Sparsity-promoting dynamic mode decomposition

Abstract : Dynamic mode decomposition (DMD) represents an effective means for capturing the essential features of numerically or experimentally generated flow fields. In order to achieve a desirable tradeoff between the quality of approximation and the number of modes that are used to approximate the given fields, we develop a sparsity-promoting variant of the standard DMD algorithm. Sparsity is induced by regularizing the least-squares deviation between the matrix of snapshots and the linear combination of DMD modes with an additional term that penalizes the l(1)-norm of the vector of DMD amplitudes. The globally optimal solution of the resulting regularized convex optimization problem is computed using the alternating direction method of multipliers, an algorithm well-suited for large problems. Several examples of flow fields resulting from numerical simulations and physical experiments are used to illustrate the effectiveness of the developed method. (C) 2014 AIP Publishing LLC.
Liste complète des métadonnées

Littérature citée [35 références]  Voir  Masquer  Télécharger
Contributeur : Denis Roura <>
Soumis le : lundi 26 mai 2014 - 16:25:26
Dernière modification le : jeudi 10 mai 2018 - 02:03:38
Document(s) archivé(s) le : mardi 26 août 2014 - 10:36:16


Fichiers éditeurs autorisés sur une archive ouverte




Mihailo R. Jovanovic, Peter J. Schmid, Joseph W. Nichols. Sparsity-promoting dynamic mode decomposition. Physics of Fluids, American Institute of Physics, 2014, 26 (2), 〈10.1063/1.4863670〉. 〈hal-00995141〉



Consultations de la notice


Téléchargements de fichiers