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Dynamic mode decomposition (DMD) represents an effective means for capturing

the essential features of numerically or experimentally generated flow fields. In

order to achieve a desirable tradeoff between the quality of approximation and

the number of modes that are used to approximate the given fields, we develop

a sparsity-promoting variant of the standard DMD algorithm. Sparsity is induced

by regularizing the least-squares deviation between the matrix of snapshots and

the linear combination of DMD modes with an additional term that penalizes the

ℓ1-norm of the vector of DMD amplitudes. The globally optimal solution of the

resulting regularized convex optimization problem is computed using the alternating

direction method of multipliers, an algorithm well-suited for large problems.

Several examples of flow fields resulting from numerical simulations and physical

experiments are used to illustrate the effectiveness of the developed method. C© 2014

AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4863670]

I. INTRODUCTION

Even though fluid flows are infinite-dimensional systems governed by nonlinear partial

differential equations, the essential features of their dynamical responses can often be approx-

imated reliably by models of low complexity. This observation has given rise to the notion of

coherent structures – organized fluid elements that, together with dynamic processes, are respon-

sible for the bulk of momentum and energy transfer in the flow. Recent decades have witnessed

significant advances in the extraction of coherent structures from data collected in experiments

and numerical simulations. Proper orthogonal decomposition (POD) modes,1, 2 global eigenmodes,

frequential modes,3 and balanced modes4, 5 have provided useful insight into the dynamics of fluid

flows. Recently, Koopman modes6–8 and dynamic mode decomposition (DMD)9 have joined the

group of feature extraction techniques. Both POD and DMD are snapshot-based post-processing

algorithms which may be applied equally well to data obtained in simulations or in experiments.

While POD modes are characterized by spatial orthogonality and multi-frequential temporal content,

DMD modes may be non-orthogonal but each of them possesses a single temporal frequency. This

lack of non-orthogonality of DMD modes may be essential to capturing important dynamical effects

in systems with non-normal dynamical generators.10–12 For an in-depth discussion of the connection

between DMD and other data decomposition methods, we refer the reader to Refs. 8, 9, and 13.

The importance of POD and DMD modes goes beyond identification of coherent structures

in fluid flows. In particular, they may be used to obtain models of low complexity; by projecting

the full system onto the subspace spanned by the extracted modes, the governing equations may
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be approximated by a dynamical system with fewer number of degrees of freedom. This facilitates

computationally tractable study of flow stability and receptivity as well as a model-based control

design. In many situations, however, it is challenging to identify a subset of modes that have the

strongest impact on the flow dynamics. For example, spatial non-orthogonality of the DMD modes

may introduce a poor quality of approximation of experimentally or numerically generated snapshots

when only a subset of modes with the largest amplitude is retained. Recent attempts at extracting only

a subset of desired frequencies and spatial profiles rely on formulation of non-convex optimization

problems. In Ref. 14, a variant of DMD, referred to as the Optimized DMD, was introduced;

determining a solution to this problem in general requires an intractable combinatorial search. In

Refs. 15 and 16, a gradient-based algorithm was employed to simultaneously search for the low-rank

basis and the matrix that governs temporal evolution on a lower-dimensional subspace in order to

reduce the least-squares residual achieved by DMD.

In this paper, we develop a sparsity-promoting variant of the standard DMD algorithm. This

algorithm is aimed at achieving a desirable tradeoff between the quality of approximation (in the

least-squares sense) and the number of modes that are used to approximate numerical or exper-

imental snapshot sequences. To achieve this objective, we combine tools and ideas from convex

optimization17 with the emerging area of compressive sensing.18–20 Our approach to inducing spar-

sity relies on regularization of the least-squares deviation (between the matrix of snapshots and

the linear combination of DMD modes) with an additional term that penalizes the ℓ1-norm of the

vector of DMD amplitudes. The ℓ1-norm can be interpreted as a convex relaxation of the non-convex

cardinality function,17 and it has been effectively used as a proxy for promoting sparsity in a number

of applications.20–25 The alternating direction method of multipliers (ADMM) – a state-of-the-art

algorithm for solving large-scale and distributed optimization problems24 – is then employed to

solve the resulting convex optimization problem and to efficiently compute the globally optimal so-

lution. Since this algorithm alternates between promoting sparsity and minimizing the least-squares

residual, we exploit the respective structures of the underlying penalty functions to decompose the

optimization problem into easily solvable modules. In particular, we show that the least-squares

minimization step amounts to solving an unconstrained regularized quadratic program and that spar-

sity is promoted through the application of a convenient soft-thresholding operator. After a desirable

tradeoff between the quality of approximation and the number of DMD modes has been achieved, for

the fixed sparsity structure resulting from the ADMM algorithm we compute the optimal amplitudes

of the retained dynamic modes as the solution to the constrained quadratic program. This “polishing

step” improves the quality of approximation of numerically or experimentally generated snapshots

and provides optimal amplitudes of the dominant DMD modes.

Our presentation is organized as follows. In Sec. II, we formulate the problem, provide a brief

overview of the dynamic mode decomposition, and address the optimal selection of amplitudes of

extracted DMD modes. In Sec. III, we apply a sparsity-promoting framework to select a subset of

DMD modes which strikes a user-defined balance between the approximation error (with respect

to the full data sequence) and the number of extracted modes. In Sec. IV, we use three databases

resulting from the two-dimensional linearized Navier–Stokes equations for plane Poiseuille flow, the

unstructured large-eddy simulation (LES) of a supersonic jet, and the time-resolved particle image

velocimetry (TR-PIV) experiment of a flow through a cylinder bundle to illustrate the utility of the

developed method. We conclude our presentation in Sec. V with a summary of our contributions and

an outlook for future research directions, and relegate algorithmic developments to the appendixes.

II. PROBLEM FORMULATION

A. Dynamic mode decomposition

The DMD is a data processing algorithm that extracts coherent structures with a single temporal

frequency from a numerical or experimental data-sequence.9 In what follows, we briefly outline the

key steps of DMD.

We begin by collecting a sequence of snapshots from numerical simulations or physical exper-

iments and form a data matrix whose columns represent the individual data samples. Even though
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we confine our attention to temporal evolution processes, the DMD-framework can accommodate

a variety of “evolution coordinates” (e.g., spatial directions, or curved base-flow streamlines).9

Furthermore, we assume that the data are equispaced in time, with a time step �t,

{ψ0, ψ1, . . . , ψN } ,

where each ψi := ψ(i�t) is, in general, a complex vector with M components (measurement points),

i.e., ψi ∈ C
M .

Next, we form two data matrices from the snapshot sequence

�0 :=
[

ψ0 ψ1 · · · ψN−1

]

∈ C
M×N ,

�1 :=
[

ψ1 ψ2 · · · ψN

]

∈ C
M×N ,

and postulate that the snapshots have been generated by a discrete-time linear time-invariant system

ψt+1 = A ψt , t = {0, . . . , N − 1} . (1)

For fluid flows, the matrix A typically contains a large number of entries (which are in general

complex numbers). The dynamic mode decomposition furnishes a procedure for determining a

low-order representation of the matrix A ∈ C
M×M that captures the dynamics inherent in the data

sequence. In fluid problems, the number of components (measurement points) in each snapshot ψ i

is typically much larger than the number of snapshots, M ≫ N, thereby implying that �0 and �1

are tall rectangular matrices. Using the linear relation (1) between the snapshots at two consecutive

time steps, we can link the two data matrices �0 and �1 via the matrix A and express �1 as

�1 =
[

ψ1 ψ2 · · · ψN

]

=
[

A ψ0 A ψ1 · · · A ψN−1

]

= A �0.

(2)

For a rank-r matrix of snapshots �0, the DMD algorithm provides an optimal representation

F ∈ C
r×r of the matrix A in the basis spanned by the POD modes of �0,

A ≈ U F U ∗.

Here, U* denotes the complex-conjugate-transpose of the matrix of POD modes U which is obtained

from an economy-size singular value decomposition (SVD) of �0 ∈ C
M×N ,

�0 = U � V ∗,

where � is an r × r diagonal matrix with non-zero singular values {σ 1, . . . , σ r} on its main diagonal,

and

U ∈ C
M×r with U ∗ U = I,

V ∈ C
r×N with V ∗ V = I.

The matrix F can be determined from the matrices of snapshots �0 and �1 by minimizing the

Frobenius norm of the difference between �1 and A �0 with A = U F U* and �0 = U � V ∗,

minimize
F

‖�1 − U F � V ∗‖2
F , (3)

where the Frobenius norm of the matrix Q is determined by

‖Q‖2
F = trace

(

Q∗ Q
)

= trace
(

Q Q∗) .

It is straightforward to show that the optimal solution to (3) is determined by

Fdmd = U ∗ �1 V �−1.

This expression is identical to the expression provided in Ref. 9 and it concludes the implementation

of the DMD algorithm, starting from matrices of data snapshots �0 and �1. For a discussion about
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the relation between Fdmd and the companion form matrix Ac – which provides a representation of

the matrix A on an N-dimensional subspace of C
M that is spanned by the columns of �0 – we refer

the reader to Ref. 9.

B. Optimal amplitudes of DMD modes

The matrix Fdmd ∈ C
r×r determines an optimal low-dimensional representation of the inter-

snapshot mapping A ∈ C
M×M on the subspace spanned by the POD modes of �0. The dynamics

on this r-dimensional subspace are governed by

xt+1 = Fdmd xt , (4)

and the matrix of POD modes U can be used to map xt into a higher dimensional space C
M ,

ψt ≈ U xt .

If Fdmd has a full set of linearly independent eigenvectors {y1, . . . , yr}, with corresponding eigen-

values {μ1, . . . , μr}, then it can be brought into a diagonal coordinate form,

Fdmd =
[

y1 · · · yr

]

︸ ︷︷ ︸

Y

⎡

⎢
⎢
⎣

μ1

. . .

μr

⎤

⎥
⎥
⎦

︸ ︷︷ ︸

Dμ

⎡

⎢
⎢
⎣

z∗
1

...

z∗
r

⎤

⎥
⎥
⎦

︸ ︷︷ ︸

Z∗

.

Here, each yj is of unit length, y∗
j y j = 1, and {z1, . . . , zr} are the eigenvectors of F∗

dmd, corresponding

to the eigenvalues {μ̄1, . . . , μ̄r }, which are suitably scaled so that the following bi-orthogonality

condition holds:

z∗
i y j =

{

1, i = j

0, i �= j.

Now, the solution to (4) is determined by

xt = Y Dt
μ Z∗x0 =

r
∑

i = 1

yi μt
i z∗

i x0 =
r

∑

i = 1

yi μt
i αi ,

where αi := z∗
i x0 represents the ith modal contribution of the initial condition x0. We can thus

approximate experimental or numerical snapshots using a linear combination of the DMD modes,

φi := U yi ,

ψt ≈ U xt =
r

∑

i = 1

φi μt
i αi , t ∈ {0, . . . , N − 1} , (5)

and each αi can be interpreted as the “amplitude” of the corresponding DMD mode.9 It is worth

noting that the selection of the amplitudes αi can be interpreted as the selection of the Koopman

modes that have the strongest influence on the system’s response resulting from the use of the

particular initial condition and the time interval on which the snapshots are collected; cf. Eq. (5)

with Eq. (2.5) in Ref. 7. Equivalently, in matrix form, we have

[

ψ0 ψ1 · · · ψN−1

]

︸ ︷︷ ︸

�0

≈
[

φ1 φ2 · · · φr

]

︸ ︷︷ ︸




⎡

⎢
⎢
⎢
⎢
⎣

α1

α2

. . .

αr

⎤

⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸

Dα := diag{α}

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 μ1 · · · μN−1
1

1 μ2 · · · μN−1
2

...
...

. . .
...

1 μr · · · μN−1
r

⎤

⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸

Vand

,

which demonstrates that the temporal evolution of the dynamic modes is governed by the Van-

dermonde matrix Vand ∈ C
r×N . This matrix is determined by the r complex eigenvalues μi of
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Fdmd which contain information about the underlying temporal frequencies and growth/decay

rates.

Determination of the unknown vector of amplitudes α :=
[

α1 · · · αr

]T
then amounts to finding

the solution to the following optimization problem:

minimize
α

‖�0 − 
 Dα Vand‖2
F .

Using the economy-size SVD of �0 = U � V ∗ and the definition of the matrix 
 := U Y , we bring

this problem into the following form:

minimize
α

J (α) := ‖� V ∗ − Y Dα Vand‖2
F , (6)

which is a convex optimization problem that can be solved using standard methods.17, 26 We note

that this optimization problem does not require access to the POD modes of the matrix of snapshots

�0; the problem data in (6) are the matrices � and V , which are obtained from the economy-size

SVD of �0, and the matrices Y and Vand, which result from the eigenvalue decomposition of Fdmd.

In Appendix A, we show that the objective function J(α) in (6) can be equivalently represented

as

J (α) = α∗ P α − q∗α − α∗q + s, (7)

where

P :=
(

Y ∗ Y
)

◦
(

Vand V ∗
and

)

, q := diag (Vand V �∗ Y ), s := trace
(

�∗�
)

.

Here, an asterisk denotes the complex-conjugate-transpose of a vector (matrix), an overline signifies

the complex-conjugate of a vector (matrix), diag of a vector is a diagonal matrix with its main

diagonal determined by the elements of a given vector, diag of a matrix is a vector determined by

the main diagonal of a given matrix, and ◦ is the elementwise multiplication of two matrices. The

optimal vector of DMD amplitudes that solves the optimization problem (6) can thus be obtained

by minimizing the quadratic function (7) with respect to α,

αdmd = P−1q =
(
(

Y ∗ Y
)

◦
(

Vand V ∗
and

))−1

diag (Vand V �∗ Y ).

A superposition of all DMD modes, properly weighted by their amplitudes and advanced in time

according to their temporal growth/decay rate, optimally approximates the entire data sequence.

The key challenge that this paper addresses is the identification of a low-dimensional representation

in order to capture the most important dynamic structures (by eliminating features that contribute

weakly to the data sequence).

III. SPARSITY-PROMOTING DYNAMIC MODE DECOMPOSITION

In this section, we direct our attention to the problem of selecting the subset of DMD modes that

has the most profound influence on the quality of approximation of a given sequence of snapshots.

In other words, we are interested in a hierarchical description of the data sequence in terms of a set

of dynamic modes. Our approach to sparsity-promoting dynamic mode decomposition consists of

two steps:

� In the first step, we seek a sparsity structure that achieves a user-defined tradeoff between the

number of extracted modes and the approximation error (with respect to the full data sequence);

see (9) below;
� In the second step, we fix the sparsity structure of the vector of amplitudes (identified in the

first step) and determine the optimal values of the non-zero amplitudes; see (10) below.

We approach the problem of inducing sparsity by augmenting the objective function J(α) in (6)

with an additional term, card(α), that penalizes the number of non-zero elements in the vector of

unknown amplitudes α,

minimize
α

J (α) + γ card (α) . (8)
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In the modified optimization problem (8), γ is a positive regularization parameter that reflects our

emphasis on sparsity of the vector α ∈ C
r . Larger values of γ place stronger emphasis on the number

of non-zero elements in the vector α (relative to the quality of the least-squares approximation, J(α)),

thereby encouraging sparser solutions to (8).

In general, finding a solution to the problem (8) amounts to a combinatorial search that quickly

becomes intractable for any problem of interest. To circumvent this issue, we introduce a relaxed

version of (8) by replacing the cardinality function with the ℓ1-norm of the vector α,

minimize
α

J (α) + γ

r
∑

i = 1

|αi |. (9)

The sparsity-promoting DMD problem (9) is a convex optimization problem whose global so-

lution, for small and medium sizes, can be obtained using standard optimization solvers.17, 26

In Sec. III A, we develop an efficient algorithm for solving (9). This algorithm utilizes

the ADMM, a state-of-the-art method for solving large-scale and distributed optimization

problems.24

After a desired balance between the quality of approximation of experimental or numerical

snapshots and the number of DMD modes is achieved, we fix the sparsity structure of the unknown

vector of amplitudes and determine only the non-zero amplitudes as the solution to the following

constrained convex optimization problem:

minimize
α

J (α)

subject to E T α = 0.
(10)

In this expression, the matrix E ∈ R
r×m encodes information about the sparsity structure of the

vector α. The columns of E are the unit vectors in R
r whose non-zero elements correspond to zero

components of α. For example, for α ∈ C
4 with

α =
[

α1 0 α3 0
]T

,

the matrix E is given as

E =

⎡

⎢
⎢
⎢
⎣

0 0

1 0

0 0

0 1

⎤

⎥
⎥
⎥
⎦

.

An efficient algorithm for solving (10) is provided in Appendix C.

In summary, optimization problem (9) identifies location of non-zero entries in the vector of

amplitudes and optimization problem (10) adjusts the values of these non-zero entries in order to

optimally approximate the entire data sequence.

A. Alternating direction method of multipliers

We next use the alternating direction method of multipliers algorithm to find the globally optimal

solution to the sparsity-promoting optimization problem (9),

minimize
α

J (α) + γ g(α), (11)

with J(α) determined by (7) and

g(α) :=
r

∑

i = 1

|αi |.

In order to bring the problem into the form that is convenient for the application of ADMM, we need

the following two steps:
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� Step 1: Replace the vector of amplitudes α in the sparsity-promoting term g with a new variable

β ∈ C
r ,

minimize
α, β

J (α) + γ g(β)

subject to α − β = 0.

(12)

For any feasible α and β, the optimization problems (11) and (12) are equivalent. Even though

the number of optimization variables in (12) is twice as big as in (11), formulation (12) allows

us to exploit the respective structures of the quadratic function J(α) and the sparsity-promoting

function g(β) in the ADMM algorithm, as outlined below.

� Step 2: Introduce the augmented Lagrangian,

Lρ (α, β, λ) := J (α) + γ g(β) +
1

2

(

λ∗ (α − β) + (α − β)∗ λ + ρ ‖α − β‖2
2

)

.

Here, λ ∈ C
r is the vector of Lagrange multipliers, ρ is a positive parameter that introduces a

quadratic penalty on the deviation between α and β, and ‖ · ‖2 is the Euclidean norm of a given

vector. For ρ = 0, Lρ simplifies to the standard Lagrangian associated with the optimization

problem (12). For ρ �= 0, the additional quadratic term inLρ increases curvature of the objective

function and extends applicability of the augmented Lagrangian methods to the problems that

the standard Lagrangian methods cannot handle. In particular, the augmented Lagrangian

methods are guaranteed to converge for convex optimization problems with non-differentiable

objective functions that are even allowed to take infinite values.24

ADMM is an iterative algorithm for minimization of the augmented Lagrangian that combines

desirable features of the dual ascent method with the method of multipliers.24 It consists of an

α-minimization step, a β-minimization step, and a Lagrange multiplier update step

αk+1 := arg min
α

Lρ

(

α, βk, λk
)

, (13a)

βk+1 := arg min
β

Lρ

(

αk+1, β, λk
)

, (13b)

λk+1 := λk + ρ
(

αk+1 − βk+1
)

. (13c)

Starting with an initial point (β0, λ0), the iterations are conducted until the desired feasibility

tolerances, ǫprim and ǫdual, are met

‖αk+1 − βk+1‖2 ≤ ǫprim and ‖βk+1 − βk‖2 ≤ ǫdual.

We note that the selection of the positive parameter ρ determines the rate of convergence of the

ADMM algorithm. The optimal selection of ρ is a topic of an active research interest; for a class of

convex optimization problems, recent progress has been reported in Refs. 27 and 28.

In Appendix B, we utilize the respective structures of the functions J and g in (11) and show that

the α-minimization step amounts to solving an unconstrained regularized quadratic program and

that the solution to the β-minimization step is obtained through the application of a soft-thresholding

operator.

IV. EXAMPLES

In this section, we apply sparsity-promoting DMD to three databases of snapshots. The first

database is obtained using a numerically generated sequence of snapshots of the two-dimensional

linearized Navier–Stokes equations for plane Poiseuille flow with Re = 10 000, the second database

results from an LES of a screeching supersonic rectangular jet, and the third database contains

the time-resolved particle image velocimetry data of a flow through a cylinder bundle. In all three

examples, the value of the parameter ρ in the ADMM algorithm is set to one, ρ = 1.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.104.29.2 On: Mon, 26 May 2014 14:21:56
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A. Two-dimensional Poiseuille flow with Re = 10 000

We begin illustration of the sparsity-promoting DMD algorithm by considering the two-

dimensional linearized Navier–Stokes equations for plane Poiseuille flow with Re = 10 000 (based

on the centerline velocity and the channel half-width); see Figure 1 for geometry. The dynam-

ics of the wall-normal velocity fluctuations with streamwise wavenumber kx are governed by the

Orr-Sommerfeld equation.29 The discretized version of the linearized dynamics is obtained using a

pseudo-spectral scheme with M = 150 Chebyshev collocation points in the wall-normal direction,30

and the flow fluctuations with a single wavenumber kx = 1 are advanced in time using the matrix

exponential with time step �t = 1 and a randomly generated initial profile (that satisfies both homo-

geneous Dirichlet and Neumann boundary conditions in the wall-normal direction). After a transient

period of ten time-steps, N = 100 snapshots are taken to form the snapshot matrices, and we apply

the standard DMD algorithm along with its sparsity-promoting variant.

The spectrum of the Orr-Sommerfeld operator (circles) along with the eigenvalues resulting

from the standard DMD algorithm (crosses) are shown in Figure 2(a). The rank of the matrix of

snapshots �0 is r = 26, and the dependence of the absolute value of the DMD amplitudes αi on the

frequency and the real part of the corresponding DMD eigenvalues μi is displayed in Figures 2(b)

and 2(c), respectively. As expected, the largest amplitude of DMD modes corresponds to an unstable

eigenvalue that generates an exponentially growing Tollmien-Schlichting (TS) wave.

Figure 3 shows the residual ‖�0 − 
 Dα Vand‖F of the optimal vector of amplitudes α, resulting

from the sparsity-promoting DMD algorithm, in fraction of ‖�0‖F,

% �loss := 100

√

J (α)

J (0)
= 100

‖�0 − 
 Dα Vand‖F

‖�0‖F

,

as a function of the number of the retained DMD modes, Nz := card (α). As our emphasis on sparsity

increases, a progressively smaller number of non-zero elements in the vector α are obtained and the

quality of the least-squares approximation deteriorates. The sparsity-promoting DMD algorithm with

18 modes provides nearly identical performance as the full-rank DMD algorithm. By reducing the

number of modes to 13, the least-squares residual gets compromised by only 1.3%. While a reduction

in the number of modes from 13 to 12 introduces performance degradation of approximately 3%,

the reduction in the number of modes from 12 to 6 degrades performance by only additional 2.5%.

Further reduction in the number of DMD modes has a much more profound influence on the quality

of approximation of numerically generated snapshots; for example, performance deterioration of

almost 10% takes place when the number of DMD modes is reduced from 3 to 2. As we further

discuss below, this sharp performance drop may be attributed to the fact that at least one fast, one

slow, and one unstable mode has to be selected in order to capture the essential dynamical features of

the original data sequence. The results displayed in Figure 3 suggest that a reasonable compromise

between the quality of approximation (in the least-squares sense) and the number of modes in the

Poiseuille flow example may be achieved with Nz = 6 DMD modes.

It is also instructive to assess how the sparsity-promoting procedure selects the eigenvalues

identified by the standard DMD algorithm. For decreasing numbers of retained modes, the first row

in Figure 4 illustrates this process in the complex plane. The DMD-spectrum for plane Poiseuille

flow consists of branches that describe distinct features of the perturbation dynamics: the fast

perturbation dynamics in the center of the channel is captured by eigenvalues with phase velocities

FIG. 1. Geometry of a two-dimensional channel flow.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.104.29.2 On: Mon, 26 May 2014 14:21:56
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FIG. 2. (a) Spectrum of the Orr-Sommerfeld operator (circles) along with the eigenvalues resulting from the standard DMD

algorithm (crosses) for the two-dimensional Poiseuille flow with Re = 10 000 and kx = 1. Dependence of the absolute value

of the DMD amplitudes αi on (b) the frequency and (c) the real part of the corresponding DMD eigenvalues μi.

Re (log(μi ))/kx that are larger than the average base velocity (Ū = 2/3), and the slower dynamics

which takes place near the channel walls is described by eigenvalues with smaller phase velocities.

As our emphasis on sparsity increases, we observe a selection of modes from both the slow and fast

branches. While for Nz = 13 modes nearly the entire slow and fast branches (equivalent to the A-

and P-branches of plane Poiseuille flow29) are selected, a progressive coarsening on each branch is

seen for a smaller number of modes. This process continues until, for Nz = 3, only one fast, one

slow, and one unstable mode is chosen to represent the dynamics contained in the original data

sequence. Finally, in the limit of only a single mode, for Nz = 1, the unstable TS wave is selected

by the sparsity-promoting DMD algorithm.

The second row in Figure 4 shows the frequency-dependence of the absolute values of the DMD

amplitudes αi for both the standard DMD algorithm (circles) and its sparsity-promoting variant

(crosses). We observe discrepancy between the amplitudes resulting from the two algorithms. This

is because the sparsity-promoting algorithm adjusts amplitudes of the retained DMD modes in order

to provide optimal approximation of the original data sequence.

B. A screeching supersonic jet

Screech is a component of supersonic jet noise that is connected to the presence of a train of shock

cells within the jet column.31 For a turbulent jet, the unsteady shear layers interact with the shocks

to create sound. While this process is generally broadbanded, screech is a special case of shock-

noise that arises from the creation of a feedback loop between the upstream-propagating part of the
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%
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s

FIG. 3. Performance loss % �loss := 100
√

J (α)/J (0) of the optimal vector of amplitudes α resulting from the sparsity-

promoting DMD algorithm (with Nz DMD modes) for the Poiseuille flow example.
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FIG. 4. Eigenvalues of Fdmd (a)–(c) and the absolute values of the DMD amplitudes αi (d)–(f) for the Poiseuille flow

example. The results are obtained using the standard DMD algorithm (circles) and the sparsity-promoting DMD algorithm

(crosses) with Nz DMD modes.

acoustic field and the generation of new disturbances at the nozzle lip. This self-sustaining feedback

loop leads to an extremely loud (narrow-banded) screech tone at a specific fundamental frequency.

The presence of a tonal process embedded in an otherwise broadbanded turbulent flow makes the

screeching jet an excellent test case for the sparsity-promoting DMD method. The objective of the

developed method is to extract the entire coherent screech feedback loop from the turbulent data and

to describe the screech mechanism with as few modes as possible.

The supersonic jet used in this example was produced by a convergent rectangular nozzle of

aspect ratio 4, precisely matching the geometry of an experimental nozzle;32 see Figure 5(a) for

geometry. The entire flow inside, outside, and downstream of the nozzle was simulated using the

low-dissipation low-dispersion LES solver charles on an unstructured mesh with about 45×106

control volumes. This simulation was a part of a sequence involving different mesh resolutions, and

it was validated against the experimental measurements.33

(a) (b)

FIG. 5. (a) Rectangular nozzle geometry of aspect ratio 4. (b) Temperature contours in the (x, z)-centerplane taken from

a snapshot of the screeching jet. Time histories of pressure were recorded at probe locations indicated by circles 1 and 2

(Multimedia view). [URL: http://dx.doi.org/10.1063/1.4863670.1]
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FIG. 6. Power spectra of pressure corresponding to the measurement locations indicated in Figure 5(b). While both spectra

peak at St ≈ 0.3, the spectrum at location 2 (circles) is more broadbanded than at location 1 (crosses).

The stagnation pressure and temperature inside the nozzle were set so that the jet Mach number

Mj = 1.4 and the fully expanded jet temperature matched the ambient temperature. A rectangular

nozzle whose interior cross section area was decreasing monotonically from inlet to exit was used.

Since the nozzle did not have a diverging section before its exit, the flow left the nozzle in an under-

expanded (sonic) state and continued to expand downstream to reach the supersonic fully expanded

condition. This induced a train of diamond-shaped shock cells as shown in Figure 5(b) (Multimedia

view). The figure shows contours of temperature on a centerplane cross section taken through the

narrow dimension of the nozzle. From an animation of the jet, it can be observed that the first two

shock cells are almost stationary, but the third and fourth shock cells undergo transverse oscillations

along the narrow (vertical) dimension of the jet. The transverse oscillation of the shock cells occurs

precisely at the screech frequency of the jet, and is connected to a strong upstream-oriented acoustic

tone.

Figure 6 shows the spectra of the pressure recorded at the locations indicated by the circles in

Figure 5(b). At location 1, which coincides with the center of the upstream-directed acoustic beam

associated with the screech tone, the spectrum is relatively narrow-banded. Since the sample window

contains approximately four oscillations of the screech tone, the fourth Fourier coefficient has the

largest amplitude. In contrast to location 1, location 2 was taken in the center of one of the turbulent

shear layers. The turbulent fluctuations induce a broad range of frequencies in the corresponding

spectrum (circles in Figure 6). At both locations, spectra show a strong peak at Strouhal number

St ≈ 0.3 (based on the fully expanded jet velocity and the nozzle equivalent diameter). This peak

corresponds to the screech tone frequency predicted for a Mach 1.4 jet from a 4:1 aspect ratio

rectangular nozzle.31, 33

The database used for the DMD analysis consisted of 257 snapshots (so that N = 256) of the

full three-dimensional pressure and velocity fields. The snapshots were equispaced in time with an

interval of �t = 0.0528De/uj, where De is the nozzle equivalent diameter (the diameter of the circle

of same area as the nozzle exit) and uj is the fully expanded jet velocity. Although the computational

domain for the LES extended approximately 32De downstream of the nozzle exit, DMD was applied

to a subdomain focusing on the shock cells within the jet’s potential core and the surrounding acoustic

field (this domain extends to 10De). This restriction reduced the number of cells from 45×106 to

8×106. In spite of this reduction, each snapshot required 256 Mb of storage in double precision

format. To handle such large matrices, DMD was implemented using a MapReduce framework so

that the matrix could be stored and processed across several storage discs. In particular, the algorithm

relied upon a MapReduce QR-factorization of tall-and-skinny matrices developed in Ref. 34.

Figure 7(a) illustrates the frequency dependence of the absolute value of the amplitudes of the

DMD modes obtained by solving the optimization problem (6). We note that it is not trivial to

identify, by mere inspection, a subset of DMD modes that has the strongest influence on the quality
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FIG. 7. Dependence of the absolute value of the DMD amplitudes αi on (a) the frequency and (b) and (c) the real part of the

corresponding DMD eigenvalues μi for the screeching jet example. Subfigure (c) represents a zoomed version of subfigure

(b) and it focuses on the amplitudes that correspond to lightly damped eigenvalues.

of the least-squares approximation. As shown in Figure 7(b), the largest amplitudes originate from

eigenvalues that are strongly damped. In what follows, we demonstrate that keeping only a subset of

modes with largest amplitudes can lead to poor quality of approximation of numerically generated

snapshots.

The sparsity level card (α) and the performance loss % �loss := 100
√

J (α)/J (0) for the op-

timal vector of amplitudes α resulting from the sparsity-promoting DMD algorithm are shown in

Figure 8 as a function of the user-specified parameter γ (a measure of preference between approxi-

mation quality and solution sparsity). As expected, larger values of γ encourage sparser solutions,

at the expense of compromising quality of the least-squares approximation. The values of γ in

Figure 8 are selected in such a way that γ min induces a dense vector α (with 256 non-zero elements),

and γ max induces α with a single non-zero element.

Eigenvalues resulting from the standard DMD algorithm (circles) along with the subset

of Nz eigenvalues selected by the sparsity-promoting DMD algorithm (crosses) are shown in

Figure 9. Eigenvalues in the interior of the unit circle are strongly damped. Since a strongly damped

mode influences only early stages of time evolution, the associated amplitude |αi| can be large; see

Figure 7(b) for an illustration. Rather than focusing only on the modes with largest amplitudes, the

sparsity-promoting DMD identifies modes that have the strongest influence on the entire time history

of available snapshots. While the selection of the retained eigenvalues is non-trivial, it increasingly

concentrates on the low-frequency modes as Nz decreases. For Nz = 3, only the mean flow and

one dominant frequency pair (that corresponds to the fundamental frequency of the screech tone)

remain, while for Nz = 5 a second, lower frequency is identified. In this low-Nz limit, we do see that

the sparsity-promoting DMD approximates the data sequence using the most prevalent structures.
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FIG. 8. (a) The sparsity level card (α) and (b) the performance loss % �loss := 100
√

J (α)/J (0) of the optimal vector of

amplitudes α resulting from the sparsity-promoting DMD algorithm for the screeching jet example.
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FIG. 9. Eigenvalues resulting from the standard DMD algorithm (circles) along with the subset of Nz eigenvalues selected

by the sparsity-promoting DMD algorithm (crosses) for the screeching jet example. In subfigures (b) and (c), the dashed

curves identify the unit circle.

The corresponding amplitudes for the various truncations Nz are displayed in Figure 10. Again, as

Nz decreases a concentration on low frequencies is observed. We also note that the amplitudes of the

original DMD modes do not provide sufficient guidance in reducing the full set of DMD modes to

a few relevant ones.

Figure 11 illustrates performance of the sparsity-promoting DMD algorithm developed in this

paper in terms of the number of identified structures. The performance is quantified by the Frobenius

norm of the approximation error between a low-dimensional representation and the full data sequence

in fraction of the Frobenius norm of the full data sequence. As expected, the performance of our

algorithm improves as the number of modes is increased. For the screeching jet example, the sparsity-

promoting DMD with Nz = 3 gives St = 0.3104 which agrees well with the frequency St = 0.3

measured from a sequence containing 10 times the number of snapshots.

Finally, Figure 12 visualizes the three-dimensional mode associated with the dominant fre-

quency pair resulting from the sparsity-promoting DMD algorithm (Multimedia view). Isosurfaces

of pressure and dilatation fluctuations are identified by darker gray and lighter gray colors, respec-

tively. An animation of this mode reveals that the dilatation corresponds to a flapping mode along

the narrow dimension of the jet. As the shock cells oscillate transversely, they encroach into the

jet shear layers, and compress the oncoming jet fluid in a region where previously there was no

compression. This time-periodic compression is connected to the upstream propagating acoustic

wave at the exterior of the jet. Furthermore, the animation of the DMD mode reveals that – close

to the jet – the acoustic wave does not propagate smoothly in the upstream direction. Instead, the

acoustic wave hops from one spot of negative dilatation to the next as it proceeds upstream. As the

oscillating shock cells penetrate into the jet shear layers, they are also rotated by the shear. When this
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FIG. 10. (a) Nz = 47, (b) Nz = 5, (c) Nz = 3: Dependence of the absolute value of the amplitudes αi on the frequency

(imaginary part) of the corresponding eigenvalues μi for the screeching jet example. The results are obtained using the

standard DMD algorithm (circles) and the sparsity-promoting DMD algorithm (crosses) with Nz DMD modes.
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FIG. 11. The optimal performance loss, % �loss := 100
√

J (α)/J (0), of the sparsity-promoting DMD algorithm for the

screeching jet example as a function of the number of retained modes.

happens, the outer tip of the shock cell sweeps from downstream to upstream, providing an impulse

to the exterior acoustic perturbation which “kicks” it upstream to the next shock cell.

C. Flow through a cylinder bundle

Flow through cylinders in a bundle configuration is often encountered in the utility and energy

conversion industry. Owing to their versatility and efficiency,35 cross-flow heat exchangers account

for the vast majority of heat exchangers in oil refining, process engineering, petroleum extraction,

and power generation sectors. Consequently, even a modest improvement in their effectiveness

and operational margins would have a significant impact on production efficiency. In spite of their

widespread use, the details of the flow (and heat transfer) through cylinder bundles are far from fully

understood, thereby making this type of flow, along with its simplified variants, the subject of active

research.36–39

Vortex shedding and complex wake interactions can induce vibrations and structural resonances

which, in turn, may result in fretting wear, collisional damage, material fatigue, creep, and ultimately

in cracking. Even though the flow through a cylinder bundle is very complex, it is characterized by

well-defined shedding frequencies.40 For single-row cylinders, only a few distinct frequencies are

detected, while for more complex array configurations, a multitude of precise shedding frequencies

are observed. The presence of distinct shedding frequencies makes this type of flow well-suited for

a decomposition of the flow fields into single-frequency modes.

FIG. 12. The three-dimensional DMD mode associated with the dominant frequency pair (that corresponds to the

fundamental frequency of the screech tone, St ≈ 0.3). A darker gray (red online) isosurface of perturbation pres-

sure is shown together with a lighter gray (blue online) isosurface of the perturbation dilatation (Multimedia view).

[URL: http://dx.doi.org/10.1063/1.4863670.2]
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(a) (b) (c)

FIG. 13. (a) Geometry of a flow between two cylinders along with the interrogation window where PIV measurements are

taken. (b) and (c) Two representative snapshots of velocity vectors and vorticity contours, resulting from time-resolved PIV

measurements, illustrate the oscillatory motion of the exiting jet. See text for details on the experimental parameters.

In addition to the multiple-frequency behavior, a characteristic oscillatory pattern – labelled as

a “flip-flop phenomenon” – is typically observed in the exit stream of the flow through cylinder

bundles.41 The observed oscillatory pattern consists of a meta-stable deflection of the exiting jet

off the centerline location. A statistical analysis of the velocity field in a cross-stream section

shows a strongly bimodal distribution. Over a wide range of Reynolds numbers, the Strouhal

number associated with the oscillation between these two states is approximately Reynolds-number-

independent. This flow feature can also be represented by a dynamic mode decomposition of the

flow fields.

In this paper, we use a simplified geometric configuration that nonetheless inherits the main

features from more complex settings, including the presence of multiple distinct frequencies and

the flip-flop oscillations of the exit stream. In particular, we consider the flow passing between

two cylinders. The PIV interrogation window shown in Figure 13(a) measures 40.36 mm in

the streamwise and 32.08 mm in the cross-stream direction. The flow field is resolved on a

63 × 79 measurement grid, and two in-plane velocity components are recorded. The flow fields

are represented in a fully time-resolved manner with 4 ms between two consecutive PIV measure-

ments. The inter-cylinder gap is 10.7 mm and the jet passing between the two cylinders (of diameter

12 mm) has a mean velocity of 0.663 m/s. The resulting Reynolds number, based on the volume flux

velocity (Q̇ = 18 m3/h) and the cylinder diameter, is Re = 3000.

Two representative snapshots resulting from a time-resolved flow field sequence display ve-

locity vectors and contours of the spanwise vorticity in Figure 13. The two flow fields are 0.28 s

apart and show a downward (Figure 13(b)) and upward (Figure 13(c)) deflection of the jet exiting

between the two cylinders. A time-sequence of flow fields substantiates the existence of a low-

frequency oscillation of the jet, which forms the basis of the afore-mentioned flip-flop phenomenon.

A streamwise velocity signal has been extracted from the center of the experimental domain, and a

subsequent spectral analysis of this signal reveals a distinct frequency of 7.81 Hz which corresponds

to a Strouhal number St = 0.126 (based on the jet mean velocity and cylinder gap).

Figure 14 shows the amplitudes of the DMD modes versus the identified frequencies and

corresponding growth/decay rates. These results were obtained using a database with N = 100

snapshots. As in the screeching jet example, strongly damped modes are characterized by large

amplitudes, and a clear indication about the relative importance of individual DMD modes cannot

be inferred from these two plots. Instead, we apply our sparsity-promoting framework to aid in the

delineation of modes that contribute significantly to the data sequence and modes that capture only

transient effects. By adjusting the user-specified parameter γ , we encourage solutions that consist

of only a limited number of modes but still optimally represent the original data-sequence.

Figure 15 superimposes the eigenvalues resulting from the standard DMD algorithm (circles)

and its sparsity-promoting variant (crosses). Even though the eigenvalues in the vicinity of the

unit circle are associated with much smaller amplitudes than the strongly damped eigenvalues (that

reside well within the unit circle), they are selected by our algorithm. As the sparsity parameter is
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FIG. 14. Dependence of the absolute value of the DMD amplitudes αi on (a) the frequency and (b) the real part of the

corresponding DMD eigenvalues μi for the flow through a cylinder bundle.

increased and fewer eigenvalues are selected, a clustering of eigenvalues at and near the point (1, 0)

is observed; see Figure 15(c).

A similar picture emerges from displaying the selected modes in the frequency-amplitude

plane; see Figure 16. The sparsity-promoting DMD algorithm provides a rapid concentration on

low-frequency modes, thereby eliminating structures with substantially larger amplitudes identi-

fied by the standard DMD algorithm. As the limit of only Nz = 3 DMD modes is reached, the

sparsity-promoting algorithm concentrates on frequencies that still optimally describe the principal

oscillatory components of the full data set. As evident from Figure 16(c), for Nz = 3 the last oscilla-

tory representation is characterized by Im (log(μi )) ≈ 0.201 (which corresponds to a frequency of

7.99 Hz and a Strouhal number of St = 0.129). This frequency is in good agreement with the fre-

quency identified by the aforementioned point measurements of the streamwise velocity. The flow

field associated with the three-term (Nz = 3) representation of the data sequence is displayed in

Figure 17; it consists of a deflected jet and strong vortical components off the symmetry axis (Mul-

timedia view). An animation of this flow field has been obtained using the identified and selected

frequency (7.99 Hz) and it reproduces the main features of the full data sequence, i.e., the lateral

swaying of the jet under the influence of the wake vortices of the two cylinders.

The sparse approximation of the full data-sequence focuses on the most relevant structures by

removing large-amplitude but transient flow features and it results in progressively larger residuals

as the sparsity is enhanced. This inherent trade-off between a more compact data representation

and the quality of approximation compared to the original data sequence is depicted in Figure 18.
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FIG. 15. (a) Nz = 21, (b) Nz = 5, (c) Nz = 3: Eigenvalues resulting from the standard DMD algorithm (circles) along with

the subset of Nz eigenvalues selected by its sparsity-promoting variant (crosses) for the flow through a cylinder bundle. The

dashed curves identify the unit circle.
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FIG. 16. (a) Nz = 21, (b) Nz = 5, (c) Nz = 3: Dependence of the absolute value of the amplitudes αi on the frequency

(imaginary part) of the corresponding eigenvalues μi for the flow through a cylinder bundle. The results are obtained using

the standard DMD algorithm (circles) and the sparsity-promoting DMD algorithm (crosses) with Nz DMD modes.

FIG. 17. Snapshot resulting from a sparse three-component (Nz = 3) representation of the full data sequence, visualized by

velocity vectors and vorticity contours (Multimedia view). [URL: http://dx.doi.org/10.1063/1.4863670.3]
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FIG. 18. The optimal performance loss, % �loss := 100
√

J (α)/J (0), of the sparsity-promoting DMD algorithm for the flow

through a cylinder bundle as a function of the number of retained modes.
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024103-18 Jovanović, Schmid, and Nichols Phys. Fluids 26, 024103 (2014)

In contrast to the channel flow and screeching jet examples, the sparsity-promoting version of the

DMD-algorithm displays higher performance degradation. This behavior may perhaps be attributed

to the presence of unstructured measurement noise in the experimental dataset for a jet passing

between two cylinders.

V. CONCLUDING REMARKS

We have introduced an extension of the standard DMD algorithm that addresses the reduction

in dimensionality of the full rank decomposition. This reduction is accomplished by a sparsity-

promoting procedure which augments the standard least-squares optimization problem by a term

that penalizes the ℓ1-norm of the vector of unknown amplitudes. A user-specified regularization

parameter balances the trade-off between the quality of approximation and the number of retained

DMD modes. The sparsity-promoting DMD algorithm thus selects specific dynamic modes (along

with their associated temporal frequencies and growth/decay rates) which exhibit the strongest

contribution to a representation of the original data sequence over the considered time interval.

The ℓ1-regularized least-squares problem can be formulated as a convex optimization problem

for which the ADMM provides an efficient tool for computing the globally optimal solution. ADMM

is an iterative method that alternates between minimization of the least-squares residual and spar-

sity enhancement. We have shown that the least-squares minimization step amounts to solving an

unconstrained regularized quadratic program and that sparsity is promoted through the application

of a soft-thresholding operator. After a desirable tradeoff between the quality of approximation and

the number of DMD modes has been accomplished, we fix the sparsity structure and compute the

optimal amplitudes of the retained dynamic modes.

The sparsity-promoting dynamic mode decomposition has been applied to three examples.

The linearized plane Poiseuille flow at a supercritical Reynolds number was used to showcase

the algorithm on a canonical flow configuration; the sparsity-promoting DMD extracted modal

contributions from each of the familiar eigenvalue branches until only the exponentially growing

TS wave was retained in the limit of maximal sparsity. For the unstructured large-eddy simulation

of a supersonic screeching jet, the sparsity-promoting DMD algorithm successfully and efficiently

identified the screech frequency and the associated flow fields; dynamic modes with large amplitudes

and substantial decay rates, representing transient flow features, have been eliminated as our emphasis

on sparsity increased. Finally, for two-dimensional time-resolved PIV measurements of a jet passing

between two cylinders, the prevailing Strouhal number has been identified by the dynamic mode

decomposition, and the sparsity-promoting algorithm effectively differentiated the dominant flow

structures from less relevant flow phenomena embedded in the full data sequence.

The developed method builds on recent attempts at optimizing the standard dynamic mode

decomposition14–16 and at providing a framework for the automated detection of a few pertinent

modal flow features. While these efforts resulted in complex or nearly intractable non-convex

optimization problems, the sparsity-promoting DMD algorithm provides an efficient paradigm for

detection and extraction of a limited subset of flow features that optimally approximate the original

data sequence. Furthermore, in contrast to the aforementioned attempts, our approach regularizes the

least-squares deviation between the matrix of snapshots and the linear combination of DMD modes

with a term that penalizes the ℓ1-norm of the vector of unknown DMD amplitudes. While the former

term depends both on the problem data and on the optimization variable, the latter term is problem-

data-independent; its primary purpose is to enhance desirable features in the solution to the resulting

regularized optimization problem. We note that regularization may be of essence in the situations

where the problem data are corrupted by noise or contain numerical or experimental outliers. In

the absence of regularization, the predictive capability of low-dimensional models resulting from

corrupted or incomplete snapshots may be significantly diminished. Exploration of different types

of regularization penalties that are well-suited for the problems in fluid mechanics is an effort worth

pursuing.

The developed algorithm has shown its value on the numerical and experimental snapshot

sequences considered in this paper. It is expected that the sparsity-promoting dynamic mode decom-

position will become a valuable tool in the quantitative analysis of high-dimensional datasets, in the
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interpretation of identified dynamic modes, and in the eduction of relevant physical mechanisms.

For additional information about the examples considered in this paper, including Matlab source

codes and problem data, see the supplementary material.42
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APPENDIX A: AN ALTERNATIVE FORMULATION OF (6)

We show that the objective function J(α) in (6),

J (α) = ‖G − L Dα R‖2
F , (A1)

with

G := � V ∗, L := Y, Dα := diag {α}, R := Vand,

can be equivalently represented as (7). The equivalence between (7) and (A1) can be established

through a sequence of straightforward algebraic manipulations in conjunction with the repeated use

of the following properties of the matrix trace:

P1: Commutativity invariance,

trace (A B) = trace (B A) ;

P2: A product between a matrix Q and a diagonal matrix Dα := diag {α},

trace (Q Dα) = (diag {Q})T α =
(

diag {Q}
)∗

α;

P3: For vectors α ∈ C
n and β ∈ C

m and matrices A, B ∈ C
m×n ,

trace
(

D∗
β A Dα BT

)

= β∗(A ◦ B) α.

Now, a repeated use of the matrix trace commutativity invariance property P1 leads to

J (α) = ‖G − L Dα R‖2
F

= trace
(

(G − L Dα R)∗ (G − L Dα R)
)

= trace
(

D∗
α (L∗L) Dα (R R∗) − Q Dα − Q∗ D∗

α + G∗G
)

,

and the equivalence between (7) and (A1) follows from P2 and P3.

APPENDIX B: α- AND β-MINIMIZATION STEPS IN ADMM

We exploit the respective structures of the functions J and g in (11) and show that the

α-minimization step amounts to solving an unconstrained regularized quadratic program and that

the β-minimization step amounts to an opportune use of the soft thresholding operator.

� α-minimization step: Completion of squares with respect to α in the augmented Lagrangian

Lρ can be used to show that the α-minimization step (13a) is equivalent to

minimize
α

J (α) +
ρ

2
‖α − uk‖2

2,
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where

uk = βk − (1/ρ) λk .

Now, the definition (7) of J leads to the unconstrained quadratic programming problem

minimize
α

α∗(P + (ρ/2) I ) α −
(

q + (ρ/2) uk
)∗

α − α∗(q + (ρ/2) uk
)

+ s + ρ ‖uk‖2
2,

whose solution is determined by

αk+1 = (P + (ρ/2) I )−1
(

q + (ρ/2) uk
)

.

� β-minimization step: The completion of squares with respect to β in the augmented La-

grangian Lρ can be used to show that the β-minimization step (13b) is equivalent to

minimize
β

γ g(β) +
ρ

2
‖β − vk‖2

2,

where

vk = αk+1 + (1/ρ) λk .

It is a standard fact that the solution to this optimization problem is determined by

βk+1
i = Sκ (vk

i ), κ = γ /ρ,

where Sκ ( · ) denotes the soft thresholding operator

Sκ (vk
i ) =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

vk
i − κ, vk

i > κ,

0, vk
i ∈ [−κ, κ],

vk
i + κ, vk

i < −κ.

APPENDIX C: AN EFFICIENT ALGORITHM FOR SOLVING (10)

From Appendix A it follows that finding the solution to (10) amounts to solving the following

equality-constrained quadratic programming problem

minimize
α

J (α) = α∗ P α − q∗α − α∗q + s

subject to ET α = 0.

It is a standard fact that the variation of the Lagrangian

L(α, ν) = J (α) + ν∗E T α +
(

ET α
)∗

ν,

with respect to α and the vector of Lagrange multipliers ν can be used to obtain the conditions for

optimality of L,
[

P E

E T 0

] [

α

ν

]

=

[

q

0

]

.

The optimal sparse vector of amplitudes, αsp, is then determined by

αsp =
[

I 0
]

[

P E

E T 0

]−1 [

q

0

]

.

1 J. Lumley, Stochastic Tools in Turbulence (Dover Publications, Mineola, NY, 2007).
2 L. Sirovich, “Turbulence and the dynamics of coherent structures. Part I: Coherent structures,” Q. Appl. Math. 45(3),

561–571 (1987).
3 D. Sipp, O. Marquet, P. Meliga, and A. Barbagallo, “Dynamics and control of global instabilities in open flows: A linearized

approach,” Appl. Mech. Rev. 63, 030801 (2010).

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.104.29.2 On: Mon, 26 May 2014 14:21:56

http://dx.doi.org/10.1115/1.4001478
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