Motion of a solid particle in a shear flow along a porous slab

Abstract : The flow field around a solid particle moving in a shear flow along a porous slab is obtained by solving the coupled Stokes-Darcy problem with the Beavers and Joseph slip boundary condition on the slab interfaces. The solution involves the Green's function of this coupled problem, which is given here. It is shown that the classical boundary integral method using this Green's function is inappropriate because of supplementary contributions due to the slip on the slab interfaces. An 'indirect boundary integral method' is therefore proposed, in which the unknown density on the particle surface is not the actual stress, but yet allows calculation of the force and torque on the particle. Various results are provided for the normalized force and torque, namely friction factors, on the particle. The cases of a sphere and an ellipsoid are considered. It is shown that the relationships between friction coefficients (torque due to rotation and force due to translation) that are classical for a no-slip plane do not apply here. This difference is exhibited Finally, results for the velocity of a freely moving particle in a linear and a quadratic shear flow are presented, for both a sphere and an ellipsoid.
Type de document :
Article dans une revue
Journal of Fluid Mechanics, Cambridge University Press (CUP), 2012, 713, pp.271-306. 〈10.1017/jfm.2012.457〉
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal-polytechnique.archives-ouvertes.fr/hal-00996515
Contributeur : Denis Roura <>
Soumis le : jeudi 5 juin 2014 - 14:27:45
Dernière modification le : mardi 20 novembre 2018 - 14:04:01
Document(s) archivé(s) le : vendredi 5 septembre 2014 - 10:47:03

Fichier

S0022112012004570a.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Collections

Citation

Sondes Khabthani, Antoine Sellier, Lassaad Elasmi, Francois Feuillebois. Motion of a solid particle in a shear flow along a porous slab. Journal of Fluid Mechanics, Cambridge University Press (CUP), 2012, 713, pp.271-306. 〈10.1017/jfm.2012.457〉. 〈hal-00996515〉

Partager

Métriques

Consultations de la notice

215

Téléchargements de fichiers

206