. Ortiz, and two anonymous referees. C.A. acknowledges financial support for his PhD from the Chilean and French governments. The research activity of C.P.C. is supported by EPSRC Research Grant EP/H050310/1 'AIM (Advanced Instability Methods) for industry, C.P.C. would also like to acknowledge the generous hospitality of the Hydrodynamics Laboratory (LadHyX) ´

A. , A. Brancher, and P. , On vortex rings around vortices: an optimal mechanism, J. Fluid Mech, vol.578, pp.295-304, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00128094

B. , S. Sarkar, and S. , Dynamics of a stratified shear layer with horizontal shear, J. Fluid Mech, vol.568, pp.19-54, 2006.

B. J. Bayly, Three-Dimensional Instability of Elliptical Flow, Physical Review Letters, vol.57, issue.17, pp.2160-2163, 1986.
DOI : 10.1103/PhysRevLett.57.2160

G. L. Brown and A. Roshko, On density effects and large structure in turbulent mixing layers, Journal of Fluid Mechanics, vol.87, issue.04, pp.775-816
DOI : 10.1017/S002211207400190X

B. , K. M. Farrell, and B. F. , Three-dimensional optimal perturbations in viscous shear flow, Phys. Fluids A, vol.4, pp.1637-1650, 1992.

C. , C. P. Kerswell, and R. R. , The nonlinear development of three-dimensional disturbances at hyperbolic stagnation points: a model of the braid region in mixing layers, Phys. Fluids, vol.12, pp.1032-1043, 2000.

C. , C. P. Peltier, and W. R. , The anatomy of the mixing transition in homogeneous and stratified free shear layers, J. Fluid Mech, vol.413, pp.1-47, 2000.

C. , G. M. Lin, and S. J. , The mixing layer: deterministic models of a turbulent flow. Part 2. The origin of the three-dimensional motion, J. Fluid Mech, vol.139, pp.67-95, 1984.

C. , G. M. Sherman, and F. S. , The mixing layer: deterministic models of a turbulent flow. Part 1. Introduction and the two-dimensional flow, J. Fluid Mech, vol.139, pp.29-65, 1984.

D. , C. Ortiz, S. Chomaz, J. &. Billant, and P. , Three-dimensional instabilities and transient growth of a counter-rotating vortex pair, Phys. Fluids, vol.21, issue.9, p.94102, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01025605

D. , P. G. Reid, W. H. Ellingsen, T. Palm, and E. , Hydrodynamic Stability, Stability of linear flow, pp.487-488, 1975.

F. , B. F. Ioannou, and P. J. , Optimal excitation of three-dimensional perturbations in viscous constant shear flow, Phys. Fluids A, vol.5, pp.1390-1400, 1993.

F. , B. F. Ioannou, and P. J. , Perturbation growth in shear flow exhibits universality, Phys. Fluids A, vol.5, pp.2298-2300, 1993.

F. , B. F. Ioannou, and P. J. , Generalized stability theory. Part II: nonautonomous operators, J. Atmos. Sci, vol.53, pp.2041-2053, 1996.

G. , A. Huerre, P. Schmid, and P. J. , Optimal disturbances in swept Hiemenz flow, J. Fluid Mech, vol.578, pp.223-232, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01023334

K. , G. P. Peltier, and W. R. , The onset of turbulence in finite-amplitude Kelvin?Helmholtz billows, J. Fluid Mech, vol.155, pp.1-35, 1985.

K. , G. P. Peltier, and W. R. , The role of transverse secondary instabilities in the evolution of free shear layers, J. Fluid Mech, vol.202, pp.367-402, 1989.

K. , G. P. Peltier, and W. R. , The influence of stratification on secondary instability in free shear layers, J. Fluid Mech, vol.227, pp.71-106, 1991.

L. , J. C. Choi, and H. , Three-dimensional instability of a plane free shear layer: an experimental study of the formation and evolution of streamwise vortices, J. Fluid Mech, vol.189, pp.53-86, 1988.

M. , R. W. Orszag, S. A. Brachet, M. E. Menon, S. Riley et al., Secondary instability of a temporally growing mixing layer, J. Fluid Mech, vol.184, pp.207-243, 1987.

O. , S. Chomaz, and J. , 2011 Transient growth of secondary instabilities in parallel wakes: anti lift-up mechanism and hyperbolic instability, Phys. Fluids, vol.23, issue.11, p.114106

P. , R. T. Widnall, and S. E. , The two-and three-dimensional instabilities of a spatially periodic shear layer, J. Fluid Mech, vol.114, pp.59-82, 1982.

P. , P. G. Peltier, and W. R. , Stratification effects on the stability of columnar vortices on the f-plane, J. Fluid Mech, vol.355, pp.45-79, 1998.

P. , C. C. Kerswell, and R. R. , Using nonlinear transient growth to construct the minimal seed for shear flow turbulence, Phys. Rev. Lett, vol.105, p.154502, 2010.

P. , C. C. Willis, A. P. Kerswell, and R. R. , 2012 Minimal seeds for shear flow turbulence: using nonlinear transient growth to touch the edge of chaos, J. Fluid Mech, vol.703, pp.415-443

R. , S. M. Caulfield, C. P. Kerswell, and R. R. , 2012 Triggering turbulence efficiently in plane Couette flow, J. Fluid Mech, vol.712, pp.244-272

R. , M. M. Moser, and R. D. , The three-dimensional evolution of a plane mixing layer: the Kelvin?Helmholtz rollup, J. Fluid Mech, vol.243, pp.183-226, 1992.

S. , W. Hussain, F. Metcalfe, and R. W. , 1995 A new mechanism of small-scale transition in a plane mixing layer: core dynamics of spanwise vortices, J. Fluid Mech, vol.298, pp.23-80

S. , W. D. Peltier, and W. R. , Three-dimensionalization of barotropic vortices on the f-plane, J. Fluid Mech, vol.265, pp.25-64, 1994.

V. , H. Heifetz, E. Gelfgat, A. Y. Harnik, and N. , 2012 On the role of vortex stretching in energy optimal growth of three-dimensional perturbations on plane parallel shear flows, J. Fluid Mech, vol.707, pp.369-380

W. , C. D. Browand, and F. K. , Vortex pairing: the mechanism of turbulent mixing-layer growth at moderate Reynolds number, J. Fluid Mech, vol.63, pp.237-255, 1974.