting asymptotic solution to
the LNS equation at Re� 1 can be viewed as a generalization of the well-known
large-Reynolds-number scaling laws first deduced by Gustavsson (1991) and Reddy
& Henningson (1993) (§ 8.2).

2. Governing equations

The evolution of 3D infinitesimal disturbances in a shear flow is governed by the
LNS equations with appropriate boundary conditions. For parallel shear flows that are
homogeneous and infinite along streamwise (x-axis) and spanwise (z-axis) directions
with base flow velocity U=[U0(y), 0, 0]T, the solution q= [v (x, y, z, t) , η (x, y, z, t)

]T

(where v and η are wall-normal velocity and vorticity perturbation components,
respectively) of the LNS equations may be expanded in the so-called normal mode
formulation (Lin 1955; Chandrasekhar 1961; Joseph 1976; Drazin & Reid 1981;
Schmid & Henningson 2001):

q=
∫ ∞

0

∫ ∞
0

q̃ (y, t; α, β) eiαx+iβydα dβ, (2.1)

with the LNS equation for each wave vector k = (α, β)T (where α and β are the
streamwise and spanwise wavenumbers, respectively) given by

− ∂

∂t

[
k2 −D2 0

0 1

]
q̃=

[
LO 0

iβ dU0
dy LS

]
q̃, (2.2)

where D = ∂/∂y and k2 = α2 + β2. The symbols LO and LS, respectively, denote
the Orr–Sommerfeld and Squire operators (Gustavsson & Hultgren 1980; Schmid &
Henningson 2001), namely,

LO = iαU0
(
k2 −D2

)+ iα
d2U0

dy2
+ 1

Re

(
k2 −D2

)2
, (2.3)

LS = iαU0 + 1
Re

(
k2 −D2

)
, (2.4)

where Re = Ul/ν is the Reynolds number, with ν the kinematic viscosity, l
the characteristic length scale and U the characteristic velocity scale, for the
non-dimensionalization of the governing equations. For plane Poiseuille flow and
plane Couette flow, l is the half-channel width h/2 and U is the difference in
velocity between the centreline and the channel wall.

When the flow is bounded in the cross-stream direction with no-slip boundary
conditions at the wall, the spectrum of (2.2) is discrete and complete (Schensted
1961; DiPrima & Habetler 1969). Considering the triangular form of the matrix
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in (2.2), any solution q̃ (y, t; α, β, Re) at a particular wave vector of (2.2) may be
expressed as

q̃ (y, t; α, β, Re)=
∞∑

j=1

(
AO

j q̂O
j exp(−iωO

j t)
)
+
∞∑

j=1

(
AS

j q̂S
j exp(−iωS

j t)
)
, (2.5)

where ωO
j and q̂O

j =
[
v̂O

j (y; α, β, Re) , η̂O
j (y; α, β, Re)

]T are the Orr–Sommerfeld
eigenvalues and eigenfunctions, respectively, with the complex frequency ωO

j and
wall-normal velocity v̂O

j given by the Orr–Sommerfeld (OS) equation(
iωO

j (k
2 −D2)− LO

)
v̂O

j (y; α, β, Re)= 0, (2.6)

with v̂O
j = Dv̂O

j = 0 at the wall, and the wall-normal vorticity η̂O
j of the OS

eigenfunction is given by the forced Squire (FS) equation:(
iωO

j − LS
)
η̂O

j (y; α, β, Re)= iβ
dU0

dy
v̂O

j (y; α, β, Re) , (2.7)

with η̂O
j = 0 at the wall. The FS equation (2.7) has a solution only if ωO

j is not in
the spectrum of LS. This condition is fulfilled except for a set of Reynolds number
and wavenumber of zero measure (Schmid & Henningson 2001) and these resonant
cases will not be considered here. This implies, however, that η̂O

j = 0 for 2D spanwise-
uniform perturbations (β = 0). At this point, we introduce a new auxiliary velocity
variable ˆ̂ηO

j =−iη̂O
j /β whose significance will be clear in the following sections. The

corresponding forced Squire equation in terms of the OS auxiliary velocity is(
iωO

j − LS
) ˆ̂ηO

j (y; α, β, Re)= dU0

dy
v̂O

j (y; α, β, Re) , (2.8)

with ˆ̂ηO
j = 0 at the wall. This auxiliary velocity ˆ̂ηO

j has a non-zero solution when β= 0.

The Squire mode q̂S
j =

[
0, η̂S

j (y; α, β, Re)
]T does not involve wall-normal velocity.

The complex frequency ωS
j and the wall-normal vorticity η̂S

j are solutions of the
eigenvalue problem given by the Squire (SQ) equation:(

iωS
j − LS

)
η̂S

j (y; α, β, Re)= 0, (2.9)

with η̂S
j = 0 at the wall. The coefficients {AO

j } and {AS
j } in (2.5) are determined from

the initial condition.

3. The extended Squire transformation on the eigenfunctions
For the perturbations with non-zero streamwise wavenumber α 6= 0, the OS and

SQ eigenvalue problems (2.6) and (2.9) are invariant under the Squire transformation
which keeps the wave-vector modulus k constant: α→ α′, β→ β ′=√k2 − α′2, Re→
Re′ = (α/α′) Re and ω→ ω′ = (α′/α) ω. Thus, for the OS-modes, v̂O

j → v̂O′
j = v̂O

j and
ˆ̂ηO

j → ˆ̂ηO′
j = (α/α′) ˆ̂ηO

j and for the SQ-modes, η̂S
j → η̂S′

j = η̂S
j . By setting α′ = k, β

vanishes and any 3D eigenmode is related to a 2D spanwise eigenmode at a smaller
Reynolds number Re2D = (α/k) Re with a larger frequency and growth rate given by
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ω2D= (k/α) ω. Implications of the classical Squire transformation are well-known for
the wall-normal velocity component v̂O

j of the OS-mode:

v̂O
j (y; α, β, Re)= v̂O2D

j (y; k, Re2D), (3.1)

where v̂O2D
j is the solution of the 2D Orr–Sommerfeld equation

(Lin 1955; Chandrasekhar 1961; Joseph 1976; Drazin & Reid 1981; Schmid &
Henningson 2001)[

i
(
ωO2D

j − kU0
) (

k2 −D2
)− ik

d2U0

dy2
− 1

Re2D

(
k2 −D2

)2
]
v̂O2D

j (y; k, Re2D)= 0, (3.2)

with v̂O2D
j = Dv̂O2D

j = 0 at the wall. However, to the authors’ best knowledge, the
transformation of the wall-normal vorticity component of the OS and SQ eigenmodes
has never been considered before. Most of the results presented here are precisely due
to this extension of the classical Squire transformation.

For the OS-mode the wall-normal vorticity η̂O
j vanishes for the 2D case but the

Squire transformation suggests rewriting it in terms of the auxiliary velocity variable
as

η̂O
j (y; α, β, Re)= iβ

k
α
ˆ̂ηO2D

j (y; k, Re2D), (3.3)

where η̂O2D
j is the solution of the 2D Squire equation forced at ωO2D

j :[
i
(
ωO2D

j − kU0
)− 1

Re2D

(
k2 −D2

)] ˆ̂ηO2D
j (y; k, Re2D)= dU0

dy
v̂O2D

j (y; k, Re2D), (3.4)

with ˆ̂ηO2D
j = 0 at the wall. Applying the Squire transformation also to the wall-normal

vorticity η̂O
j is somewhat unusual, since η̂O

j is zero in the strictly 2D case. However,
the auxiliary velocity variable is non-zero when β = 0. As a result, it can be shown
(see § 4) that the corresponding 2D velocity field is equivalent to a three-component
2D flow: three non-zero velocity components which are uniform in the spanwise
direction. On the other hand, if 3D perturbations that are asymptotic to the
longitudinal case are considered by taking α → 0 at constant k and Re2D (i.e.
assuming that the flow Reynolds number Re = k Re2D/α goes to infinity), (3.3)
then implies that the wall-normal vorticity η̂O

j of the OS-mode diverges as α−1 while
the wall-normal velocity v̂O

j remains constant. This is another manifestation of the
lift-up mechanism (Moffatt 1967; Ellingsen & Palm 1975; Landhal 1980; Boberg &
Brosa 1988; Gustavsson 1991; Butler & Farrell 1992; Farrell & Ioannou 1993) in
3D OS-modes whereby the wall-normal vorticity η̂O

j is a forced response due to the
tilting of the base-flow shear dU0/dy by the wall-normal velocity v̂O

j solution of the
OS equation.

Similarly, for the SQ-mode the wall-normal vorticity η̂S
j should vanish for the

strictly 2D case. But if, instead, one considers the so-called three-component 2D
flows wherein the spanwise velocity ŵ is non-zero but uniform in the spanwise
direction, the wall-normal vorticity is then non-zero in the 2D case and it corresponds
to the variation of the spanwise velocity ŵS2D in the streamwise direction given by
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η̂S2D
j =−ikŵS2D. Then, the extended Squire transformation also applies to the Squire

mode with

η̂S
j (y; α, β, Re)= η̂S2D

j (y; k, Re2D), (3.5)

where η̂S2D
j is the 2D Squire eigenfunction solution of the 2D Squire equation valid

for the three-component 2D flow:[
i
(
ωS2D

j − kU0
)− 1

Re2D

(
k2 −D2

)]
η̂S2D

j (y; k, Re2D)= 0, (3.6)

with η̂S2D
j = 0 at the wall. Equations (3.3) and (3.5) relating η̂O

j and η̂S
j , respectively,

to the ˆ̂ηO2D
j and η̂S2D

j introduced here define the extended Squire transformation.

4. The extended Squire transformation in primitive variables
It is interesting to rewrite the extended Squire transformation in terms of the

normal modes of the Fourier-transformed primitive variables, namely, the streamwise
velocity û(y; α, β, Re), the wall-normal velocity v̂(y; α, β, Re), the spanwise velocity
ŵ(y; α, β, Re) and the pressure field p̂(y; α, β, Re). In this case, the non-dimensional
governing equations of the perturbation velocity and pressure field are

iαû+Dv̂ + iβŵ = 0, (4.1)[
i (ω− αU0)+ 1

Re

(
D2 − k2

)]
û = iαp̂+ v̂ dU0

dy
, (4.2)[

i (ω− αU0)+ 1
Re

(
D2 − k2

)]
v̂ = Dp̂, (4.3)

and [
i (ω− αU0)+ 1

Re

(
D2 − k2

)]
ŵ= iβp̂, (4.4)

with û = v̂ = ŵ = p̂ = 0 at the wall. The classical Squire transformation should be
valid for the primitive variables as well. Thus, for each 3D normal mode (û, v̂, ŵ,
p̂), there exists a 2D spanwise-uniform normal mode at a smaller Reynolds number
Re2D = (α/k) Re with a larger frequency and growth rate given by ω2D = (k/α) ω. It
can be verified that the following extended Squire’s transformation for the primitive
variables exists, for all α, β and Re:

û(y; α, β, Re) = k
α

[
û2D(y; k, Re2D)− β

2

k2
ŵ2D(y; k, Re2D)

]
, (4.5)

v̂(y; α, β, Re) = v̂2D(y; k, Re2D), (4.6)

ŵ(y; α, β, Re) = β

k
ŵ2D(y; k, Re2D), (4.7)

p̂(y; α, β, Re) = α

k
p̂2D(y; k, Re2D), (4.8)

where the governing equations corresponding to the 2D spanwise-uniform fields are

ikû2D +Dv̂2D = 0, (4.9)
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i
(
ω2D − kU0

)+ 1
Re2D

(
D2 − k2

)]
û2D = ikp̂2D + v̂2D dU0

dy
, (4.10)[

i
(
ω2D − kU0

)+ 1
Re2D

(
D2 − k2

)]
v̂2D = Dp̂2D, (4.11)

and [
i
(
ω2D − kU0

)+ 1
Re2D

(
D2 − k2

)]
ŵ2D = ikp̂2D, (4.12)

with û2D = v̂2D = ŵ2D = p̂2D = 0 at the wall. Equations (4.9)–(4.11) are the commonly
known Squire-transformed 2D-equivalent of (4.1)–(4.3) for the streamwise and
wall-normal velocity components. The Squire transformation for the û-component (4.5)
shows a complex behaviour related to the contributions from the 2D streamwise and
spanwise velocity components with different scalings. Together with the transformation
for ŵ (4.7) and the evolution equation of ŵ2D, they can be considered as an extension
to the classical Squire transformation. In this way, every 3D perturbation field can be
related to a three-component 2D perturbation field.

The 2D spanwise velocity ŵ2D is, by definition, independent of β. As β→ 0 (α→
k), from (4.5) we obtain that û→ û2D and from (4.7), we get

lim
β→0

ŵ
β
= ŵ2D

k
. (4.13)

If [ûS2D
j , v̂S2D

j , ŵS2D
j , p̂S2D

j ]T denotes the 2D SQ-mode in primitive variables, the
wall-normal velocity v̂S2D

j is zero for the 2D SQ-mode; its streamwise velocity ûS2D
j

and pressure field p̂S2D
j should also be zero, according to (4.9)–(4.11). Therefore, the

2D SQ-mode in terms of the primitive variables is [0, 0, ŵS2D
j , 0]T which corresponds

simply to a pressure-less 2D perturbation field with only a spanwise velocity. This
non-zero spanwise velocity component is uniform in the spanwise direction but varies
along the streamwise and wall-normal directions.

If [ûO2D
j , v̂O2D

j , ŵO2D
j , p̂O2D

j ]T denotes the 2D OS-mode in primitive variables, the wall-
normal vorticity of any OS-mode is then

η̂O
j = iβ

k
α

(
ûO2D

j − ŵO2D
j

)= iβ
k
α
ˆ̂ηO2D

j (4.14)

in accordance with (3.3).
Indeed, by definition, the OS wall-normal vorticity η̂O

j is given by η̂O
j = iβûO

j − iαŵO
j .

The auxiliary velocity variable ˆ̂ηO
j introduced in the previous section is then

ˆ̂ηO
j (y; α, β, Re)= ûO

j (y; α, β, Re)− α
β

ŵO
j (y; α, β, Re), (4.15)

which can be rewritten using the extended Squire transformation (4.5) and (4.7) as

ˆ̂ηO
j (y; α, β, Re)= k

α

[
ûO2D

j (y; k, Re2D)− ŵO2D
j (y; k, Re2D)

]
, (4.16)

showing that

ˆ̂ηO2D
j (y; α, β, Re)= ûO2D

j (y; k, Re2D)− ŵO2D
j (y; k, Re2D). (4.17)

This implies that the 2D auxiliary velocity variable represents the difference between
the 2D streamwise and spanwise velocity components.
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5. The extended Squire transformation on the initial-value problem

The difference in the scaling of v̂O
j , η̂O

j and η̂S
j when applying the extended Squire

transformation implies that the general solution (2.5) to the initial-value problem (2.2)
with the same initial condition q̃0 for various α, β and Re corresponding to the same
Re2D and k, can be rewritten as

q̃ (y, t; α, β, Re) =
∞∑

j=1

AO
j

[
v̂O2D

j (y; k, Re2D)(
iβRe
Re2D

) ˆ̂ηO2D
j (y; k, Re2D)

]
exp
(
−iRe2Dω

O2D
j

t
Re

)
+

∞∑
j=1

(
Re

Re2D
BO

j + BS
j

) [
0

η̂S2D
j (y; k, Re2D)

]
× exp

(
−iRe2Dω

S2D
j

t
Re

)
. (5.1)

Here, AO
j , BO

j and BS
j are constants and depend only on the initial condition q̃0 for a

given k and Re2D. Since the Squire modes do not contribute to the disturbance wall-
normal velocity, the v-component of the initial-value q̃0, namely ṽ0, determines the
coefficients AO

j of the OS-modes:

∞∑
j=1

AO
j v̂

O2D
j = ṽ0. (5.2)

Consequently, the coefficients AS
j of the Squire modes play a two-fold role:

(a) One part of AS
j should cancel the wall-normal vorticity contribution from the OS-

mode and scale as Re/Re2D, i.e.

∞∑
j=1

BO
j η̂

S2D
j =−iβ

∞∑
j=1

AO
j
ˆ̂ηO2D

j , (5.3)

which is non-zero as long as β 6= 0.
(b) The other part of AS

j should contribute to the initial wall-normal vorticity field η̃0

of q̃0

∞∑
j=1

BS
j η̂

S2D
j = η̃0. (5.4)

This may be proved by considering a given Re2D and k, as Re changes. For t�
Re/Re2D, the short-time expansion of wall-normal vorticity in the solution (5.1) gives

η̃ (y, t; k, Re2D)=Π0 + kΠ1t− iRe2DΠ2
t

Re
+O

(
t2
)
, (5.5)

where

Π0 = Re
Re2D

∞∑
j=1

(
iβAO

j
ˆ̂ηO2D

j + BO
j η̂

S2D
j

)
+
∞∑

j=1

BS
j η̂

S2D
j , (5.6)
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Π1 =
∞∑

j=1

(
β

k
AO

j
ˆ̂ηO2D

j ωO2D
j − i

k
BO

j η̂
S2D
j ωS2D

j

)
, (5.7)

and

Π2 =
∞∑

j=1

BS
j η̂

S2D
j ωS2D

j . (5.8)

Since η̃0(y) is assumed to be the same for all Re,

∞∑
j=1

(
iβAO

j
ˆ̂ηO2D

j + BO
j η̂

S2D
j

)
= 0, (5.9)

and hence,

∞∑
j=1

BS
j η̂

S2D
j = η̃0, (5.10)

showing that the initial vorticity η̃0 is only spanned by the Squire modes η̂S2D
j .

As Re becomes very large, the leading term for 1� t� Re/Re2D is

η̃(y, t; k, Re2D)∼ kΠ1t, (5.11)

which offers the possibility for short-time growth even if ωO
j and ωS

j are all stable with
negative imaginary parts. Since the kinetic energy of the disturbance Ek, in terms of
wall-normal velocity and vorticity, reads

Ek(t)= 1
2

∫ 1

−1

[|ṽ|2 + k−2
(|Dṽ|2 + |η̃|2)] dy, (5.12)

where, with no loss of generality, the y-domain is assumed to be bounded by y =
±1 for convenience. For 1� t� Re/Re2D, the energy is led by the η-term in (5.12),
giving

Ek(t)∼ t2

2

∫ 1

−1
|Π1|2 dy. (5.13)

The optimal growth is obtained by solving for an initial disturbance that would give
rise to the maximum possible growth at a particular time horizon t and it is defined
by the gain function

G (t; α, β, Re)= sup
∀Ek(0)6=0

Ek(t)
Ek(0)

, (5.14)

where Ek(0) is the initial perturbation kinetic energy. For fixed Re2D and k, the
intermediate-time asymptotics at 1� t� Re/Re2D, for Re going to infinity gives

G (t; α, β, Re)∼
(

Re
Re2D

)2

t2
2DG2D (k, Re2D) , (5.15)



440 J. John Soundar Jerome and J.-M. Chomaz

with t2D = tRe2D/Re and

G2D (k, Re2D)= sup
∀Ek(0)6=0


1
2

∫ 1

−1
|Π1|2 dy

Ek(0)

 , (5.16)

which is a function of k and Re2D, independent of time and Reynolds number Re,
since Π1 depends only on AO

j , ˆ̂ηO2D
j , ωO2D

j , BO
j , η̂S2D

j and ωS2D
j . Furthermore, Π1 is

independent of BS
j and maximizing G2D then imposes BS

j = 0 which gives η̃0(y) = 0.
Thus, the optimal in (5.16) should be looked for within initial conditions on ṽ0(y)
only.

For time t & Re/Re2D, the large-Reynolds-number Re asymptotics for the energy is
given by

Ek(t)∼
(

Re
Re2D

)2

I2D (t2D; k, Re2D) , (5.17)

where

I2D(t2D; kRe2D) = 1
2

∫ 1

−1

∣∣∣∣∣
∞∑

j=1

(
AO

j
ˆ̂ηO2D

j exp[−iωO2D
j t2D]

− i
k

BO
j η̂

S2D
j exp[−iωS2D

j t2D]
)∣∣∣∣2 dy. (5.18)

The integral I2D (t2D; k, Re2D) vanishes only at t2D= 0 and is O
(|exp

(−2iω2D
maxt2D

) |),
where ω2D

max is the leading eigenvalue among ωO2D
j and ωS2D

j when t2D is large. Thus,
the large-time asymptotics using the extended Squire transformation imposes that

G (t; α, β, Re)∼
(

Re
Re2D

)2

G2D (t2D; k, Re2D) , (5.19)

with

G2D (t2D; k, Re2D)= sup
∀ ˜Ek(0) 6=0

[
I2D (t2D; k, Re2D)

Ek(0)

]
. (5.20)

Since I2D (t2D; k, Re2D) is the function (5.18) independent of the coefficients BS
j ,

it depends only on the initial wall-normal velocity and since, maximizing the gain
imposes the minimizing of Ek(0) at constant I2D (t2D; k, Re2D), the initial wall-normal
vorticity η̃0 should be set to zero. The optimal for G2D should be sought only in the
initial perturbations field ṽ0(y) as in the previous case when 1� t� Re/Re2D.

The extended Squire transformation, therefore, predicts according to (5.15) and
(5.19) that, as soon as t� 1 (even if t/Re� 1), the entire optimal gain curve at large
Re (α→ 0) is a unique curve dependent only on Re2D and k given by t2

2DG2D at small
t2D and G2D (t2D; k, Re2D) at t2D of order unity or large, once the gain is rescaled
by (Re2D/Re)2 and the time by (Re2D/Re). It also implies that the optimal initial
perturbations for optimization time t large or t2D arbitrary (small or large) involve
only the ṽ0(y) component, i.e. η̃0(y) = 0. As we will see in § 8, this result may be
seen as an extension and an alternative formal proof of the classical scaling argument
put forward by Gustavsson (1991), Reddy & Henningson (1993).
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6. The Squire transformation extended to the adjoint problem

The optimal gain can be analysed in a different limit, i.e. for finite Re but as
time t goes to infinity, by introducing the adjoint equations with respect to the scalar
product associated with the energy norm 〈q̂1, q̂2〉=

∫ 1
−1 q̂H

2 M q̂1dy, where superscript H

represents the conjugate-transpose of a matrix and M = k−2

[
(k2 −D2) 0

0 1

]
. The norm

with respect to this scalar product is related to the kinetic energy defined in (5.12) as
Ek(t)= 1

2 ‖q̃‖2. Thus, the adjoint equations are

− ∂

∂t

[
k2 −D2 0

0 1

]
q̃† =

[
LO† −iβ dU0

dy
0 LS†

]
q̃†
, (6.1)

where LO† and LS† represent the adjoint Orr–Sommerfeld and Squire operators,
respectively,

LO† = −iαU0
(
k2 −D2

)+ 2iα
dU0

dy
D+ 1

Re

(
k2 −D2

)2
, (6.2)

LS† = −iαU0 + 1
Re

(
k2 −D2

)
, (6.3)

and the adjoint state vector is q̃† = [ṽ† (y, t; α, β, Re) , η̃† (y, t; α, β, Re)]T. Here,
ṽ†(y, t; α, β, Re) and η̃† (y, t; α, β, Re) denote the adjoint wall-normal velocity and
vorticity components, respectively. The spectrum of the adjoint OS-operator LO† is
the complex conjugate of the spectrum of the direct OS-operator LO and similarly
for the adjoint SQ-operator LS†. But in the adjoint linear operator (6.1), it is the
wall-normal vorticity η̃† that forces the adjoint wall-normal velocity equation whereas
the adjoint Squire equation is independent of the adjoint wall-normal velocity ṽ

†
j .

The adjoint OS-modes q̂O†
j =

[
v̂

O†
j , 0

]T
correspond then to zero wall-normal vorticity

and the adjoint SQ-modes q̂S†
j =

[
v̂

S†
j , η̂

S†
j

]T
have a non-zero wall-normal velocity

corresponding to the forcing of the adjoint OS-operator by the off-diagonal term
−iβ(dU0/dy)η̂S†

j in the adjoint equation (6.1).
The Squire transformation also applies to the homogeneous part of the adjoint Orr–

Sommerfeld equation and to the adjoint Squire equation. Thus, a 3D adjoint OS-mode
at any α, β and Re, is related to a 2D adjoint OS-mode at α2D= k, β2D= 0 and Re2D

via the transformation

ωO∗
j (α, β, Re) = α

k
ωO2D∗

j (k, Re2D) , (6.4)

v̂†
j (y; α, β, Re) = v̂O2D†

j (y; k, Re2D). (6.5)

Similarly, the adjoint SQ-mode at any α, β and Re reads

ωS∗
j (α, β, Re) = α

k
ωS2D∗

j (k, Re2D) , (6.6)

η̂S†

j (y; α, β, Re) = η̂S2D†
j (y; k, Re2D), (6.7)

v̂S†
j (y; α, β, Re) = β

k
α
v̂S2D†

j (y; k, Re2D), (6.8)
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where v̂
S2D†
j is the rescaled wall-normal velocity that satisfies the 2D adjoint Orr–

Sommerfeld equation forced at the complex frequency ωS2D∗
j by the adjoint SQ-modes

such that[
i(ωS2D∗

j + kU0)(k2 −D2)− 2ik
dU0

dy
D− 1

Re2D
(k2 −D2)2

]
v̂S2D†

j (y; k, Re2D)

=−i
dU0

dy
η̂S2D†

j (y; k, Re2D) . (6.9)

Thus, the Squire transformation extended to the adjoint modes predicts that the adjoint
Squire mode should have a v̂†-component scaling like Re/Re2D.

7. Consequences for long-time optimal gains
Since the basis of direct modes is biorthogonal to the basis of adjoint modes

(Schmid & Henningson 2001), the coefficients in the eigenfunction expansion (2.5)
of the initial-value problem (2.2) for the wave vector k= (α, β) at Re are given by:

AO
j =
〈q̃0, q̂O†

j 〉
〈q̂O

j , q̂O†
j 〉

and AS
j =
〈q̃0, q̂S†

j 〉
〈q̂S

j , q̂S†
j 〉
, (7.1)

where AS
j =
(
(βRe/Re2D)BO

j + BS
j

)
. For t� (1ωmax)

−1, where 1ωmax is the difference
in the growth rate of the first and the second leading eigenmode, the long-time
response is dominated by the leading eigenmode with a non-zero co-efficient in the
solution (2.5).

Consider the case where the leading mode is the OS-mode q̂O
1 = [v̂O

1 , η̂
O
1 ]T, then

at t � (1ωmax)
−1, q̃ (t) ∼ AO

1 q̂O
1 exp

(−iωO
1 t
)

and the optimization problem for long-
time gain reduces to maximizing the coefficient AO

1 . Expression (7.1) shows classically
that the large-time gain is achieved by taking the leading adjoint OS-mode q̂O†

1 =
[v̂O†

1 (y), 0]T as the initial condition. Hence, the gain reads

G(α, β, t; Re)∼GO
∞
∣∣∣exp(−2iωO

1 t)
∣∣∣ with GO

∞ =
∥∥∥q̂O

1

∥∥∥2 ∥∥∥q̂O†
1

∥∥∥2

∣∣∣〈q̂O
1 , q̂O†

1 〉
∣∣∣2 , (7.2)

where GO
∞(α, β, t; Re) is the extra gain compared to the exponential variation.

Similarly, if the leading eigenmode is the SQ-mode q̂S
1 = [0, η̂1(y)]T, GS

∞ =∥∥∥q̂S
1

∥∥∥2 ∥∥∥q̂S†
1

∥∥∥2
/|〈q̂S

1, q̂S†
1 〉|2 denotes the extra gain compared to the exponential growth,

or decay |exp(−2iωS
1t)|.

When α 6= 0, the extended Squire transformation states, as demonstrated in §§ 3
and 6, that, for fixed k =√α2 + β2 and Re2D, the direct and the adjoint OS-modes
transform as

q̂O
j =

[
v̂O2D

j

(iβRe/Re2D) ˆ̂ηO2D
j

]
and q̂O†

j =
[
v̂

O2D†
j
0

]
, (7.3)

with β= k
√

1− Re2
2D/Re2. Therefore, according to the extended Squire transformation,

the long-time extra gain GO
∞ (α, β, Re) may be rewritten as a product of 2D and 3D
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long-time extra gains:

GO
∞ (α, β, Re)=GO2D

∞ (k, Re2D)

(
1+ β

2Re2

Re2
2D

GO3D
∞ (k, Re2D)

)
, (7.4)

with GO2D
∞ (k, Re2D)=

∥∥∥q̂O2D
1

∥∥∥2 ∥∥∥q̂O2D†
1

∥∥∥2
/|〈q̂O2D

1 , q̂O2D†
1 〉|2 given by

GO2D
∞ (k, Re2D)=

∫ 1

−1

(∣∣v̂O2D
1

∣∣2 + k−2
∣∣Dv̂O2D

1

∣∣2) dy
∫ 1

−1

(∣∣v̂O2D†
1

∣∣2 + k−2
∣∣Dv̂O2D†

1

∣∣2) dy∣∣∣∣∫ 1

−1

(
v̂

O2D†∗
1 v̂O2D

1 + k−2Dv̂O2D†∗
1 Dv̂O2D

1

)
dy
∣∣∣∣2

(7.5)

and

GO3D
∞ (k, Re2D)=

k−2

∫ 1

−1

∣∣∣ ˆ̂ηO2D
1

∣∣∣2 dy∫ 1

−1

(∣∣v̂O2D
1

∣∣2 + k−2
∣∣Dv̂O2D

1

∣∣2) dy
, (7.6)

where all fields are evaluated for k and Re2D and here (and also hereafter) they were
written without the explicit dependence for the sake of brevity. The GO2D

∞ (k, Re2D) is
the extra gain that would be obtained in the 2D case and it is known to result from
the classical Orr mechanism. The term

(
β2Re2/Re2

2D

)
GO3D
∞ (k, Re2D) is the extra gain

from the 3D-effect, the contribution to the optimal transient growth arising from the
lift-up mechanism due to the forcing of the wall-normal vorticity by the wall-normal
velocity. Furthermore, the extended Squire transformation explains the form of the
3D contribution

(
1+ (β2Re2/Re2

2D)G
O3D
∞ (k, Re2D)

)
with GO3D

∞ (k, Re2D) that depends
only on 2D eigenfunctions v̂O2D

1 and ˆ̂ηO2D
1 introduced in § 3. Contrary to the previous

section where equations (5.15) and (5.19) were the large-Reynolds-number asymptotic
for the gain curve valid for all times via the extended Squire transform, the present
prediction (7.4) is valid for arbitrary Reynolds number but only for large time
tRe2D/Re� 1.

Similarly, for the direct and adjoint Squire modes the extended Squire transformation,
as already demonstrated, gives

q̂S
j =
[

0
η̂S2D

j

]
and q̂S†

j =
[
βRe/Re2Dv̂

S2D†
j

η̂
S2D†
j

]
. (7.7)

Using this, the long-time extra gain can be rewritten as

GS
∞(α, β, Re)=GS2D

∞ (k, Re2D)

(
1+

(
βRe
Re2D

)2

GS3D
∞ (k, Re2D)

)
, (7.8)

where

GS2D
∞ (k, Re2D)=

∫ 1

−1

∣∣η̂S2D
1

∣∣2 dy
∫ 1

−1

∣∣η̂S2D†
1

∣∣2 dy∣∣∣∣∫ 1

−1
η̂

S2D†∗
1 η̂S2D

1 dy
∣∣∣∣2

(7.9)
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is the 2D extra gain for the 2D Squire mode which will be found numerically (see
the results discussed in the next section) to be close to unity for all k and Re2D. The
rescaled contribution GS3D

∞ corresponds to the lift-up phenomenon when seen as an
initial value given by the adjoint SQ-mode which has a βRe/Re2D larger v̂-component
than the η̂-component:

GS3D
∞ (k, Re2D)=

∫ 1

−1

(∣∣v̂S2D†
1

∣∣2 + k−2
∣∣Dv̂S2D†

1

∣∣2) dy

k−2

∫ 1

−1

∣∣η̂S2D†
1

∣∣2 dy
. (7.10)

Thus, the extra gain for both OS and SQ modes exhibits a lift-up contribution
scaling like β2Re2/Re2

2D when Re � 1 (note that β = k
√

1− (Re2D/Re)2 and α =
kRe2D/Re in the Squire transformation). No matter whether the OS-mode or SQ-mode
is the least stable eigenmode, only the OS-mode exhibits a 2D extra gain due to the
Orr mechanism that, as we shall see, explains why this mode determines the maximum
transient growth.

8. Discussion
8.1. Direct computations of optimal growth in plane Poiseuille and Couette flows

Figure 1 displays optimal growth curves G(t) (solid lines) directly computed using
singular value decomposition (SVD) as in Jerome, Chomaz & Huerre (2012), for
various Reynolds numbers Re and wavenumbers (α, β) corresponding to the same
Re2D = 1000 and k = 1. The analytical predictions of the optimal long-time gains
GO
∞|exp(−2iωO

1 t)|, GS
∞|exp(−2iωS

1t)| of the leading OS- and SQ-modes computed
using (7.4) and (7.8) (dashed and dashed-dotted lines, respectively) at Re = 106

corresponding to α= 10−3 are also presented in the figure. The optimal growth at any
time t/Re increases with decreasing streamwise wavenumber α and after t/Re∼ 0.03,
all optimal growth curves show two consecutive exponential decays (straight lines).
In figure 1, this two-step long-time dynamics can be identified with exponential
decay of the leading OS-mode and SQ-mode. Their corresponding long-time optimal
gains increase as Re increases and α decreases as predicted by the scaling laws
obtained using the extended-Squire transformation in §§ 5 and 7. The two-step
long-time behaviour occurs because GO

∞ is larger than GS
∞, a property retrieved for

all the cases studied. When the leading eigenmode is an OS-mode, it dominates
the optimal dynamics for all times large than 0.03Re and the piecewise exponential
decay is not observed. Whereas, when the leading eigenmode is a SQ-mode, the
OS-mode dominates after t = 0.03Re but, since it decays faster than the SQ-mode,
it is superseded after some time

(
log GO

∞ − log GS
∞
)
/1ωmax leading to the two-step

optimal gain curve displayed in figure 1. On figure 1, it is also plotted as a dotted
line, the optimal gain for the longitudinal mode α= 0 which is to be compared with
the curve for α = 10−3 at the same Re = 106. The short-time behaviour is identical
but after t= 0.02Re, the two curves split apart as the gain for the strictly longitudinal
mode keeps increasing for a much longer time, thereby depicting the singularity of
the longitudinal modes. It is also observed that GO

∞, given by the product of long-time
optimal gain corresponding to the 2D Orr mechanism GO2D

∞ and 3D optimal gain from
the lift-up mechanism

(
Re2

2D/β
2Re2

)
GO3D
∞ , is approximately the maximum optimal

growth for all Reynolds numbers and wavenumbers shown here.
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FIGURE 1. (Colour online) Direct computations of optimal gain curves G (solid lines) as
a function of t/Re in plane Poiseuille flow at k= 1 and Re2D= 1000 for α= 1, 0.707, 0.1,
10−2 and 10−3 corresponding respectively, via the Squire transform, to Re= Re2D = 1000,
1414.2, 104, 105 and 106. The optimal gain curve for α= 0 and Re= 106 is also presented
(· · · ). For α = 10−3 (corresponding to Re= 106), the long-time exponential decay of the
leading OS-mode (−−−) and leading SQ-mode (−·−·) are also displayed; they intersect
the y-axis at GO

∞ and GS
∞, respectively, as given exactly by (7.4) and (7.8).

Figure 2 presents the optimal gain curves of figure 1 but rescaled as G
(
Re2

2D/β
2Re2

)
in order to verify the predictions of the extended Squire transformation on the large-Re
limit for the optimal gain curve at all time derived in § 5. Note that this rescaled gain
diverges for the 2D case (when β = 0) and hence this case is not shown in figure 2.
As Re increases, the rescaled optimal gain curves collapse remarkably well onto a
single curve. The convergence is so strong that even at Re/Re2D = 10 (i.e. Re= 104,
α = 0.1), the large-Re asymptote is reached for all t/Re and at Re/Re2D =

√
2

(corresponding to α = 0.7071) the asymptotic curve is nearly achieved. Only at very
small t/Re, shown in the inset, may a departure of the curve be observed since the
new Squire-transformed gain is not valid at the very initial instant where it should
converge to unity. This confirms the large-Reynolds-number asymptotics predicted
by the Squire transformation on the initial-value problem ((5.15) and (5.19)) for all
times larger than unity (t� 1 but t/Re small, order unity or larger).

The rescaled optimal gain G
(
Re2

2D/β
2Re2

)
for the case of plane Couette flow at

the same Re2D= 1000 and k= 1 is shown in figure 3. The symbols correspond to the
same Reynolds numbers Re and streamwise wavenumber α as in figure 2. The curves
are indistinguishable for all Re and α, including α = 0.707 corresponding to Re =
1414.2. Thus, figures 2 and 3 show that the large-Reynolds-number scaling of optimal
growth curves obtained from the extended Squire transformation in § 5 is extremely
efficient in predicting the entire optimal gain curve. Also displayed in figure 3 is the
long-time exponential decay of the leading OS- and SQ-modes (denoted, respectively,
by dashed and dash-dotted lines) for α= 10−3 (corresponding to Re= 106). At Re2D=
1000 and k = 1, similar to the case of plane Poiseuille flow, the leading eigenmode
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FIGURE 2. (Colour online) Same data as in figure 1 but rescaled according to the large-Re
prediction via the extended Squire transformation for the optimal gain curve at t/Re finite
or large. Note that the curve α = 1 (or β = 0) cannot be plotted in the present scaling.
All the cases when α = 0.1, α = 10−2 and α = 10−3 collapse so well for all times that
they form a single curve; only in the inset, where the very early instants are shown, is
a difference visible since all curves should start at Re2

2D/β
2Re2 for t = 0. But even in

the close-up plot, the curves for α = 10−2 and α = 10−3 are indistinguishable except at
the very first point at t = 0. The curve for α = 0.707 is also very close to the large-Re
asymptotic curve and it only departs at large time.

is an SQ-mode (Schmid & Henningson 2001) and the tail of the optimal gain curve
(corresponding to t� 1) could be expected to show two exponential decay rates. But,
in this case, the exponential decay rates of the leading OS- and SQ-modes differ only
in the third significant digit. Thus, for the optimization times shown in figure 3, the
optimal gain curve displays only one exponential decay corresponding to the leading
OS-mode.

Note that, for the optimal growth G(t), the large-Re rescaling obtained from the
extended Squire transformation is similar to that proposed by Gustavsson (1991) who
deduced large-Re scaling law for maximum optimal gain in plane Poiseuille flow but,
here, wall-normal vorticity rescaling comes out naturally from the extended Squire
transformation. Moreover, it is illustrated by comparing the results of large-Reynolds-
number asymptotics and direct computations that the extended Squire transformation
works for the entire optimal growth curve at all time t/Re, whether small, order unity
or large.

The variation of the long-time optimal gains, namely, GO
∞ and GS

∞, for arbitrary
Reynolds numbers Re is plotted in figure 4(a). The curves are obtained via (7.4) and
(7.8) for the various 2D Reynolds numbers Re2D = 102, Re2D = 103 and Re2D = 104

at k = 1. The large and small symbols represent GS
∞ and GO

∞, respectively, directly
computed using SVD in plane Poiseuille flow as in figure 1. The long-time gains at
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FIGURE 3. (Colour online) Same as figure 2 but for the case of plane Couette flow (k=
1 and Re2D = 1000). The long-time exponential decay of the leading OS-mode (− − −)
and leading SQ-mode (− · −·) for the case of α = 10−3 (corresponding to Re = 106) is
also displayed; they intersect the y-axis at GO

∞
(
Re2

2D/(β
2Re2)

)
and GS

∞
(
Re2

2D/(β
2Re2)

)
,

respectively.

all Reynolds numbers are precisely predicted by the analytical formulae (7.4) and (7.8).
As already observed in figure 1, GO

∞ is always larger than GS
∞ in plane Poiseuille flow.

Both gains, however, increase with Reynolds number Re and vary as Re2 at large
Reynolds numbers. It is observed that GS

∞ does not change with respect to the 2D
Reynolds number in the range considered: Re2D = 102, 103 and 104 (see Appendix
for details). Similarly, in the case of plane Couette flow, figure 5(a) compares the
long-time optimal gains GO

∞ and GS
∞ obtained via (7.4) and (7.8) with that directly

computed using SVD as in figure 1 over various Re2D. Here, again the analytical
formulae (7.4) and (7.8) predict exactly the long-time gains. Also, GO

∞ is always larger
than GS

∞. However, unlike the case for plane Poiseuille flow, not only GS
∞ but also GO

∞
does not vary much for a wide range of 2D Reynolds number (see table 1 for details).

In figures 4(b) and 5(b), the maximum optimal gain Gmax (closed symbols) obtained
via SVD is compared with the long-time optimal gains GO

∞ and GS
∞ (using (7.4) and

(7.8)) for various Reynolds numbers Re at fixed 2D Reynolds numbers Re2D. All the
data are computed for k = 1. When β = 0, Gmax is precisely the maximum transient
growth corresponding to the 2D Orr mechanism. For a given Re2D and k, both figures
4(b) and 5(b) show that this value of Gmax is approximately constant as long as β <
1/
√

2 (or βRe/Re2D < 1). However, when β → k (or Re/Re2D � 1), Gmax increases
steeply as (Re/Re2D)

2. Note that at this regime Gmax corresponds to the 3D lift-up
mechanism. When Gmax is compared with the corresponding long-time extra-gains G∞,
it is seen that they follow the same trend with respect to βRe/Re2D in both plane
Poiseuille and plane Couette flows. When Re2D is small, Gmax corresponding to the lift-
up mechanism shows large deviations from GO

∞ at all βRe/Re2D. However, as Re2D�
1, Gmax seems to converge remarkably well toward GO

∞ at large βRe/Re2D. This result
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FIGURE 4. (Colour online) (a) Long-time asymptotic predictions of the extended Squire
transformation for the extra gain for all Reynolds numbers in plane Poiseuille flow is
presented here by comparing results obtained via direct computations of the optimal
long-time gains GO

∞ (small symbols) and GS
∞ (large symbols) as in figure 1 against the

analytical formulae (7.4) and (7.8) for GO
∞ (broken lines) and GS

∞ (solid line), respectively,
when k = 1. The prediction of (7.8) is represented by the same solid line since GS2D

∞
and GS3D

∞ are identical at all Re2D considered (see table 1). (b) Comparison between the
maximum optimal growth Gmax (closed symbols) and the optimal long-time gains G∞ over
various Re2D. Both G∞ and Gmax curves show the same trend but Gmax is approximately
given by GO

∞ at large Re2D.
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FIGURE 5. (Colour online) Same as figure 4 but for the case of plane Couette flow
(k= 1).

is important as it shows that, at the large-Reynolds-number limit, the optimal gain is
predicted by GO

∞ and is therefore the product of the 2D Orr mechanism and a lift-up
contribution as given by (7.4). This result is in accordance with Farrell & Ioannou
(1993) who showed, in viscous constant-shear flows, that arbitrary 3D perturbations
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grow with a combination of the lift-up mechanism and the Orr mechanism of the
wall-normal velocity. Our results for both plane Poiseuille and plane Couette flow
indicate that this amplification process can be universal. And the interaction of the
Orr mechanism with the lift-up mechanism determines the optimal growth.

8.2. Gustavsson’s large-Reynolds-number scaling

Gustavsson (1991) studied the effect of wall-normal velocity forcing on the equation
governing the wall-normal vorticity η̃(y, t): the inhomogeneous Squire equation. In
particular, Gustavsson (1991) analysed the initial-value problem of η̃(y, t) alone when
the initial wall-normal vorticity is zero, i.e. η̃0= 0, and the initial wall-normal velocity
is an eigenfunction of the Orr–Sommerfeld equation (2.3), i.e. ṽ0 = v̂O

j . While doing
so, Gustavsson (1991) and later, Reddy & Henningson (1993) who as opposed to
vorticity growth, directly computed the optimal energy growth in plane Poiseuille and
plane Couette flows, obtained large-Reynolds-number scaling for Gmax by rescaling the
wall-normal vorticity as

η̃(y, t; α, β, Re)= βRe η̄(y, t/Re; k, αRe). (8.1)

Note that this is equivalent to the extended Squire transformation § 3; however, in the
case of Gustavsson (1991) and Reddy & Henningson (1993) this rescaling introduces
(βRe)2 in the energy norm:

‖q̃‖2 = 1
2

∫ 1

−1

[(
|ṽ|2 + 1

k2
|Dṽ|2

)
+ (βRe)2

1
k2
|η̄|2
]

dy, (8.2)

which, at Re� 1, implies that the optimal growth is dominated by the wall-normal
vorticity growth

G (t; α, β, Re)∼ (βRe)2 sup
∀ṽ0 6=0,η̃0=0

[
Eη̄ (t/Re; k, αRe)

Eṽ (0)

]
, (8.3)

where

Eη̄ (t/Re; k, αRe) = 1
2

∫ 1

−1

1
k2
|η̄|2 dy, (8.4)

Eṽ (0) = 1
2

∫ 1

−1

(
|ṽ0|2 + 1

k2
|Dṽ0|2

)
dy. (8.5)

In the present analysis, however, we have applied the Squire transformation on
both the Orr–Sommerfeld and Squire eigenfunctions. In addition, the extended Squire
transformation is used on the initial-value problem (2.2) for arbitrary initial conditions,
in order to derive asymptotic solutions at Re� 1 and exact optimal gains at large
time with the reported effect on the 2D Orr mechanism and the 3D lift-up mechanism.
Thus, the extended Squire transformation gives an alternative proof of Gustavsson’s
scaling for arbitrary αRe as Re→∞.
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8.3. Extension to confined shear flows with destabilizing temperature gradient
For the sake of simplicity, let us consider the so-called Rayleigh–Bénard–Poiseuille
flow which is simply a channel flow with a constant temperature gradient (see for
instance, Nicolas 2002; Jerome et al. 2012). Nonetheless, the following analysis is true
for arbitrary base-flow temperature distributions. In general, the governing equations
of the perturbation field (2.2) can be re-written in terms of the wall-normal velocity
ṽ(y, t; α, β, Re, Ra, Pr), temperature θ̃ (y, t; α, β, Re, Ra, Pr) and the wall-normal
vorticity η̃(y, t;α, β,Re,Ra,Pr) at each wave vector k= (α, β)T (Chandrasekhar 1961;
Joseph 1976; Drazin & Reid 1981; Jerome et al. 2012):

− ∂

∂t

k2 −D2 0 0
0 1 0
0 0 1

ṽθ̃
η̃

=
 LOS −k2Ra/

(
Re2Pr

)
0

dΘ0
dy LLHE 0

iβ dU0
dy 0 LSQ

ṽθ̃
η̃

 , (8.6)

with D= ∂/∂y and k2= α2+ β2 as in the previous case. Here, Ra= α∗gl31T/ν∗κ∗ is
the Rayleigh number and Pr = ν∗/κ∗ is the Prandtl numbers with g the acceleration
due to gravity, ν∗ the kinematic viscosity, κ∗ the thermal diffusion coefficient and
α∗ the thermal expansion coefficient. Under the Boussinesq approximation, these
parameters are functions of only Θ∗, the average non-dimensional temperature of
the channel (and hence, they do not depend on the temperature of the flow field).
The space, time, velocity and temperature variables have been non-dimensionalized
with respect to the characteristic length scale l, time scale l/U, velocity scale U
and temperature scale 1T/2, respectively. In the case of plane Poiseuille flow with
constant cross-stream temperature gradient, l is the half-channel width h/2, U is the
velocity at the centre of the channel and 1T is the difference in temperature between
the lower and upper wall. Equations (8.6) form the linearized Oberbeck–Boussinesq
system of equations (LOB) wherein the operators LOS and LSQ are the usual
Orr–Sommerfeld and Squire operators, given by (2.3) and (2.4). Whereas, the operator
LLHE given by

LLHE = iαU0 + 1
RePr

(
k2 −D2

)
(8.7)

comes from the linearized heat equation and it is the advection–diffusion operator
governing the evolution of the temperature perturbation. These equations are to be
solved for the boundary conditions: ṽ(±1, t) = 0, Dṽ(±1, t) = 0, η̃(±1, t) = 0 and
θ̃ (±1, t)= 0. Here, the wall-normal velocity and temperature perturbations are coupled
via the buoyancy terms whereas the wall-normal vorticity equation is decoupled
from the temperature perturbations. The Squire equation is, however, forced by the
solution of the coupled operator governing the wall-normal velocity and temperature
perturbations.

For confined shear flows, the spectrum of (8.6) is discrete and complete (Herron
1980) and it consists of two families of modes, namely, the Orr–Sommerfeld–
Oberbeck–Boussinesq (OSOB) eigenfunctions [v̂O

j , θ̂
O
j , η̂

O
j ]T and the Squire (SQ)

eigenfunctions [0, 0, η̂S
j ]T with corresponding eigenvalues {λO

j } and {λS
j }, respectively.

They depend on α, β, Re, Ra and Pr. When Ra > 1707.78, the longitudinal
OSOB-modes are destabilized as in the classical Rayleigh–Bénard convection.

For every given Ra and Pr, the extended Squire transformation then relates oblique
modes with α 6= 0, β 6= 0 at Reynolds number Re to a 2D spanwise-uniform mode
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with α2D = k, β2D = 0 at a smaller Reynolds number Re2D = (α/k) Re:

λO
j (α, β, Re, Ra, Pr) = Re2D

Re
λO2D

j (k, Re2D, Ra, Pr), (8.8)

v̂O
j (y; α, β, Re, Ra, Pr) = v̂O2D

j (y; k, Re2D, Ra, Pr), (8.9)

θ̂O
j (y; α, β, Re, Ra, Pr) = Re

Re2D
θ̂O2D

j (y; k, Re2D, Ra, Pr), (8.10)

η̂O
j (y; α, β, Re, Ra, Pr) = iβRe

Re2D
η̂O2D

j (y; k, Re2D, Ra, Pr), (8.11)

in the case of the OSOB-modes, and

λS
j (α, β, Re, Ra, Pr) = Re2D

Re
λS2D

j (k, Re2D, Ra, Pr), (8.12)

η̂S
j (y; α, β, Re, Ra, Pr) = η̂S2D

j (y; k, Re2D, Ra, Pr), (8.13)

in the case of the SQ-modes. The superscripts 2D refer to variables of the 2D
spanwise-uniform modes.

Using this transformation, the evolution of the perturbations in such flows can be
written as

q̃ (y, t; α, β, Re, Ra, Pr)

=
∑

j

AO
j exp

(
−iλO2D

j Re2D
t

Re

)  v̂O2D
j

(Re/Re2D) θ̂
O2D
j

(iβRe/Re2D) η̂
O2D
j


×
∑

j

(
iβRe
Re2D

BO
j + BS

j

)
exp

(
−iλS2D

j Re2D
t

Re

)  0
0
η̂S2D

j

. (8.14)

The Fourier amplitudes q̃ (y, t; α, β, Re, Ra, Pr)= [ṽ, θ̃ , η̃]T are functions of y, t and
the control parameters, namely, α, β, Re, Ra and Pr. The coefficients {AO

j }, {BO
j } and

{BS
j } are complex constants that can be determined from the initial conditions on the

state variables in the same manner as in the uniform temperature case, treated (5.2),
(5.3) and (5.4).

Note that the wall-normal vorticity η̃ in the general solution (8.14) is given by
exactly the same equation (5.1) and, hence, it should obey the same scaling laws as
in the uniform temperature case. Thus, all the results obtained in § 3 apply equally
well in such systems.

The rescaled optimal gain GRB (Re2D/βRe)2 curves at various Reynolds numbers for
the case of Rayleigh–Bénard–Poiseuille flow are given in figure 6. The norm used to
define the optimal gain GRB is taken as

‖q̃‖2 = 1
2

∫ 1

−1

[|ṽ|2 + k−2
(|Dṽ|2 + |η̃|2)] dy+ 1

2
Ra Pr

∫ 1

−1
|θ̂ |2dy, (8.15)

since this choice for the relative weights of the thermal contribution to the energy
is both consistent with the classical choice for the Rayleigh–Bénard problem in the
absence of through flow and the classical potential energy for stably stratified flows
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FIGURE 6. (Colour online) Same as figure 2 but for the case of Rayleigh–Bénard–
Poiseuille flow at Rayleigh number Ra= 1000 and Prandtl number Pr= 1. It shows that
the large-Reynolds-number asymptotic via the extended Squire transformation is also valid
in shear flows with heat addition.

(see Jerome et al. 2012 for details). For the results displayed in figure 6, Ra= 1000
and Pr = 1 are taken along with Re2D = 1000 and k = 1. The rescaled optimal gain
curves are very similar to those in figure 2 corresponding to the uniform termperature
case of plane Poiseuille flow. A perfect collapse is observed at all times t/Re, small,
order unity or larger, for α6 0.1 or Re> 10Re2D. The mismatch occurs only for times
t/Re very small (<10−3) as shown in the inset of figure 6. This proves that the large-
Re scalings (5.15) and (5.19) derived via the extended Squire transformation are also
applicable for confined shear flows with heat addition.

9. Conclusion
The Squire transformation is extended to the wall-normal vorticity component of

the Orr–Sommerfeld mode and the Squire mode. By introducing two new fields
for the wall-normal vorticity in the 2D case, any 3D eigenmode of the linearized
Navier–Stokes equation is thus transformed into a three-component 2D eigenmode
with Re2D = αRe/k and α2D = k in wall-bounded parallel flows. Consequently, as a
manifestation of the lift-up mechanism, the wall-normal vorticity component in the
OS-mode is transformed proportionally to the Reynolds number Re. In wall-bounded
parallel flows, this extended Squire transformation allows us to solve the optimal gain
at t large but t/Re arbitrary, for any large value of Re with an exact renormalization
of the entire gain curve depending only on 2D optimization.

The Squire transformation is extended also to the adjoint eigenmodes. As a
consequence, the optimal gain at large time t � (1ωmax)

−1, where 1ωmax is the
difference between the first and second leading eigenmode growth rate, is expressed
as an analytical function of β2Re2/Re2

2D at a given Re2D and k but arbitrary Re.
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Plane Poiseuille flow Plane Couette flow

Re2D 102 103 5800 5× 104 500 103 104 105

GO2D
∞ 3.4 12 21.6 146.7 44.2 44.2 43.7 43.8

GS2D
∞ 1.4 1.4 1.4 1.4 5.2 5.2 5.2 5.2

GO3D
∞ 2.4 4.1 4.5 9.4 68.9 75.8 91.6 100

GS3D
∞ 0.3 0.28 0.29 0.29 2.5 2.6 2.8 2.9

TABLE 1. Long-time optimal gains for plane Poiseuille and plane Couette flows at various
Reynolds numbers Re2D.

If the leading eigenmode is an Orr–Sommerfeld mode, the large-time optimal gain
at t � (1ωmax)

−1 is shown to be a product of respective gains from the 2D Orr
mechanism corresponding to the v̂-component of the 2D three-component OS-mode
and the contribution of the 3D lift-up mechanism associated with the η̂-component
of the same mode.

The results of these two asymptotic predictions (large Re at arbitrary t/Re and large
t but arbitrary Re, respectively) of the extended Squire transformation are verified for
the case of plane Poiseuille flow, plane Couette flow and Rayleigh–Bénard–Poiseuille
flow by direct numerical computations of optimal gain curves over a wide range of
optimization time t. It is observed that, at large Reynolds numbers, the product of the
gains from the 2D Orr mechanism and the lift-up mechanism is a good approximation
to the maximum optimal transient growth.
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Appendix.
For the case of plane Poiseuille and plane Couette flows, table 1 provides typical

values of long-time optimal gains as obtained from (7.4) and (7.8). Here, GS2D
∞

and GO2D
∞ refer to the long-time optimal gains via 2D mechanisms corresponding

to the leading Squire and Orr–Sommerfeld modes, respectively. Similarly, GS3D
∞ and

GO3D
∞ refer to the long-time optimal gains via 3D lift-up mechanisms corresponding

respectively to the leading Squire and Orr–Sommerfeld modes. As already seen in
figures 4 and 5, the long-time optimal gain GS

∞ is always less than GO
∞.
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