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A realistic, ef�cient and robust technique for the control of ampli�er �ows has
been investigated. Since this type of �uid system is extremely sensitive to upstream
environmental noise, an accurate model capturing the in�uence of these perturbations
is needed. A subspace identi�cation algorithm is not only a convenient and effective
way of constructing this model, it is alsorealistic in the sense that it is based on
input and output data measurements only and does not require other information
from the detailed dynamics of the �uid system. This data-based control design has
been tested on an ampli�er model derived from the Ginzburg–Landau equation, and
no signi�cant loss of ef�ciency has been observed when using the identi�ed instead
of the exact model. Even though system identi�cation leads to a realistic control
design, other issues such as state estimation, have to be addressed to achieve full
control ef�ciency. In particular, placing a sensor too far downstream is detrimental,
since it does not provide an estimate of incoming perturbations. This has been
made clear and quantitative by considering the relative estimation error and, more
appropriately, the concept of a visibility length, a measure of how far upstream a
sensor is able to accurately estimate the �ow state. It has been demonstrated that a
strongly convective system is characterized by a correspondingly small visibility length.
In fact, in the latter case the optimal sensor placement has been found upstream
of the actuators, and only this con�guration was found to yield anefficient control
performance. This upstream sensor placement suggests the use of a feed-forward
approach for �uid systems with strong convection. Furthermore, treating upstream
sensors as inputs in the identi�cation procedure results in a very ef�cient androbust
control. When validated on the Ginzburg–Landau model this technique is effective, and
it is comparable to the optimal upper bound, given by full-state control, when the
ampli�er behaviour becomes convection-dominated. These concepts and �ndings have
been extended and veri�ed for �ow over a backward-facing step at a Reynolds number
ReD 350. Environmental noise has been introduced by three independent, localized
sources. A very satisfactory control of the Kelvin–Helmholtz instability has been
obtained with a one-order-of-magnitude reduction in the averaged perturbation norm.
The above observations have been further con�rmed by examining a low-order model
problem that mimics a convection-dominated �ow but allows the explicit computation
of control-relevant measures such as observability. This study casts doubts on the
usefulness of the asymptotic notion of observability for convection-dominated �ows,
since such �ows are governed by transient effects. Finally, it is shown that the feed-
forward approach is equivalent to an optimal linear–quadratic–Gaussian control for
spy sensors placed suf�ciently far upstream or for suf�ciently convective �ows. The
control design procedure presented in this paper, consisting of data-based subspace
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identi�cation and feed-forward control, was found to be effective and robust. Its
implementation in a real physical experiment may con�dently be carried out.

Key words: control theory, �ow control, instability control

1. Introduction
In this paper, different approaches for the control of ampli�er �ows are presented

and compared. A technique consisting of a data-based feed-forward controller is
designed and evaluated. It is shown to be at the same time realistic, ef�cient and
robust.

Flow control aims at acting on a �uid system at a few selected locations to
induce and enforce a prede�ned, desired behaviour. Research in this area has received
increasing interest fuelled by a large number of potential technological applications
in science and engineering. Areas of interest include, among others, drag reduction,
control of separation or reattachment, mixing enhancement and the delay of transition
to turbulence. Since the way of controlling a �uid critically depends on speci�c details
of the system, a large number of strategies have been designed to manipulate �uid
�ows. To give a few examples: the actuation may be steady, for instance, constant
suction through a �at surface as presented in the review of Joslin (1998), or harmonic,
for instance, periodic excitation at a very speci�c mode frequency as in Greenblatt &
Wygnanski (2000), or it may be based on sensor measurements via a direct feedback,
in the simplest case, speci�ed by proportional control.

More generally, a successful control strategy depends equally on the control
objective and on the intrinsic �ow dynamics. Two �ow classes have to be
distinguished. Fluid systems known asoscillators are characterized by a periodic
behaviour at a sharply de�ned frequency that is unresponsive to environmental
noise sources. Typical examples of this sort of behaviour can be found in hot or
swirling jets, mixing layers with suf�ciently large counter-�ow or �ow around a
cylinder for a suf�ciently high Reynolds number. In contrast, if the �ow is strongly
in�uenced by the external disturbance environment, the �uid system is referred to
as an amplifier. Pipe or channel �ows, co-�owing mixing layers, and boundary
layers on a �at plate represent typical examples. If the external noise that drives
an ampli�er �ow is suf�ciently small, the �uid system can be described within a linear
framework. The classi�cation of �uid �ows according to their ampli�er or oscillator
behaviour was introduced in Huerre & Monkewitz (1990). The one-dimensional
Ginzburg–Landau equation was used as a convenient surrogate for the Navier–Stokes
equations. This particular model equation has been popular in addressing a range of
related phenomena in �uid mechanics and in �ow control, such as in Chomaz, Huerre
& Redekopp (1987) and Lauga & Bewley (2004).

Within the range of active control strategies, a model-based approach has been
prevalent in the �ow control literature (see e.g. Kim & Bewley2007; Noack,
Morzynski & Tadmor 2011). Its underlying premise is to determine a mathematical
model that accurately describes the system dynamics and to subsequently use it to
design an optimal control law. Several strategies are available to arrive at such a
model. For suf�ciently simple systems, a model equation can be deduced directly
from physical principles (Bewley & Liu1998). For more complex problems, numerical
simulations offer an alternative to obtain this model (Semeraroet al. 2011). Both
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approaches provide valuable insight into the physical mechanisms of instability and
�ow control. However, both approaches also suffer from the need to accurately
describe the external disturbance environment. In many previous studies (Lauga &
Bewley 2004; Bagheri, Brandt & Henningson2009a; Chen & Rowley 2011; Ma,
Ahuja & Rowley 2011; Semeraroet al. 2011; Barbagalloet al. 2012), a simpli�ed
model for the disturbance environment is assumed in the control design. The resulting
control performance is somewhat contrived, since it is closely tailored to the postulated
noise model. A similar approach is inconceivable in an experimental setting. Another
approach resorts to system identi�cation theory in order to generate a model. In
particular, this technique has been successfully applied experimentally with several
goals such as the suppression of �ow-induced cavity tones (Cattafestaet al. 2003;
Kegerise, Cabell & Cattafesta2004), the reattachment of a separated boundary layer
over a pitched aerofoil (Tian, Song & Cattafesta2006), the manipulation of the
reattachment point downstream of a backward-facing step (Henning & King2007)
or the control of lift of an aerofoil in the presence of gusts (Kerstenset al. 2011).
A rather recent approach consists of using system identi�cation techniques to obtain
a model that directly approximates the linearized Navier–Stokes equations. In this
context, promising results have been found by Hervé et al. (2012). The principal
advantage of this approach lies in the fact that the model is directly derived from
experimental, and thus noise-contaminated, data. In this sense, such a technique may
provide a better description of a realistic (experimental) �uid system. However, a
physical interpretation of the identi�ed model may prove to be rather challenging.

System identi�cation is concerned with building input–output models for dynamical
systems directly from input–output observations. Even though this �eld of research
comprises a wide range of techniques and applications, we restrict our attention to
algorithms developed for the identi�cation of stable linear time-invariant (LTI) systems.
Applying these techniques to �uid systems may be justi�ed in the case of ampli�er
�ows if they are excited by small perturbations. In that case, the �ow dynamics can
be decomposed as a sum of a steady base �ow (time-invariant) and a perturbation �ow
�eld. For suf�ciently small perturbations, the ampli�er behaviour is then accurately
described by the Navier–Stokes equations linearized around the base �ow, and system
identi�cation techniques therefore aim at constructing a model that accurately captures
any input–output behaviour of the linearized Navier–Stokes operator.

If the underlying model is speci�ed – for instance, as an autoregressive model
with exogenous inputs (ARX), or as an autoregressive moving-average model with
exogenous inputs (ARMAX) – the identi�cation technique proceeds by matching
the input–output behaviour of the model to the observed data in a least-squares
sense (Ljung1999). An alternative is to identify the discrete linear system matrices
by computing estimates of the state vector over many consecutive time steps.
This technique is referred to as subspace identi�cation; the main idea stems from
Kalman (1960) and the method has been formalized by Larimore (1983). Commonly
used subspace identi�cation algorithms include the canonical variate analysis (CVA)
algorithm (Larimore1983, 1990), the multiple-inputs and multiple-outputs output-error
state-space algorithm MOESP (Verhaegen & Deprettere1991) and the numerical
algorithms for subspace state-space system identi�cation N4SID (Van Overschee &
De Moor 1994). A comprehensive description of these techniques, within a uni�ed
framework, is given in Van Overschee & De Moor (1996); for a more recent review
on the subject, see for instance Qin (2006). In addition to the linear system matrices,
subspace identi�cation techniques provide an approximation of the noise covariances,
which are required for a subsequent control design based on linear–quadratic–Gaussian
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(LQG) theory. In fact, subspace identi�cation and LQG control design are two
intimately related procedures, and the corresponding approaches can be combined
into a single technique that produces an optimal control strategy directly from the
input–output data sequences (Favoreelet al. 1998).

Over the last two decades, the LQG framework has provided the central component
of many �ow control studies, as in Bewley & Liu (1998), Bewley (2001), Högberg &
Henningson (2002), Chevalieret al. (2007), Bagheriet al. (2009a) and Semeraroet al.
(2011). The appeal – and thus widespread use – of this technique lies in its theoretical
optimality. A great many other alternatives are, however, available, and even preferred
in robust control applications for industrial problems; this over-emphasis on LQG
control has also been noted by Qin & Badgwell (2003).

This paper consists in a presentation and evaluation of a combined approach
involving subspace identi�cation and optimal control design. In particular, we are
interested in a design that is not onlyefficient in reducing noise ampli�cation, but also
robust in its performance andrealistic with respect to available system information.
The successful application of �ow-altering momentum or energy sources necessarily
relies onefficient strategies and control laws. These control laws, in turn, have to be
insensitive to small variations in the underlying assumptions, to model approximations
or to parameter uncertainties. Only schemes that exhibit this property, i.e.robust
schemes, will be able to perform under a range of environmental conditions, rather
than at a narrowly de�ned or idealized design point. Effective control strategies
also have to berealistic in a sense that their design only relies on quantities that
are readily available in numerical simulations as well as in physical experiments;
this precludes the use of purely mathematical quantities such as system matrices or
prescribed stochastic disturbance environments. In this paper we propose and analyse a
feed-forward design procedure that accomplishes these three objectives. Feed-forward
control is not a new approach and it has been used intensively in other �elds of
research such as in automatics (see e.g. Meckl & Seering1986), in chemistry (see
e.g. Calvet & Arkun 1988) or in noise cancellation application (see e.g. Zeng &
de Callafon 2003) or temperature control (see e.g. Thomas, Soleimani-Mohseni &
Fahln 2005). A recent and successful numerical application of such a strategy for the
control of �ow over a backward-facing step can be found in Hervé et al. (2012). The
main purpose of the present paper is to identify and understand the strengths and
weaknesses of the feed-forward approach when applied to ampli�er �ows. In particular,
it will be seen that convection plays a crucial role in the relative ef�ciency of the
technique.

The paper is organized as follows. In §2, subspace identi�cation techniques are
introduced and the LQG framework is brie�y discussed. Based on these techniques,
a standard control approach is applied to the linear Ginzburg–Landau equation in
§3 and its limitations are pointed out. In particular, the relative estimation error and
the introduction of the concept of a visibility length are shown to provide valuable
tools in analysing the strengths and weaknesses of standard feedback control in
convection-dominated �ows (§3.4). In this respect, it is advantageous to place sensors
further upstream in the �ow domain. The resulting feed-forward approach leads to the
design of a realistic, robust and ef�cient control scheme (§4). The technique is then
validated on a more realistic �uid system, namely �ow over a backward-facing step
at a Reynolds numberReD 350 (§5). Finally, this successful feed-forward strategy is
further explored and analysed in mathematical terms and it is compared to the optimal
LQG control design (§6). A discussion of the main conclusions is given in §7. For the
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sake of clarity, the details of the presentation of the subspace identi�cation algorithm
have been relegated to the appendixA.

2. System de�nition and control performance
2.1.System de�nition

The one-dimensional linear Ginzburg–Landau equation (see e.g. Bagheriet al. 2009b)
is selected as a model problem. It reads

@q
@t

D � .Ur C iUi/
@q
@x

C .1 C icd/
@2q
@x2

C �. x/q; (2.1)

where q.x; t/ denotes the state, which is assumed bounded asjxj tends to in�nity.
This equation is widely used as a model in �uid mechanics due to its convectively
or absolutely unstable characteristics (Huerre & Monkewitz1990; Lauga & Bewley
2004). It contains convective and diffusive/dispersive terms, as well as a local
instability governed by the parameter�. x/ . In the present case, the latter function
is chosen as�. x/ D � 1 � .Ui=2/2 C� 2x2=2, with � 1 D 0:38, � 2 D � 0:01 andUi D 0:4,
such that only a �nite region, given byjxj <

p
2� 1=j� 2j � 8:72, is locally unstable.

The parameters of the Ginzburg–Landau equation are the same as in Bagheriet al.
(2009b) and Chen & Rowley (2011); only the convection coef�cientUr may differ
when speci�ed. More precisely, the dispersion coef�cientcd is equal to� 1 and two
different values of the convection speedUr are selected. To model a �uid system
in the presence ofmoderate convection, the valueUr D 2 is chosen, whereasUr D 3
corresponds to a case oflarge convection. With this choice of parameters, the �ow
is always globally stable, even though a sizable absolutely unstable region is present
in the case of moderate convectionUr D 2, a feature that can be attributed to the
non-parallel nature of the �ow stemming from the�. x/ term (Chomazet al. 1987;
Huerre & Monkewitz1990; Bagheri et al. 2009b). Systems of this type are referred
to as amplifiers, i.e. any perturbation moving into the unstable region is convected,
�ltered and ampli�ed.

It is further assumed that the governing equation is excited by a noise source that
is localized inside the upstream locally stable domain, atxw D � 14. The response
to an impulse from this noise location gives insight into the system dynamics. It
is displayed in �gure1(a) with isocontours ofjqj in an x–t diagram. For moderate
convection speedUr D 2, the impulse decays initially (in the stable region) but grows
rather rapidly as it moves into the convectively unstable region. More quantitatively,
the maximum value ofq is less than 0:01 as the perturbation enters the unstable
region (at t � 2), but it is ampli�ed by a factor of more than four att D 20 before
it slowly decays fort > 20. This is in contrast to the impulse response for a large
convection speedUr D 3 displayed in �gure 1(b). In this case, a similar, initially
convected pattern is observed, but the slowly decaying quasi-stationary perturbation
is conspicuously absent. This strong difference in the behaviour of the two systems
(Ur D 2 and Ur D 3) is attributed to the presence of an absolutely unstable region in
the moderate convection case (Ur D 2).

Hence, within the family of ampli�er �ows, very different behaviours are observed,
and it will be seen in the next section that this has a direct impact on the ef�ciency
of any control strategy. More precisely, two cases are distinguished, one with moderate
convection and one with large convection. In fact, convection is a central component
of ampli�er �ows. From a local point of view, a parallel �ow is an ampli�er if it
is convectively unstable, that is, if, for in�nitely large times, any unstable wave is
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FIGURE 1. Response to an impulse from the noise location shown asjqj contours in an
x–t diagram: (a) for a moderate convection speedUr D 2 and (b) for a large convection
speedUr D 3. The absolutely unstable (AU), convectively unstable (CU) or stable (S) spatial
domains are marked.

associated with a non-zero group velocity (Huerre & Monkewitz1990). From a global
point of view, convection is responsible for the non-normality of the linear operator
in globally stable open �ows, which, consequently, results in an ampli�er behaviour
(Chomaz2005). Hence, it is clear that ampli�er �ows are necessarily associated with
a non-negligible convection. The moderate convectionUr D 2 corresponds to a case
where convection is suf�ciently high for the �ow to be globally stable and to be
classi�ed as an ampli�er. Yet this convection is relatively small and, as illustrated
in �gure 1(a), the competition between local instabilities and convection has a very
strong impact on the intrinsic global �ow behaviour.

Thus, within the set of ampli�er �ows, a �ow is convection-dominatedif its
behaviour is mainly governed by convective processes. For instance, pipe or channel
�ows, homogeneous jet �ows, or �ows over streamlined aerofoils at small angles
of attack are examples of convection-dominated �ows. In the present study, as seen
in �gure 1, the large convection caseUr D 3 has a convection-dominated behaviour
whereas the moderate convection caseUr D 2 does not. It will be seen in §4.2 that
the technique developed in this paper is particularly ef�cient for convection-dominated
�ows.

To complete the speci�cation of the control set-up, a sensor and an actuator are
placed atxy D 7 and xu D 0, respectively, with a Gaussian shape function of width
sD 0:4 (�gure 2). In fact, the sensor placement corresponds to the position where the
impulse response is largest (�gure1). Hence this sensor provides direct information on
the maximum ampli�cation within the �ow.

Following Bagheriet al. (2009b), the Ginzburg–Landau equation is discretized in
space using a pseudo-spectral method based on Hermite functions wheren D 220
nodes are distributed within the interval� 85 < x < 85. The discrete state vector is
advanced in time by a Crank–Nicolson scheme with a constant time step1 t D 0:1.
The spatio-temporal discretization then yields thediscrete state-space formulation

qkC1 D Aqk C Buk C Bwwk; (2.2a)
yk D Cqk C vk; (2.2b)

whereqk is a column vector withn components describing the state at timet D k1 t, A
is the state matrix of sizen � n, B is the actuator input matrix of sizen � 1, Bw is the
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FIGURE 2. Sketch of the control set-up for the linear Ginzburg–Landau equation, showing
the noise sourcew at xw D � 14, the actuatoru at xu D 0 and the sensory at xy D 7 for
(a) moderate convectionUr D 2 and (b) large convectionUr D 3.

noise input matrix of sizen� 1 andC is the output matrix of size 1� n. In addition,wk

is a stochastic, normally distributed, white-in-time noise of standard deviation� W D 1,
uk is the actuator input,yk is the sensor output andvk is the measurement noise (again,
normally distributed and white-in-time of standard deviation� V equal to 10 % of the
output standard deviation when the system is excited byw only). From the stochastic
terms of the above system, noise covariancesR; S andQ can be de�ned according to

E
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Bwwp
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! H
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A D

 
Q S

SH R

!

� pk; (2.3)

where E.a/ � limN!1 .1=N/
P N

kD1ak denotes the expected value and the superscriptH

symbolizes the conjugate transpose. In practice,v and w are uncorrelated such thatS
is identically zero. Recall that� W � 1 and� V �

p
R.

2.2.Control performance
We next design a control scheme based on the set-up above and determine its
effectiveness in reducing the upstream noisew. Ideally, the norm of the state vector,
kqk, is to be minimized. In practice, however, the state vector cannot be measured
directly; instead, only information from the sensor is available. Since the measurement
is performed atxy D 7, where the impulse response amplitude is largest (�gure1a), it
is reasonable to assume that by reducing the outputy a commensurate reduction of the
state vectorq can be accomplished. We thus formulate the cost functionalJ as

J � E.kyk2 Cl kuk2/ ! min; (2.4)

where l is a positive parameter that penalizes the exerted control effort and thus
prevents excessive input amplitudes, andk � k represents the Euclidean norm. In what
follows we setl D 0:001. The state-space system (2.2) and the cost functional (2.4) are
augmented by an optimal control law (LQG) based on the measurementy. The results
are presented in �gure3(a) for a moderate convection speedUr D 2. The full-order
system.A; B ; C/ as well as the noise covariances.Q; R; S/ are assumed to be given.
The quantityJk D kykk2 Cl kukk2 is represented as a function of time, together with its
expected values for an active and inactive controlu. At t D 400 the control is switched
on, and the cost functional rapidly decreases by nearly two orders of magnitude,
settling down to an expected valueJ D 0:0064 from an uncontrolled valueJ D 0:25,
i.e. a reduction by a factor of 38.
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