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We present a general variational framework designed to consider constrained optimization and sensitivity
analysis of spatially and temporally evolving flows defined as solutions of partial differential equations. We
particularly focus on seminorm constraints which naturally arise for instance when the quantity which we wish
to optimize can have contributions from several terms in the PDE through different physical mechanisms in a
specific physical system. We show that this case implicitly requires that constraints be placed on the magnitude
of complementary (with respect to the first constraining seminorm) seminorms of initial perturbations such that
the sum of these complementary seminorms defines a total “true” norm of the state vector. A simple (true)
norm constraint naturally satisfies this property. Therefore, the use of this framework requires the introduction
of new parameters which describe the relative magnitude of the initial perturbation state vector calculated using
the various constrained complementary seminorms to the magnitude calculated using the true norm, even for
linear problems. We demonstrate that any required optimization has to be carried out by prescribing these new
parameters as initial conditions on the admissible perturbations; the influence and significance of each seminorm
component, partitioning the initial total norm of the perturbation, can then be considered quantitatively. To
demonstrate the utility of this framework, we consider an idealized problem, the (linear) nonmodal stability
analysis of a mean flow given by a “Reynolds averaging” of the one-dimensional stochastically forced Burgers
equation. We close the mean flow equation by introducing a turbulent viscosity to model the turbulent mixing,
which we allow to evolve subject to a new transport equation. Since we are interested in optimizing the relative
amplification of the perturbation kinetic energy (i.e., the perturbation’s “gain”) this problem naturally requires
the use of our new framework, as the kinetic energy is a seminorm of the full state velocity-viscosity vector, with
a new adjustable parameter, describing the ratio of an appropriate viscosity seminorm to the sum of this viscosity
seminorm and the kinetic energy seminorm. Using this framework, we demonstrate that the dynamics of the
full system, allowing the turbulent viscosity to evolve subject to its transport equation, is qualitatively different
from the behavior when the turbulent viscosity is “frozen” at a fixed, mean value, since a new mechanism of
perturbation energy production appears, through the coupling of the evolving turbulent viscosity perturbation
and the mean velocity field.

DOI: 10.1103/PhysRevE.86.026306 PACS number(s): 47.90.+a, 46.15.Cc

I. INTRODUCTION

Much fluid dynamical research, dating from the pioneering
work of Osborne Reynolds [1], has been focused on the
identification of a critical value of the “Reynolds number”
of a flow for the onset of unsteadiness, significant perturbation
growth, or indeed the transition to turbulence of initially
laminar flows. The classical approach involves linearizing the
governing equations around a steady state (also referred to
as a “base flow”), and then investigating the properties of the
eigenvalues of the corresponding operator. This modal analysis
approach yields good agreement with experiments for a variety
of flows (a prime example being Rayleigh-Bénard convection),
but typically fails for shear flows. Such a modal stability
analysis predicts a critical Reynolds number of 5772 for plane
Poiseuille flow [2] and predicts no (infinitesimal) instability at
all for the case of Couette flow [3], although experiments show
that the transition to turbulence actually occurs for Reynolds
number around 1000 for plane Poiseuille [4] flow and around
360 for Couette flow [5].

The concept of nonmodal stability analysis emerged more
recently and allowed for a description of the perturbation for
intermediate times, instead of focusing on the infinite time

interval implicitly considered in a standard modal analysis.
Indeed, because of the nonnormality of the Navier-Stokes
operator [6], transient growth of the energy is possible for short
times, even though all the (normal) modes are exponentially
decaying. This phenomenon has been widely studied in shear
flows [7–10], and it is now well known that an optimal
perturbation can experience transient energy gain (i.e., the
ratio of the kinetic energy at the end “target time” of a
finite time interval to the kinetic energy at the start time) of
several orders of magnitude. Exploiting the properties of the
underlying linear operator, the gain can be calculated through
a singular value decomposition of the evolution operator [10].
This very rich linear process could perhaps explain how a
linearly stable flow experiences a sufficiently large energy
increase for nonlinear effects to become significant, and thus
possibly trigger a transition to turbulence [6].

In order to find this optimal gain, an alternative Lagrangian
variational formulation was proposed [11,12], allowing more
flexibility in the way we describe and consider “optimal”
perturbations. Indeed, this formulation can take into account
nonautonomous operators (e.g., a time-dependent base flow),
nonlinear operators [13], and nonquadratic measures of the
perturbation, to name just a few examples. More generally, this
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variational approach can be used to optimize any functional of
the state vector (not necessarily based on a norm). Moreover,
the adjoint variables, which are dual variables of state variables
(Lagrange multipliers in the variational formulation imposing
the requirement that the state variables satisfy the underlying
partial differential equation), can yield valuable information
concerning the sensitivity of the optimized quantity to any
input of the problem, including, e.g., the sensitivity to the
chosen initial conditions, boundary conditions, physical or
modeling coefficients, or even the flow geometry and base
flow. Therefore, the particular objective functional can be
chosen specifically for a sensitivity analysis [14], rather than
for optimizing an initial perturbation over a finite time interval.
Using a variational formulation, it is possible to derive the
sensitivity of an eigenvalue (or a singular value) of the system
with respect to any variable of the problem, which is a far more
efficient way to gain insight into the impact of a parameter
on the dynamics of a flow, rather than performing a more
time-consuming finite-difference analysis.

Formally, the conventional problem of investigating per-
turbation kinetic energy gain in simple cases (for example,
incompressible constant-density fluid flow) is essentially a
problem of determining the initial conditions which maximize
the 2-norm of the state vector at the end of the prescribed
time interval. This has undoubted technical attractions, as the
amplitudes of all the state vector components are simultane-
ously constrained in magnitude within the objective functional
of the optimization problem when the objective functional is
the kinetic energy gain. However, it is often of interest to
consider problems where the objective functional is distinct
from the 2-norm of the state vector. In this paper, we will
investigate the implications of relaxing this requirement, and
present an algorithmic framework to consider a general class of
different problems, specifically where the objective functional
is a seminorm. It is important to appreciate that this restriction
to seminorms is not essential, as it is certainly conceivable, as
noted above, that it may be of interest to consider problems
where the objective functional bears no relationship to a norm.
However, we believe that the key concepts which we wish to
explore when the objective functional is no longer actually
a norm can be most simply considered when the objective
functional takes the form of a seminorm, and so that is the
situation on which we focus in this paper.

At this stage, it is important to define clearly the difference
between a norm and a seminorm. The null space (or kernel) of a
norm on a vector space has, by definition, a unique element, the
zero vector of that vector space. Although perhaps tautological,
for clarity we will refer to such a norm as a “true” norm. A
“nontrivial” seminorm, however, is a functional that satisfies
the triangle inequality, and has the positive scalability property;
i.e., for a scalar c (in the cases of interest c is a member of the
real number field)

‖cq‖ = |c|‖q‖, (1)

where ‖q‖ denotes the seminorm acting on a state vector q,
but also has a larger null space, which means that nonzero
vectors can have a null measure with respect to this seminorm.
Within this nomenclature, a “true” norm is thus a “trivial”
seminorm. We draw this extra distinction since there are many
physical circumstances of undoubted fluid-dynamical interest

where the natural objective functional (or a natural constraint)
is not a true norm but is rather defined in terms of a seminorm
on the state vector space.

Two simple examples of optimization problems, where the
nature of the objective functional requires the use of seminorm
constraints, are related to a partitioning in space, where we
are interested in maximizing the perturbation energy growth
strictly in a subregion of the flow domain, and to a partitioning
of the state vector, where we are interested in maximizing
the gain of some (but strictly not all) components of the state
vector. The former example may arise in an industrial context,
where one is interested in maximizing perturbation growth,
e.g., in the immediate vicinity of an injector, while the latter
example may arise in situations where the fluid density is
not constant (due to compositional, thermal, or compressible
effects) and thus the state vector does not only include the
flow velocity components but also the density field. We could
be interested in maximizing the gain in the kinetic energy
or the potential energy of a perturbation in a stratified yet
incompressible flow, or alternatively maximizing the acoustic
energy in a compressible flow; each of these optimizations
would yield an objective functional which is most naturally
defined in terms of a seminorm of the state vector.

For such classes of problems, we are then faced with the
challenge of identifying techniques to constrain the elements
of the state vector which are in the kernel (i.e., the null space)
of this seminorm. A central aim of this paper is to present an
algorithmic framework to address this challenge. The key idea
is to impose “complementary seminorm” constraints on the
allowable initial conditions for the state vector.

The use of seminorm constraints seems to be the appropriate
approach which will separate the different effects contributing
to the objective functional, while still allowing us to consider
optimal seminorm gains. However, we here stress that semi-
norm constraints can be useful even if the objective functional
is a (true) norm. In fact, the present paper presents a method
that allows the consistent use of seminorm constraints, no
matter what the nature of the objective functional.

As explained more precisely below in Sec. II, the “comple-
mentary seminorms” are defined so that they have two useful
properties. First, some set of them must appropriately constrain
the amplitudes of state vectors in the kernel of the objective
functional. Second, the kernels of all the seminorms are distinct
(except for the zero state vector) such that their direct sum must
completely span the state vector space. This latter property
effectively means that the initial constraints imposed by the
complementary seminorms can be imposed independently.
Therefore, the relative importance of the dynamics associated
with the initial values of these complementary seminorms
and the initial value of the objective functional itself can
be investigated in a self-consistent and clear manner by
considering parameters quantifying the relative size of these
initial values.

A particular attraction of the proposed framework is its
flexibility and generality, allowing the treatment of problems
that go beyond the obvious (at best, weighted) 2-norm of
the state vector [15]. We will focus on seminorm constraints
and objective functionals, as we believe they are the most
natural generalization of the conventional, “true” norm-based
functionals to demonstrate our framework and algorithmic
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approach, but physically motivated functionals (completely
unrelated to norms) could also be used with only minor
changes to the proposed framework. After discussing our
framework in a quite general fashion, we demonstrate its utility
by considering a simple idealized fluid dynamical problem,
namely, parameterized turbulence flow modeling where use of
such a framework is essential to yield the correct results for the
natural perturbation kinetic energy gain optimization problem.

A classical approach to parameterized turbulence flow mod-
eling has been to use the averaging method first proposed by
Reynolds, which leads to the set of equations now commonly
referred to as the Reynolds-averaged Navier-Stokes (RANS)
equations. Naturally, due to the quadratic nonlinearity of the
advection term in the underlying Navier-Stokes equations,
a turbulence “closure” is required to close the system of
equations, and one of the simplest (and most commonly
used) closures is to assume that the (second-order in velocity)
Reynolds stress tensor can be related to the (first-order) mean
stress tensor through an (in general) temporally and spatially
varying coefficient, the “eddy” or “turbulent viscosity.” Of
course, such a closure naturally leads to the further question
of how the turbulent viscosity should be modeled, and in
particular if it is allowed to vary in space and time, one or
indeed several extra empirical equations may be required to
describe the physical processes acting on this new quantity.

Recently, turbulence modeling techniques have been ap-
plied in various stability problems, and it appears that stability
analysis of a Reynolds-averaged set of equations, coupled with
an appropriate simple turbulence model, can be successful in
predicting the onset of instabilities affecting mean flows [16],
allowing the appropriate description of large-scale (compared
to the turbulence length scale) instability processes in such
turbulent flows. In the more general case of transient temporal
perturbation growth, due to the nonnormality of the underlying
linearized Navier-Stokes operator, some research has been
conducted on the turbulent boundary layer, assuming a RANS
base flow, yet, critically, perturbations in the velocity and
pressure variable only, while fixing the turbulent viscosity at
a constant value throughout the flow evolution (the so-called
frozen turbulent viscosity approach; see [17] for more details).
Crucially, however, the influence of the closure on the actual
flow evolution is still largely unknown and in particular the
robustness of the results to relaxing the frozen turbulent
viscosity assumption is an open question.

If the turbulent viscosity is rather allowed to vary spa-
tially and temporally (subject to an appropriately constructed
evolution equation) then the state vector of the system
formally involves not only the velocity components, but also
the turbulent viscosity. Therefore, even if the problem of
interest is the conventional problem of maximization of the
perturbation kinetic energy gain over some finite time, the
objective functional for the optimization problem naturally
becomes a seminorm of the state vector, and so we obtain a
relatively simple example of the type of optimization problem
for which we have developed our generalized framework.
In this problem, we have to impose a constraint (using a
complementary seminorm) on the initial magnitude of the
turbulent viscosity, and so this problem has (in a very simple
way) the central characteristics of interest illustrating the utility
of our framework.

Indeed, we wish to consider an extremely simple one-
dimensional problem which nevertheless contains the salient
features of turbulence: time dependence, nonlinearity, en-
hanced diffusivity, and stochastic forcing. An appropriate
choice is the stochastically forced Burgers equation. This equa-
tion is a good one-dimensional analog of the Navier-Stokes
equations, where the analog of “turbulence” is artificially
introduced by a (stochastic) forcing term. Furthermore, it
has been shown that there exists an equivalence between the
Kuramoto-Sivashinsky equation (which is one of the more
famous one-dimensional turbulence model equations [18]) and
such a stochastically forced Burgers equation [19], suggesting
that this is an appropriate model system to consider.

Therefore, the rest of this paper is organized as follows.
In Sec. II, we describe our variational framework involving
the required use of complementary seminorm constraints
in some generality. In Sec. III, we then demonstrate the
application of this framework to the model problem described
above. Specifically, we derive the Reynolds-averaged Burgers
(RAB) equations and apply a turbulent viscosity closure
with an evolution equation for the turbulent viscosity, based
on the well-known Spalart-Allmaras turbulence model [20].
We will then consider the problem of the identification of
“optimal” perturbations (where optimality is defined in various
ways) as an example to show the potential usefulness of our
variational framework not only for identification of optimal
initial conditions but also for sensitivity analysis [14,21].
In Sec. IV we present our results, focusing in particular on
demonstrating the flexibility (and superiority when compared
to other methods) of this framework for considering different
objective functionals to optimize when there is no “natural”
choice of an objective functional corresponding to a “true”
norm of the state vector space. In Sec. V, we briefly discuss
other potential fluid-dynamical applications of this framework,
and finally, in Sec. VI, we draw our conclusions.

II. VARIATIONAL FRAMEWORK

A. Governing equations

We consider an arbitrary state vector q from a vector space
�, defined on the time interval [0,T ]. We choose q ∈ H 1(�),
a Sobolev space of order 2. We choose this space so that q
and its gradient on � are both in L2(�) (space of square
integrable functions on �), which means that the state vectors
are appropriately well behaved for the types of differential
operations we wish to consider. We now consider a hierarchy
of constraints which we wish to impose upon q. The first
constraint is that we wish q to satisfy a partial differential
equation, the most general form of which is

∂tq − N (q) = qf , (2)

where N is a nonlinear operator acting on the variable q, and
qf a forcing term. In this section for simplicity and clarity,
we will however focus on linear homogeneous equations,
although it is important to stress that this framework can be
applied straightforwardly to the case of forced and/or nonlinear
equations. In this simpler case, (2) reduces to

∂tq − Lq = 0, (3)
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where L is a linear operator. For a well-posed problem, we
must of course impose (as constraints) initial conditions

q(x,0) − q0 = 0, ∀ x ∈ �, (4)

and boundary conditions defined on ∂�, for all t :

q(x,t) − q∂� = 0, ∀ (x,t) ∈ ∂� × [0,T ]. (5)

Once again, for clarity, we restrict ourselves to Dirichlet
boundary conditions, although Neumann boundary conditions
can be treated in the same way in the following framework,
subject to conventional consistency conditions (for example
associated with the divergence theorem) being satisfied.

B. Objective functional and seminorm considerations

Depending on the particular problem studied, we will
define “the objective functional” J (q) which takes as its
input the state vector q. The particular functional form of
J (q) is unique to any problem and can be of many different
forms corresponding to some physical quantity of interest.
Obvious examples include (some measure of) the flow’s
energy, enstrophy, drag, or mixing efficiency. In all cases,
the functional J outputs a real number, which we may want
to optimize, or alternatively we may wish to investigate the
sensitivity of that output real number to small variations
of some parameters of the problem. Variational frameworks
of this form have conventionally been used to optimize the
energy growth over some finite time interval by identifying an
optimal initial condition for the state vector, which can also
be identified (for linear operators) by considering a singular
value decomposition (see [10] for further details).

However, a variational framework is much more flexible,
and there is no formal requirement to restrict attention to
optimization of perturbation energy gain. Indeed, the objective
functional can describe the receptivity of a system to an
external forcing, the sensitivity of the least stable eigenvalue
(in the case of a linearized equation only) with respect to
parameters or to a base flow modification [14,21], and more
generally, any (real) quantity derived from the state vector
q. Another specific interesting application of a variational
framework is data assimilation and consists of minimizing
(ideally of course reducing to zero) the difference between
a calculated state vector solution of the underlying partial
differential equation and a (measured) target vector, and thus
to identify “optimal” choices for coefficients or parameter
functions within the governing equation [22].

Although the goal of this particular section is to present
a variational framework in as general a fashion as possible,
actual calculations cannot be carried out without specifying
the kind of problem we are considering, because the objective
functional as well as the various constraints we will consider
naturally change depending on the chosen problem. In order
to demonstrate the framework, we will therefore focus on the
case of the identification of optimal perturbations, i.e., finding
the optimal initial condition q0 which maximizes (the output
of) an objective functional. Such an optimal perturbation is
sometimes referred to as the most dangerous perturbation (in
the sense of what is optimized).

It is important to note that we will use true norms or
seminorms for the objective functional, but in general, the

positive definiteness is not required, and any functional can
be used. We will in this paper consider the following generic
objective functional:

J (q) = ‖q(T )‖2
O , (6)

which defines a quantity of interest given by an objective
(in general semi-) norm at the target time T (without loss
of generality we will always assume that the time interval
for optimization starts at t = 0 and so the target time is T

and the time interval for optimization is also T ). We stress
again that this objective functional is not uniquely defined,
and the norm (or seminorm) can be changed depending on the
specific problem being considered. For example, the objective
functional often describes the kinetic energy of a perturbation
evolving around a base flow state. However, it can also describe
the total energy, summing the kinetic energy and some form
of potential energy. For example the internal energy in a gas
or a fluid can be quantified as a function of the temperature of
the system [23], the potential energy density in a stratified
fluid can be straightforwardly calculated from the density
distribution, and the electrostatic energy due to the presence
of an electrostatic field [24,25] or magnetic energy associated
with magnetic field [26] can similarly be evaluated in space
and time.

These are only a few examples of the other types of
“energies” which can be defined, and indeed the objective
functional does not have to be a conventional energy of the
physical system under consideration. For example, to find
the energy threshold leading to a turbulent state in a Couette
flow configuration, an objective functional defined as the time
and space average of the viscous dissipation has been used
successfully in [27].

Of particular interest are problems where the objective
functional is actually defined in terms of a “seminorm,”
as discussed in detail in the introduction. Such objective
functionals naturally arise when we are interested only in
some partitioning of the state vector, either in space where
we are interested in optimizing the energy in some compact
set of the domain, or in terms of components of the state
vector where (for example) we are interested in only some
part of the total energy of the system. As noted in the
introduction, a (nontrivial) seminorm has a nontrivial null
space or kernel, defined for the particular vector space which
we are considering as the set of state vectors q such that the
seminorm ‖·‖ returns a zero value; i.e.,

ker(‖·‖) = {q ∈ H 1(�); ‖q‖ = 0}. (7)

For a “true” norm the kernel is trivial, containing only the zero
state vector. We then define the complementary space to this
kernel implicitly as

ker (‖·‖) ⊕ ker∗ (‖·‖) = H 1(�), (8)

for any (semi)norm, where ⊕ stands for the space direct sum
which has for definition for three arbitrary ensembles A, B,
and C:

A ⊕ B = C ⇔
{

A + B = C,

A ∩ B = {0}, (9)
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with {0} the appropriate zero state vector. The kernel comple-
mentary space is thus in fact the restriction of the space H 1(�)
for which the seminorm ‖·‖ [on H 1(�)] becomes a norm.

As we discuss in the following subsection, optimization
of gain defined by such a nontrivial seminorm requires a
special treatment of further constraints. In order to address the
development of a variational framework where the objective
functional may potentially use a seminorm, we define a
particularly simple expression capable of describing both
norms and seminorms. Our objective (in general semi-) norm
is then defined as

‖q(T )‖2
O = 1

2

∫
�

q(T )H WOq(T ) d�, (10)

where the superscript H denotes the transpose conjugate
and the matrix WO is a weight matrix. If WO is singular
(noninvertible) then ‖q(T )‖O is a (nontrivial) seminorm, while
if WO is invertible then this expression defines a (true) norm.
This weight matrix can in general be a function of position,
and so one obvious way in which it can be noninvertible is if
it is nonzero in only a compact subregion of the flow domain
(i.e., it is space partitioning). Another obvious way in which
it may be noninvertible is if WO is nonzero only in a block,
so that certain components of the state vector (for example
the fluid’s density, or as we shall see below, a spatially and
temporally varying eddy or turbulent viscosity) do not have
any effect on the value of the “energy” norm (i.e., it is state
partitioning). This class of parameterized (through the weight
matrix WO) quadratic norms will be the only one considered
in this paper. However, a more general seminorm could take
into account the total time-evolving flow [27], i.e., the full
space-time evolution of the state vector, and be for example
the evaluation of (at least some component of) the energy
integrated over space and time. Moreover, we are not in general
constrained to choose a quadratic norm.

C. Lagrangian framework using seminorm constraints

A sensitivity analysis identifies the impact of a small
variation of an input of the optimization problem on the
value of the objective functional, and so in a particularly
natural way, a Lagrangian variational framework enables the
performance of a sensitivity analysis subject to constraints.
Indeed, the Lagrangian framework allows us to add as many
dimensions to the problem as we have constraints. By adding
these extra degrees of freedom, we are then able to investigate
the impact of variations of the constraints on the returned
value of the objective functional. As a consequence, if the
variables whose magnitude we wish to optimize (or to consider
within a sensitivity analysis) are part of the formulation of
the constraints acting on the system, we then have to embed
them in an augmented functional which takes into account the
objective functional and the constraints at the same time. In
other words, when we allow the constraints to vary, we have to
include them in the augmented functional (i.e., the Lagrangian)
of the problem, in order to retrieve the sensitivity information.

In many situations, we are interested in optimizing a given
quantity (for example the initial condition, the external forcing
or the boundary conditions) which will have an impact on
the space-time evolution of the state vector q, and as a

consequence the objective functional J not only depends
implicitly on the optimized quantity, but also inevitably on
the full space-time evolution of the state vector q. Therefore,
as already noted, the first constraint which we must impose
is that the state vector must satisfy the evolution equation
(3). Then, depending on the problem we are solving, different
constraints must be imposed. In general, a correct, well-posed
problem statement involves appropriate boundary conditions;
although it is of course possible to optimize with respect to
such boundary conditions, in an entirely equivalent way to
optimizing with respect to initial conditions (see [28] for a
fuller discussion), for clarity in this paper we opt to restrict
our attention to problems where the boundary conditions are
chosen conveniently and appropriately to not enter explicitly
into the variational problem of interest. Rather we wish to
focus on identifying optimal perturbations, and so initial
conditions play a central role, so that we add an appropriate
(and essentially self-evident) initial condition constraint (4).
Furthermore, in order to avoid the final state vector amplitude
becoming arbitrarily large during the optimization process, we
have to impose a normalization (and hence scalar) constraint
on the initial condition; i.e.,

‖q0‖2
N − N0 = 0,

(11)

‖q0‖2
N = 1

2

∫
�

qH
0 WNq0 d�,

where the subscript N stands for normalization and empha-
sizes the fact that this (true) norm is used for a normalization
purpose. This (true) norm is defined in an analogous way to
‖ · ‖O defined in (10) but is in general defined by a weight
matrix WN different from the energy weight matrix WO .
In particular, since we wish all possible state vectors to be
constrained, we require WN to be nonsingular, and so the
(true) norm used for the normalization of the initial condition
can be different from the objective norm (or seminorm) used
to define the optimized quantity J . Indeed, in general, we can
optimize the value of a certain seminorm, given that the initial
perturbation is normalized with respect to a different (true)
norm.

In the specific case where we wish to optimize a “gain”
(i.e., the ratio of final to initial objective value), we need to
optimize (the value at the final time) and constrain (the value
at the initial time) the same quantity. It is therefore natural
to choose the same norm for optimization and normalization
and so WO = WN , such that the normalization constraint is
simply

‖q0‖2
O − O0 = 0, (12)

with O0 describing an initial value of the objective functional.
The gain in the objective functional is then straightforwardly
defined as

GO = ‖q(T )‖O

O0
. (13)

Since ‖q(T )‖O is the optimized quantity and O0 is fixed, at
the end of the optimization process, the gain found will be
optimal.

In general, the normalization constraint has to act on the
totality of the state vector q in order to have a well-posed
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optimization problem. In particular, imposing constraint (12)
with a singular matrix WO is not an appropriate constraint,
as this constraint will not affect any vector which is part
of the kernel of the seminorm involved in the definition of
the objective functional, and will as a consequence remain
unbounded. Although an optimization investigating the op-
timal final state objective value ‖q(T )‖O under a seminorm
constraint defining the initial seminorm of the state vector O0

can still be conducted, and an optimal q0 can in principle be
identified, it is very likely that the objective functional will
diverge with the magnitude of the nonconstrained part of the
state vector, a typically undesired and unrealistic behavior.

As a consequence, in the more general situation (for which
we wish to construct a framework) where we want to constrain
the state vector with the help of a seminorm, to define a well-
posed problem we have to add (at least) a further constraint
on the part of the state vector which is in the kernel of the
seminorm. From now on, the seminorm which we wish to
impose as a constraint will be denoted with a subscript K0.
A natural way to do this is to appreciate that there is some
flexibility in the construction of the constraint, and especially
that we can have several normalization constraints. Therefore,
to be able to constrain the seminorm ‖·‖K0

of interest and
the magnitude of all possible state vectors at the same time,
we are then led to the necessity of (at least) a second initial
condition constraint beyond the normalization through ‖·‖K0

in order to impose an appropriate constraint equivalent to (11).
A very convenient way to do this is through defining a set of
“complementary seminorms” ‖·‖Ki

:

‖q0‖2
K0

− K00 = 0,

‖q0‖2
K1

− K10 = 0,
(14)

where ‖·‖K1
is constructed such that the norms ‖·‖K0

and ‖·‖K1

are “complementary.” In this context, we wish to refer to a set
of seminorms as being complementary if the direct sum of the
kernel complementary spaces of these two seminorms is the
entire state vector space (9); i.e.,

ker∗(‖ · ‖K0 ) ⊕ ker∗(‖ · ‖K1 ) = H 1(�). (15)

By construction, this complementary seminorm ‖·‖K1

constrains the initial magnitude of the state vectors in the
kernel of the seminorm ‖·‖K0

and vice versa, such that the full
space H 1(�) is constrained without any interference between
the two normalizations. Therefore, for a general state vector
q, we define the total normalization norm through ‖·‖N

‖q‖2
N = ‖q‖2

K0
+ ‖q‖2

K1
. (16)

This is clearly a straightforward construction when the first
seminorm constraint considers only a compact subregion of the
flow domain (i.e., when the problem is partitioned in space)
or partitions the state vector by its components (e.g., when
‖·‖K0

only considers the kinetic energy of a stratified flow).
Therefore, we can define the initial (true) norm value as

N0 = K00 + K10. (17)

Consequently, a new (adjustable) parameter arises which
quantifies the relative size of the initial magnitude given by

the energy seminorm to the total normalization norm; i.e.,

R0 = K00

N0
= K00

K00 + K10
= 1 − K10

N0
. (18)

In order actually to find the optimal perturbation, we also
have to optimize with respect to this parameter (and not with
respect to the total norm N0 since the problem is linear).
Indeed, this framework offers the possibility to perform a
multiscale stability analysis where the initial amplitude of the
perturbation is different in each component of the state vector.
Optimizing on the parameter R0 would then maximize the
corresponding objective functional. However, in some cases,
the ratio R0 will be fixed physically or be an input if one wants
to investigate a certain case. For example, in the case where
we want to constrain the initial condition to lie only within
a compact subregion of the domain, we would enforce the
initial condition on this subregion and on the complementary
subregion independently with seminorms weighted by spatial
(mask) functions, and would set the ratio R0 to be zero
which forces the initial condition to be completely free of any
component of the kernel of the seminorm ‖·‖K0

, and ensure the
initial localization of the perturbation in the desired subregion.

The situation is somewhat more straightforward if the
problem of interest is one of optimization of a gain defined by a
seminorm. In this particular case, the optimization seminorm
has to coincide with one of the constraint seminorms, and
so ‖·‖K0

≡ ‖·‖O and so we may write the complementary
seminorm as ‖·‖K . The associated seminorm initial values are
denoted O0 and K0, and the corresponding full-norm initial
value N0 is still the sum of these two values. The new single
parameter arising is defined in the same way as in (18):

R0 = K0

N0
= K0

O0 + K0
= 1 − O0

N0
. (19)

The gain is then defined in the exact same way as in (13) as
the ratio of the final value of the objective functional norm
‖q(T )‖O to its initial value O0.

More generally, if there are other (multiple) physically
motivated constraints we wish to impose upon the problem
(for example by requiring the initial conditions to have specific
magnitudes in different subregions of the flow domain) we
can impose a larger complete yet complementary set of initial
constraints:

‖q0‖2
Ki

− K0i
= 0, for i from 0 to nc,

nc⊕
i=0

ker∗
(‖ · ‖Ki

) = H 1(�),
(20)

where the symbol ⊕ denotes the direct sum [explicitly written
in (15)] and where the number of complementary constraints
is nc + 1, with implicitly nc + 1 different complementary
seminorms which satisfy

nc∑
i=0

‖q0‖2
Ki

=
nc∑

i=0

K0i
= ‖q0‖2

N = N0. (21)

The number of new parameters to optimize over is nc (because
the system is linear) and can be defined as [generalizing (18)]

R0i
= K0i

N0
, i = 1 . . . nc, (22)
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0

ker* K 0 i

ker* O

0

ker* K 0 i
= ker* O

H 1 (Ω)

H 1 (Ω)

(a)

(b)

0

0

FIG. 1. Schematic representation of the partition of the space
H 1(�) through the choice of nc + 1 (here nc = 5) seminorm
constraints. (a) Schematic representation of the generic case of final
value optimization, where the objective seminorm is different from
all the (initial) constraint seminorms. (b) Schematic representation of
the special case of gain optimization, where the objective seminorm
coincides with one of the constraint seminorms (and as a consequence,
so do their kernel complementary spaces).

and we will retain this general form for the constraints to
construct our general framework. This general situation is
shown in Fig. 1(a), making it explicit that the seminorm used
to define the objective functional does not need to correspond
to any of these constraint seminorms.

As before, the situation is simpler if the problem of interest
corresponds to a problem where we wish to optimize a gain,
because then one of the constraint seminorms has to coincide
with the objective seminorm, and so without loss of generality,
we define ‖·‖K0

= ‖·‖O [see Fig. 1(b)]. We have decided to
express the objective functional with a norm denoted with a
subscript O for “objective” to highlight that final energy or
energy gain optimization is only a single possibility allowed
by this framework. In an energy gain optimization case, we
choose to write ‖·‖O ≡ ‖·‖E and O0 ≡ E0. If optimized, the
gain will then be an energy gain and denoted

GE(T ) = ‖q(T )‖E

E0
. (23)

We are now able to express the appropriate Lagrangian
functional for our optimization problem embedding the con-
straints, provided we define the different scalar products we
will need to use. We will use three different scalar products in
this study: one related to space, one to time, and one to both

space and time. Respectively, these scalar products are

〈f,g〉(t) =
∫

�

f Hg d�,

[f,g](x) =
∫ T

0
f Hg dt, (24)

(f,g) =
∫

�

∫ T

0
f Hg d�dt.

Using these definitions, the augmented Lagrangian functional
for our optimal perturbation problem can now be written in a
rather general way:

L(q,q0,q†,q†
0,λi)=‖q(T )‖2

O − (q†,∂tq − Lq)

−〈q†
0,q(0)−q0〉−

nc∑
i=0

λi

(‖q0‖2
Ki

− K0i

)
,

(25)

where the objective functional J (q) = ‖q(T )‖2
O consistently

with (6).

D. Optimality conditions

We wish to find an extremum of the augmented Lagrangian
functional L by ensuring that the variations with respect to
all the considered variables vanish. The total variation of the
(augmented) Lagrangian is

δL = δL
δq

δq + δL
δq0

δq0 + δL
δq† δq† + δL

δq†
0

δq†
0

+
nc∑

i=0

∂L
∂λi

δλi = 0. (26)

Since all the variables of the problem are independent, all the
terms in the previous equation have to vanish. Variations with
respect to q† and q†

0 yield the “direct” or “forward” partial
differential equation (3) and the initial conditions for q, while
the first variation with respect to the λi will simply yield the
constraints on the normalization of the initial perturbation.

Requiring variations with respect to the direct variable q to
be zero leads (typically after some integration by parts, and
application of appropriate boundary conditions) to the adjoint
evolution equation, defined as

−∂tq† − L†q† = 0. (27)

The integration by parts of the time derivative yields the final
condition

q†(T ) = δJ
δq

= WOq(T ). (28)

Because of the Laplacian structure of the diffusive term in
equations of interest, the adjoint equation turns out to be an
antidiffusive equation which, for well-posedness reasons, has
to be integrated backward in time from t = T to t = 0 to
calculate q†(0) which can then be used to find the sensitivity
of the Lagrangian to the chosen initial condition of the state
vector. By requiring that the boundary terms play no role (and
hence are homogeneous), the natural boundary conditions for
the adjoint are found straightforwardly to be q†(∂�) = 0.
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q0

q∗
0

q(0) q(Τ)

q (0) q (Τ)

L

L

δ
q(Τ)

Δ

q0 δ

FIG. 2. A schematic representation of the “Direct-Adjoint” loop
process in order to find the optimal perturbation. We start with a guess
q0, apply the initial condition constraint (4), then integrate the direct
equation forward in time. This gives the direct state vector at time T

which allows us to define the “final” condition for the adjoint state
vector using (28). We then integrate the adjoint equation backward
in time from this final condition to obtain the “initial” adjoint state
vector which allows us to compute the sensitivity with respect to the
chosen initial condition on the (forward) state vector q0 using (29).
We then use an appropriate optimization method in order to find the
“best” initial condition achieving the maximum value of the objective
functional defined in (6).

Taking variations with respect to the initial condition q0

leads to the following expression for the gradient of the
objective functional with respect to the initial condition:

∇q0J = q†
0 −

nc∑
i=0

λiWKi
q0, (29)

where q†
0 = q†(0). Ideally, at the stationary point of the

Lagrangian (when the solution to the underlying variational
problem has then been identified), this gradient vanishes.
However, this is not true for generic initial conditions, and we
have to employ an optimization technique in order to reach
the (solution) condition. The λi , the Lagrange multipliers
imposing the various amplitude complementary seminorm
constraints on the initial state vector, will be determined at each
iteration of the optimization algorithm by satisfying the initial
normalization conditions. This determination will however
depend on the particular iterative optimization algorithm used.
The whole loop process is represented schematically in Fig. 2.

Eventually, at the end of the optimization, we have the
optimal value of the objective functional J ∗ = J (q∗(T )),
associated with the optimal set of direct and adjoint state
vectors (q∗,q∗†) at all times, and in particular at the initial
time t = 0, thus identifying the optimal initial condition q∗

0,
for which the gradient given by (29) vanishes by definition.
We will now see that the adjoint state vector can also yield
information on the sensitivity of the objective functional with
respect to every varying field or coefficient taken into account
in our Lagrangian framework.

E. Sensitivity analysis

In this section, we will describe the sensitivity analysis
possibilities that our variational framework allows. In some
sense, the optimal perturbation framework presented above is

already a sensitivity analysis, with the appropriate sensitivity
information [the gradient in (29)] with respect to the choice of
initial conditions being used to find the optimal perturbation.
A general sensitivity analysis will allow us to find what is
the impact of a small variation of a parameter p on the value
of a functional at the optimal state vector point q∗. As the
sensitivity analysis can be performed on a functional which is
totally different from the (optimized) objective functional, we
will define a general functional I which is a priori different
from the original optimized objective functional J .

The sensitivity may then be defined as

∇pI(q∗(p),p) = ∂I
∂p

(q∗) +
(

δI
δq

,
∂q∗

∂p

)
, (30)

where ∇pI is just a condensed way to write the total derivative
of I with respect to p, and where the chain rule appears under
the form of a scalar product on the state vector space. The
first term on the right-hand side of the equation represents the
explicit contribution of p to the functional while the second
term is the implicit contribution of p to I through the (optimal)
state vector q∗.

We consider two qualitatively different cases, depending on
the particular properties of the parameter p. We can define two
broad classes of parameters: constraint parameters pc which
will modify the constraints while keeping the functional I
unchanged, and external parameters pe which will change the
functional I without changing the constraints. An example
of a constraint parameter is a coefficient of the underlying
partial differential equation satisfied by the state vector, such
as a viscosity coefficient or a modeling parameter, while an
example of an external parameter is a parameter directly
involved in the definition of the energy seminorm.

Focusing first on sensitivity with respect to constraint
parameters (pc), the first term on the right-hand side of Eq. (30)
is zero by definition of a constraint parameter, as it does not
appear directly in the functional I. Therefore,

∇pc
I(q∗(pc),pc) =

(
δI
δq

,
∂q∗

∂pc

)
. (31)

This implicit contribution can be expressed analogously to
before using a Lagrangian framework. We can add the
constraint into a yet further new augmented functional K
combining the functional I as well as the dynamical PDE
constraint on the (optimal) state vector q∗:

K(q∗,q†∗) = I(q∗) − (q∗†I ,∂tq∗ − Lq∗), (32)

where we have added a subscript I since the adjoint will
depend on the functional I and is in general different from the
adjoint state vector q∗† associated with the optimization of the
underlying objective functional J .

The required implicit derivative can be obtained by cal-
culating the partial derivative of the augmented Lagrangian
functional K with respect to pc since the constraints have
been embedded in this augmented functional. The direct
state vector q∗ is defined by its initial condition q∗

0 (the
optimal for maximizing the original, underlying objective
functional J ) and the adjoint state vector q∗†I (which carries
the sensitivity information) will be retrieved through the
backward integration of the adjoint equations, the structure of
which is not changed by this algorithm. However, the chosen
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FIG. 3. A schematic representation of the algorithm used to
calculate the sensitivity of a general functional I of the optimal
initial condition state vector q∗

0 to constraint parameters pc. We start
from the optimal initial condition state vector q∗

0 we obtained using the
optimization framework and integrate the direct equation to obtain the
“final” state vector q∗(T ). (This step may not actually be required if
the final state of the optimal direct state vector q∗ has been saved in the
last iteration of the optimization framework.) We then construct a new
final adjoint state vector q∗†I (T ), which construction depends on the
particular choice of the functional I. Finally a backward integration
of the adjoint state vector leads to a new “initial” adjoint state vector
q∗†I (0) which is needed in order to determine the required sensitivity.

starting form of the “final” adjoint state vector q∗†I (T ) is now
determined by the gradient of the new functional I, and so
in general is different from the final adjoint state vector q∗†
associated with the optimization of the original underlying
objective functional J . Using this new final adjoint state
vector q∗†I (T ), a single backward-in-time evolution using
the adjoint equations yields the sensitivity information. This
means that the sensitivity to a constraint parameter of a
functional (potentially different from the original optimized
objective functional) satisfies

∂K
∂pc

=
(

δI
δq

,
∂q∗

∂pc

)
. (33)

As a direct consequence,

∇pc
I(q∗(pc),pc) = ∂K

∂pc

, (34)

where K is the secondary augmented Lagrangian functional.
This expression is a scalar product between a function of
the (optimal) direct state vector q∗ and the adjoint state
vector q∗†I corresponding to the functional I. A schematic
representation of this particular algorithm is shown in Fig. 3.
For the particular special case where I actually is the original
optimized functional J , then the gradient is given by the same
equation, where the adjoint vector q∗†J = q∗† was already
evaluated during the optimization problem.

In the other case of an external parameter, the objective
functional I depends explicitly on the parameter pe, so the
first term on the right-hand side of Eq. (30) will be different
from zero. The gradient of the functional with respect to an
explicit parameter pe can be found in many cases analytically
(for example for functionals defined in terms of integrals), and
so the principal issue remains to evaluate the second term on
the right-hand side of Eq. (30). We believe that the calculation
of the second term of the product (i.e., the gradient of the
optimal state vector q∗ with respect to pe), requires the use of

∂pe q
*

q* (pe + dpe )

Δ

q

q* (pe )

∂pc q
*

q*(pc + dpc)

Δ

q

q* (pc)

(a)

(b)

FIG. 4. (a) A schematic representation illustrating the sensitivity
of the optimized functional J to a constraint parameter. (b) A
schematic representation illustrating the sensitivity of the optimized
functional J to an external parameter. Black lines are the level lines
of the objective functional J [gray lines of part (b) of the figure
correspond to the level lines of the functional for pe = pe + δpe].
Thick black lines are the constraints (thick dashed line is the constraint
for pc = pc + δpc). Black circles represent the optimal locations in
solution space for the state vector. In the case of the sensitivity with
respect to an external parameter we can see that the terms δJ

δq and
∂q∗
∂p

are orthogonal whereas they are not in the case of a constraint
parameter.

a simple, yet computationally costly, finite-difference method.
Indeed, we have to utilize our variational framework to identify
the optimal state vector q∗ to the problem for a particular value
of pe, then for pe + δpe, and then evaluate:

∂q∗

∂p
� q∗(pe + δpe) − q∗(pe)

δpe

. (35)

Once there is a need to use finite differences however,
in general there is no need to evaluate the terms in (30)
independently, because sensitivity can of course also be
directly estimated using finite difference:

∇pe
I(q∗(pe),pe)

� I(q∗(pe + δpe),pe + δpe) − I(q∗(pe),pe)
δpe

. (36)

The situation is substantially more straightforward in the
special case when the functional I whose sensitivity is being
investigated is actually the same as the underlying optimized
functional J . In this specific case, we observe that the
second term on the right-hand side of (30) actually vanishes.
Since the objective functional J is (by definition) optimized,
variations of the state vector while still satisfying all the
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imposed constraints cannot improve the value of the objective
functional J (see Fig. 4).

Formally, the gradient of the objective functional with
respect to the state vector is perpendicular to the subspace
defined by all the imposed constraints. Equivalently, the level
lines of J are parallel to the constraint subspace at the optimal
point q∗. On the other hand, ∂pe

q∗ is tangent to the subspace
defined by the constraints (since the optimized state vector
must always satisfy all the constraints by definition) which
subspace does not change as pe varies, by the definition
of an external parameter. Therefore, combining these two
observations, the gradient of J with respect to the state
vector is normal to the variation of q∗ (confined to the
subspace defined by the constraints) with respect to the
external parameter, and so the second term on the right-hand
side of (30) (which is simply the scalar product of these two
quantities) is exactly zero. We can then simply express the
sensitivity of the optimized objective functionalJ to variations
in an external parameter as

∇pe
J (q∗(pe),pe) = ∂J

∂pe

. (37)

Here, we have only discussed variations with respect to a
parameter. However, it could also be of interest to consider the
sensitivity of a functional to a function, either associated with
the definition of the objective functional or the constraints. For
example if the operator L describes the linear evolution of a
small perturbation evolving on a base flow defined by a base
state vector qB (which is a function governing the dynamics
of the perturbation), it is possible to derive the sensitivity
of a functional to this base flow in an analogous fashion
to the algorithm described above to investigate sensitivity to
parameters.

In the particular example of considering the sensitivity to
the base flow state vector, the base flow must satisfy base
flow equations which can be expressed in the same form as
Eq. (3), where the implicit coefficients in the operators (such
as the flow’s Reynolds number) are “constraint parameters”
pc and are shared by the base flow and perturbation equations
(since the perturbation equation is derived from the base flow
equation). In general, small variations in these coefficients will
affect both the perturbation state vector q and the base state
vector qB . As a consequence, the requirement (effectively
another constraint) that the base state vector satisfies the
base flow equation must be embedded within the Lagrangian
functional, with the constraint imposed by a new Lagrange
multiplier q†

B .

III. REYNOLDS-AVERAGED BURGERS EQUATION (RAB)
OPTIMAL PERTURBATION PROBLEM

FORMULATION

A. Derivation of the Reynolds-averaged Burgers equations

As a relatively simple demonstration example of our
variational framework, we will in this section construct a model
problem of interest, where optimization of the perturbation
(kinetic) energy gain inevitably leads to an objective functional
which is defined in terms of a (nontrivial) seminorm of the
state vector. We study the evolution of a velocity-like variable

defined on [0,1] × [0,T ] and governed by the stochastically
forced Burgers equation, entirely defined by the viscosity
coefficient ν, with Dirichlet boundary conditions and a well-
posed (in particular appropriately smooth) initial condition.
This can be formulated as

∂tu + u∂xu − ν∂xxu = s, (38)

with u(0,t) = ul , u(1,t) = ur , and u(x,0) = u0, and s a
stochastic forcing of zero ensemble average [which is needed
in order to later be consistent with (3) where no forcing term
is present], and vanishing at the boundary. To obtain nontrivial
energy production dynamics, we consider a symmetric focus-
ing base flow, and so we choose the boundary conditions to be
ul = −ur = 1. The solution u(x,t) is stochastic because of the
nature of the forcing, but can be expressed as the superposition
of a coherent field 〈u〉 and a stochastic field us ; i.e.,

u(x,t) = 〈u〉 (x,t) + us(x,t),
(39)

such that 〈us〉 = 0,

where 〈·〉 denotes ensemble averaging. We interpret us as the
“turbulent” component of the flow, and so this decomposition
of the flow into two variables with different spatial and
temporal scales of variation constitutes a so-called “Reynolds
decomposition.”

We introduce this decomposition into the governing equa-
tion, and then ensemble-average to obtain the mean flow
equation for 〈u〉, which is

∂t 〈u〉 + 〈u〉 ∂x 〈u〉 + 〈us∂xus〉 − ν∂xx 〈u〉 = 0. (40)

In this equation all the terms except the third one are expressed
in terms of the ensemble-average velocity of the flow. Indeed,
when Reynolds-averaging a nonlinear state equation, higher
order terms inevitably appear which cannot directly be
expressed as a function of the first-order “mean” quantities,
leading to a classic “closure” problem. Here, this term is the
equivalent of the gradient of the Reynolds stress tensor in the
Reynolds-averaged Navier-Stokes equations, a second-order
quantity in a first-order equation. In this particularly simple
one-dimensional context, we can rewrite this term as the spatial
derivative of the turbulent kinetic energy, defined as

〈us∂xus〉 = ∂xet , with et = 1
2

〈
u2

s

〉
. (41)

Therefore, to close the evolution equation for the mean velocity
(40), we need to add a model in order to express the turbulent
kinetic energy density [defined in (41)] as a function of mean
quantities.

B. Turbulent viscosity closure

We here follow the classical Boussinesq [29] turbulence
hypothesis, by assuming that et is proportional to the gradient
of the mean velocity field with a viscosity-like coefficient of
proportionality νt , which in general is itself a function of space
and time:

1
2

〈
u2

s

〉 = −νt∂x 〈u〉 . (42)

Simple assumptions of this kind are widely used as closures for
RANS equations. In the highly idealized model situation we
are considering, it is thoroughly plausible that the stochastic
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FIG. 5. (a) Velocity u and (b) turbulent viscosity νt solutions
of the steady RAB equations (47) with boundary conditions u(0) =
1, u(1) = −1 and νt (0) = rν, νt (1) = rν. The value of the laminar
viscosity is set to ν = 0.05. Production and destruction coefficients
are chosen to have the illustrative values c1 = 0.75 and c2 = 2. For
r = 0, no turbulent viscosity is created, and the flow is laminar. When
r 
= 0, turbulent viscosity is generated in the zones of high gradient,
which are, as a consequence, smoothed for r = 0.5.

field will have the effect of increasing the total viscosity of
the flow by a certain amount νt . Furthermore, in this special
case of Burgers equation, the left-hand side of (42) is always
positive. As a consequence, the product νt∂x 〈u〉 has to be
negative, which means that the turbulent (eddy) viscosity must
have the same sign as −∂x 〈u〉. Therefore, the slope of the
ensemble average of u cannot be positive (flow going toward
the edges of the domain), as that would require the turbulent
viscosity to be negative, which is physically inconsistent. We
will always respect the positivity constraint of the modeled
turbulent kinetic energy et since we restrict ourselves to
consideration of a focusing flow [with negative slope, as shown
in Fig. 5(a)].

Combining (40) and (42) we obtain the following equation
for the mean field 〈u〉:

∂t 〈u〉 + 〈u〉 ∂x 〈u〉 − ∂x [(ν + νt ) ∂x 〈u〉] = 0. (43)

At this point, we could simply close the equation by
choosing a fixed value of this new viscosity, based, for
example, on the evaluation of a mixing length scale. However,

this naive technique is typically not appropriate since the
properties of a turbulent flow naturally vary in space and time.
As a consequence, it is appropriate to develop a model equation
allowing us to describe the spatial and temporal evolution of
the new turbulent (or eddy) viscosity coefficient.

A widely used approach is to produce a transport equation
for the turbulent viscosity. We follow this approach and
assume that νt is a solution of an advection-diffusion equation
with production and destruction terms. We assume that the
production of turbulent viscosity is driven by the magnitude
of the first derivative of the mean field 〈u〉 (equivalent to the
shear in a real flow) while we assume the destruction term is
quadratic in the turbulent viscosity (see [20]). This leads to the
following equation for νt :

∂tνt + 〈u〉 ∂xνt − ∂x [(ν + νt ) ∂xνt ]

− c1 |∂x 〈u〉| νt + c2ν
2
t = 0, (44)

where c1 and c2 are two real coefficients defining the strength
of production and destruction mechanisms. We also add a
Dirichlet boundary condition for the viscosity:

νt (0,t) = νt (1,t) = rν, (45)

where r is the ratio between the turbulent viscosity at the
boundaries of the flow domain and the laminar viscosity. This
parameter just controls the amount of “turbulence” we want
to introduce at the boundaries. Equation (44) has also the
property of preserving the positivity of the turbulent viscosity.
Equations (43) and (44) then constitute a closed set for the
Reynolds-averaged Burgers (RAB) equations, acting on the
state vector 〈q〉 (x,t) = (〈u〉 ,νt )

�:

∂t 〈u〉 + 〈u〉 ∂x 〈u〉 − ∂x((ν + νt ) ∂x 〈u〉) = 0,

∂tνt + 〈u〉 ∂xνt − ∂x((ν + νt ) ∂xνt )
−c1 |∂x 〈u〉| νt + c2ν

2
t = 0.

(46)

By considering steady flows (i.e., ∂t = 0), we can search for
steady states as a solution of the coupled equations. We denote
the steady flow solution of such an equation as q(x) = (u,νt )

�.
This steady state must satisfy

udxu − dx((ν + νt ) dxu) = 0,

udxνt − dx((ν + νt ) dxνt ) ⇔ L(q) = 0,

−c1 |dxu| νt + c2νt
2 = 0,

(47)

defining a set of ordinary differential equations.
We plot a solution of this steady set of equations in Fig. 5.

We first notice that in the two cases r = 0 (laminar) and r 
= 0
(turbulent), the flow indeed corresponds to a focusing, with
a positive velocity (from left to right) in the left part of the
domain and a negative velocity (from right to left) in the right
part of the domain. Then, in the turbulent case (r 
= 0), we
can see that the turbulent viscosity equation has the effect of
enhancing the turbulent viscosity in the middle of the domain
(where the gradients of u are strong), which has the secondary
effect of smoothing the gradient of velocity in the middle part
of the domain.

C. Perturbation equations

Now that we have constructed a (steady) base flow, we
can investigate its stability properties by introducing small
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perturbations, which are in general functions of space and time.
The ensemble average of the flow can now be decomposed as
follows:

〈q〉 (x,t) = q(x) + q̃(x,t), (48)

with q̃ = (ũ,ν̃)�, so the perturbation state vector in general
involves a perturbation to both the velocity and the turbulent
viscosity. The perturbation velocity may be thought of as a
“coherent” velocity perturbation, as it has a nonzero ensemble
average. We assume that the magnitude and gradients associ-
ated with this perturbation state vector are sufficiently “small”
relative to the base flow for a linearization to be well posed.
Substituting this decomposition into the full equations (43) and
(44), imposing the mean flow equations (47), and neglecting
nonlinear terms, we obtain the (full) linearized perturbation
equation:

∂t ũ + u∂xũ + ũ∂xu − ∂x((ν + νt ) ∂xũ) = ∂x (ν̃∂xu)
∂t ν̃ + u∂xν̃ − ∂x (ν̃∂xνt ) − ∂x((ν + νt ) ∂xν̃)

−c1 |∂xu| ν̃ + 2c2ν̃νt = c1sgn(∂xu)νt∂xũ − ũ∂xνt

⇔ ∂t q̃ − L̃q̃ = 0, (49)

where L̃ is the (full) linearized operator of the closed RAB
equations. We write the differential operator in block matrix
form in Appendix A.

In each evolution equation, transport terms of the relevant
dependent variable are on the left-hand sides, while the right-
hand sides may be interpreted as forcing terms since they are
independent of the relevant dependent variable. A particular
point to note is that this full linearized system of equations
has a forcing term for the mean flow perturbation velocity ũ

equation involving the perturbation turbulent viscosity and the
gradient of the base mean flow

Fν = ∂x (ν̃∂xu) , (50)

a term which plays a crucial role in the stability analysis of
the total flow when the turbulent viscosity is allowed to vary
in space and time, and so ν̃ is nonzero.

It is also mathematically possible to consider a perturbation
to the mean flow velocity only. Indeed, the simplest way to
deal with stability analysis of mean flows (or more precisely
stability analysis of the coherent flow) is to consider a steady
mean flow solution of the previous system which constitutes
the base flow q = (u,νt )� and then apply a perturbation
q̃F = (ũ,0)� which has a perturbation component in the (mean
flow as opposed to the stochastic field) velocity, but does not
allow any variation in the turbulent viscosity, which is as
a consequence “frozen” in its base state. This is equivalent
to considering only the first equation of system (49), and
imposing ν̃ = 0. It leads to the “frozen turbulent viscosity
perturbation equation,” defined as

∂t ũ + u∂xũ + ũ∂xu − ∂x((ν + νt ) ∂xũ) = 0

⇔ ∂t ũ − L̃11ũ = 0, (51)

where the operator L̃11 is the operator describing the evolution
of the perturbation in a frozen turbulent viscosity context. By
comparison of (49) and (51), it is apparent that if represented

in matrix form L̃11 corresponds to the top left block matrix
of the full linearized perturbation operator L̃, as written in
Appendix A.

D. Energy evolution equation

In order to understand the various growth mechanisms, it is
useful to consider an evolution equation for an appropriately
defined perturbation “energy.”

A natural choice of course is to define the perturbation
energy in terms of the coherent velocity perturbation; i.e.,

E = 1

2

∫ 1

0
ũ2dx. (52)

The perturbation kinetic energy evolution equation can thus be
derived by multiplying the first perturbation equation (for ũ)
of system (49) by the perturbation velocity ũ, to obtain (after
various integrations by parts)

∂tE = −
∫ 1

0

1

2
ũ2∂xu dx︸ ︷︷ ︸

PE1

−
∫ 1

0
ν̃∂xũ∂xu dx︸ ︷︷ ︸

PE2

−
∫ 1

0
(ν + νt ) (∂xũ)2 dx︸ ︷︷ ︸

DE

. (53)

The first term on the right-hand side (labeled PE1 ) is
associated with the production or destruction of energy due
to the interaction between the perturbation in the coherent
velocity field and the base mean flow velocity. We notice
that the sign of this quantity only depends on the sign of
the base mean flow gradient: Since this gradient is negative
by definition [required by (42)], this term is a (perturbation)
energy production term. The second term (due to the presence
of a forcing term in the coherent perturbation equation) also
involves the perturbation in the turbulent viscosity, and is as
a consequence denoted PE2 . Assuming a negative base mean
flow gradient, this term will be a source of perturbation kinetic
energy when ν̃∂xũ is positive, and will be a sink when ν̃∂xũ is
negative. It represents a (in general not sign-definite) catalytic
term describing the amount of energy we are able to extract
from the base mean flow due to variations in the turbulent
viscosity.

Of course, in the case of the frozen turbulent viscosity
analysis, this term is not present, which removes a possible
mechanism for perturbation kinetic energy production. The
last term quantifies the (appropriately linearized) dissipation
of perturbation kinetic energy by both laminar and turbulent
viscosity, and is always negative.

To complete the “energy” analysis, we can also consider
the evolution of the squared norm of the second component ν̃.
We define this quantity as

K = 1

2

∫ 1

0
ν̃2dx. (54)

An evolution equation for this quantity can be derived fol-
lowing the same method described above for the perturbation
energy. The evolution of the quantity K is governed by the
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following equation:

∂tK = 1

2

∫ 1

0
ν̃2 (∂xu + ∂xxνt ) dx︸ ︷︷ ︸

SK1

−
∫ 1

0
(ν + νt ) (∂xν̃)2 dx︸ ︷︷ ︸

DK1

+
∫ 1

0
c1 |∂xu| ν̃2 dx︸ ︷︷ ︸

PK1

−
∫ 1

0
2c2νtν

2 dx︸ ︷︷ ︸
DK2

+
∫ 1

0
c1ν̃∂xũsgn (∂xu) νt dx︸ ︷︷ ︸

SK2

−
∫ 1

0
ũν̃∂xνt dx︸ ︷︷ ︸
PK2

. (55)

Since ∂xu + ∂xxνt is always negative, the first term SK1

trivially acts like a sink for K . DK1 is also always a
diffusive term and so negative for all time while PK1 and
DK2 are trivially associated with production and destruction
of turbulent viscosity. At first sight, the term SK2 has no
obvious sign. However, the optimization of E suggests from
term PE2 that the product ν̃∂xũ is positive. Furthermore, the
term sgn (∂xu) νt being negative, this term (in the optimization
of E context) will act as a new sink of K . Finally, the last term
PK2 has no obvious sign and will depend on the perturbation
symmetry.

Most importantly, there is no equivalent term to PE2 in this
equation, meaning that there is no transfer from one component
of the state vector to the other. Therefore, the perturbation
kinetic energy E can grow substantially by extracting energy
from the mean flow with ν̃ acting as a catalyst, rather than a
direct source of energy, while K may well vary more slowly.

E. Optimal perturbation Lagrangian formulation

We are now in position to define an optimization prob-
lem using a Lagrangian approach based upon the general
framework developed in Sec. II. We are particularly interested
in the effect on our results of the application (or not) of a
range of increasingly more restrictive assumptions. We will
first formulate the “FULL” problem using the full linearized
set of equations, allowing for coherent perturbations from the
base mean flow velocity and the turbulent viscosity [i.e., using
(49)]. We then formulate the “FROZ” problem by deriving the
equations for the frozen turbulent viscosity analysis from the
complete set of equations by not allowing any perturbations
for the turbulent viscosity; i.e., ν̃ = 0. Finally, we consider a
specific particularly simple example, the “LAM” problem of a
completely laminar Burgers equation, removing all turbulent
viscosity from the evolution equations (νt = 0). We present a
summary of the key features of each of these three cases in
Table I.

1. Seminorm gain

In all cases, we are interested in the gain of the perturbation
kinetic energy over a finite time interval [0,T ], and so we

TABLE I. Summary of the different cases considered. LAM:
laminar analysis; FROZ: frozen turbulent viscosity analysis; FULL:
full linearized analysis.

LAM FROZ FULL

Mean steady flow q (u,0)� (u,νt )� (u,νt )�

Perturbation q̃ (ũ,0)� (ũ,0)� (ũ,ν̃)�

define the objective functional which we optimize as

J (q̃) = E(T ) = ‖q̃(T )‖2
E , (56)

where the “energy” seminorm is defined as

‖q̃(T )‖2
E = 1

2

∫ 1

0
q̃(T )�WE q̃(T ) dx,

(57)

WE =
(

1 0
0 0

)
.

This is clearly a specific (and very simple) example of the
energy seminorms described in Sec. II, and we can also define
the appropriate complementary seminorm, acting on the kernel
of ‖·‖E defined as

‖q̃(T )‖2
K = 1

2

∫ 1

0
q̃(T )�WK q̃(T ) dx,

(58)
WK = I − WE,

with associated normalization norm defined as

‖q̃(T )‖2
N = 1

2

∫ 1

0
q̃(T )�WN q̃(T ) dx,

(59)
WN = I = WE + WK.

Here it is clear that the appropriate “energy” is thus defined
as a seminorm of the state vector q̃. We use this expression,
because we have seen in (52) that from a stability point of
view, the most relevant quantity to look at is the kinetic energy
of the perturbation velocity ũ from the base mean flow. The
kernel of this energy thus exclusively contains perturbations
of the turbulent viscosity ν̃. As we have shown in the method
developed in Sec. II, the normalization constraints are thus
more subtle, because the initial magnitude of these turbulent
viscosity perturbations must also be constrained.

Constraints for the fully linearized system (FULL) are
the dynamical constraint (49) requiring that the state vector
satisfies the appropriate evolution equation and the initial
condition

q̃(x,0) − q̃0 = 0,
(60)

q̃0 = (ũ0,ν̃0)�.

The required constraints for normalization are

E0 − ‖q̃0‖2
E = 0,

K0 − ‖q̃0‖2
K = 0,

(61)

with E0 the initial amount of perturbation energy from the
(coherent) velocity and K0 the initial amount of turbulent
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viscosity perturbation in the system; i.e.,

E0 − 1

2

∫ 1

0
ũ2

0 dx = 0,

K0 − 1

2

∫ 1

0
ν̃2

0 dx = 0.

(62)

As we explained in Sec. II, we introduce a new parameter R0

describing the relative contribution of E0 and K0 to the initial
normalization of the perturbation state vector N0, where R0 is
defined as

R0 = K0

N0
= 1 − E0

N0
. (63)

Since our problem is linear, the total norm N0 has no influence
on the dynamics of the flow and as a consequence the ratio C0

of K0 and E0 is sometimes a more relevant parameter. This
ratio can be straightforwardly related to the parameter R0:

C0 = K0

E0
= R0

1 − R0
. (64)

These quantities represent the initial structure of the state
vector. These quantities are however of interest for any time,
and we will as a consequence extend their definition for all t

such that

R(t) = K(t)

N (t)
, R(0) = R0,

C(t) = K(t)

E(t)
, C(0) = C0.

(65)

We notice that we can also rewrite the coefficient C(t) the
following ways:

C(t) = R(t)

1 − R(t)
=

∫ 1
0 ν̃(t)2dx∫ 1
0 ũ(t)2dx

. (66)

Therefore, we can express the Lagrangian functional of our
problem as

L(q̃,q̃0,q̃†,q̃†
0,λE,λK )

= ‖q̃(T )‖2
E − (∂t q̃ − L̃q̃,q̃†) − 〈q̃0 − q̃(x,0),q̃†

0〉
− λE

(
E0 − ‖q̃0‖2

E

) − λK

(
K0 − ‖q̃0‖2

K

)
. (67)

All the variations of the Lagrangian functional with respect to
the parameters have to vanish; i.e., δL = 0. Once again, we
note that taking variations with respect to the adjoint variables
will yield the constraints on the initial condition, and the
underlying evolution equation. Conversely, taking variations
with respect to the direct variables yields the adjoint set of
equations

−∂t q̃† + L̃†q̃† = 0. (68)

The operator L̃† is the adjoint of the direct (full) perturbation
RAB operator L̃ defined in (49) and in Appendix A, where L̃†

is also written out in full.
This adjoint equation also has the “final” condition:

q̃†(T ) = WE q̃(T ). (69)

Since WE q̃(T ) = ũ by definition, the “final” condition for the
adjoint turbulent viscosity perturbation is zero. Nevertheless,

because of the coupling terms in the adjoint equation (68),
the adjoint turbulent viscosity does not remain zero during its
evolution. We also obtain homogeneous Dirichlet boundary
conditions q̃†(∂�) = 0, and a natural compatibility condition
linking q̃†

0 to the initial condition of the adjoint problem; i.e.,
q̃†

0 = q̃†(0).
Finally, we take variations of L with respect to the initial

condition q̃0, which gives us the expression for δL
δq̃0

δq̃0

which immediately yields gradient information to optimize
the objective functional J :

∇q̃0J = q̃†
0 − (λEWE + λK (I − WE))q̃0. (70)

In order to find the maximum of our functional, we will
use this gradient information to find the optimal initial
condition realizing maximum energy at time t = T . Therefore
in summary, this framework allows us to find the optimal initial
perturbation associated with the maximum energy gain GE(T )
over an optimization time interval, where GE(T ) is defined as

GE(T ) = E(T )

E0
. (71)

2. Full norm gain and frozen turbulent viscosity analysis

In order to compare our framework to already existing tools,
we will also perform a classical SVD analysis of the system.
In this case, the norm optimized is the total norm defined [as
in (59)] by

‖q̃‖2
N = ‖q̃‖2

E + ‖q̃‖2
K

= 1

2

∫ 1

0
(ũ2 + ν̃2)dx. (72)

As a consequence, the gain we identify is not an energy gain,
but a “total” gain (which has no particular physical meaning).
It is simply defined as

GN (T ) = N (T )

N0
= GE(T )g(C0), (73)

where

g(C0) = 1 + C(T )

1 + C0
= 1 + h(C0)

1 + C0
, (74)

where h is a function embedding all the dynamics relating the
initial ratio C0 [as defined in (65)] to the final ratio at the end
of the optimization time interval C(T ). This expression shows
that the SVD optimization by construction cannot correctly
describe the physics of GE since it implicitly optimizes the
product of GE and a nontrivial function of the initial ratio C0,
which product has no physical meaning.

In the frozen turbulent viscosity case (FROZ), the per-
turbation vector is q̃ = (ũ,0)�, i.e., ν̃ = 0 in the system of
direct and adjoint equations. The state vector has only one
component and the energy norm is once again a true norm,
‖q̃‖E = ‖q̃‖N , allowing the use of the well-known singular
value decomposition (SVD) analysis technique, which is
explained briefly in Appendix C. The laminar case (LAM)
is a further special case where the frozen turbulent viscosity νt

is set precisely to zero. In these two cases, C0 = 0 (also true
for all times) so that the two gains GE and GN defined in (71)
and (73), respectively, are naturally equal.
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F. Sensitivity analysis

We emphasized in Sec. II that our Lagrangian framework
was not only a way to perform an optimization subject to
constraints, but also a way to analyze the sensitivity of the
objective functional to those constraints. In the particular class
of problems under consideration, the state vector is constrained
by a partial differential equation which is entirely defined by
the base mean flow q and the parameters ν, c1, and c2. The
sensitivity of the optimized objective functional to a small
change in any of these parameters can be retrieved thanks to
the additional sensitivity information in the adjoint state vector.
In terms of the nomenclature of Sec. II, all these parameters
are constraint parameters, as they do not feature explicitly in
the objective functional defined by (56).

1. Sensitivity with respect to the mean flow

We first consider the sensitivity of the objective functional
with respect to the mean flow. This consists of computing the
change of the Lagrangian functional L [defined in (67)] when
we allow a small variation in the mean flow components. Since
the mean flow is time-independent, so are the infinitesimal
variations δq = (δu,δνt )�.

The sensitivities information is computed by taking the
functional derivative of L with respect to the base flow. The
full sensitivity vector (∇qJ ) has two components and they can
be expressed, after some integration by parts, as

∇uJ =
∫ T

0
S̃u(q̃†,q̃) dt,

(75)

∇νt
J =

∫ T

0
S̃νt

(q̃†,q̃) dt,

where the explicit expressions of the sensitivity vectors S̃u(q)
and S̃νt

are given in Appendix B. We notice that the sensitivity
with respect to the base mean flow is a time scalar product (time
integral). This means that this sensitivity is the cumulative
contribution of the base mean flow variation at each time
step. Therefore, in a practical situation, the longer the time
interval for the optimization, the larger will be the error in
the evaluation of the objective functional if there is any
uncertainty in the mean flow state vector.

2. Sensitivity with respect to parameters

This model has three parameters: ν, c1, and c2. In order
to derive the sensitivity of the optimal energy with respect
to these parameters, we first need to notice that a change in
their value will not only change the dynamics governing the
perturbation equation but also the mean flow equation and,
therefore, the mean flow itself. Thus, we need to define a new
functional to account for the change in the base mean flow
because of the small variation we allow in the parameters.
We then incorporate the base mean flow equations (47) in the
Lagrangian functional. This Lagrangian can be expressed as
an extension of the one defined previously in (67):

L′(q̃,q̃†,q,q†) = J (q̃) − (L̃q̃,q̃†) − 〈L (q) ,q†〉. (76)

Consequently, we have a new Lagrange multiplier which is the
base flow adjoint state vector q† = (u†,νt

†)�. In order to fulfill
the optimality condition of the problem, we have to satisfy the

condition

∂L′

∂q
δq = 0. (77)

This condition leads to the definition of the base flow
adjoint variables. We notice that the adjoint base flow system
is no longer homogeneous, but is additionally forced by the
sensitivity with respect to the base flow:

L
†
q† = ∇qJ . (78)

Therefore,

∇νJ = (q̃†,S̃ν q̃) + 〈q†,Sν(q)〉,
∇c1J = (q̃†,S̃c1q̃) + 〈q†,Sc1(q)〉, (79)

∇c2J = (q̃†,S̃c2q̃) + 〈q†,Sc2(q)〉.
The expression of the sensitivity matrices S̃ and vectors
S(q) are also given in Appendix B. The sensitivities have
two contributions: a space-time scalar product accounting
for the sensitivity due to the perturbation equation, and a
space-only scalar product accounting for the sensitivity due
to the base mean flow change induced by variation of the
relevant parameter.

IV. RESULTS

A. Optimal perturbations

The results are presented in three parts, in order of increas-
ing complexity. First of all, we will consider the laminar case
“LAM” as summarized in Table I, i.e., the stability analysis of
the Burgers equation, without any coupling with another partial
differential equation, and in particular constant viscosity with
no turbulent viscosity contribution. We then consider the
“FROZ” case for a particular constant nonzero choice νt of the
turbulent viscosity, and considering the stability of the RAB
equations with only a (coherent) perturbation velocity ũ, which
allows us to understand the impact of a constant turbulent
viscosity on the system. Finally, we consider the behavior of
the full linearized model “FULL,” using both our seminorm
based framework and an SVD analysis based on optimizing the
total true norm of the system. By considering the results of our
framework and the unphysical SVD in tandem, we are able to
identify the significance or otherwise of the output of the SVD
analysis in a consistent manner. Fixing the turbulent viscosity
to its mean value is a common simplifying assumption, and
we are very interested in the robustness of our results to the
application of this assumption.

1. Laminar analysis: The LAM case

Let us consider the Burgers equation, with a constant and
uniform eddy viscosity ν = 0.05. The equation governing the
evolution of a perturbation of the form q̃ = (ũ,0)� is thus
given by (51) with νt = 0. In this case, the perturbation kinetic
energy is simply the 2-norm of the state vector, and so we
can use an SVD analysis (as described in Appendix C). The
optimal gain is then given by the largest singular value of the
evolution operator. Here, the production of energy can only
come from the coupling between the coherent perturbation ũ

and the base mean flow u [i.e., via term PE1 of Eq. (53)], and
since we are considering only focusing base mean flows (with
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FIG. 6. Optimal gain against time for the “LAM” case (plotted
with a black line) and the “FROZ” case (plotted with a gray line).
The amplification in the LAM case is due to the positive energy
production term PE1 of Eq. (53), which can be seen as a focusing of the
perturbation in the middle part of the domain. The gain then decreases
very slowly due to the low value of the viscosity. In the FROZ case
with r = 0.5 [as defined in (45)] the transient growth remains but
is reduced dramatically because of the larger total viscosity. For
sufficiently large values of r , any transient growth can be completely
suppressed due to strong viscous damping.

negative slopes), we will have some energy production in the
middle of the domain, due to the focusing of the perturbation.

In Fig. 6, we show the optimal coherent perturbation energy
gain (71) against time for such a LAM case. We identify
optimal transient growth which reaches its maximum gain for
TEopt = 1.15, subsequent to which the gain decays slowly due
to the relatively low value of the viscosity we have chosen.
In Fig. 7, we show the structure of the optimal perturbation
state vector both initially and at TEopt = 1.15, where the
energy reaches its maximum value. We can see that the initial
perturbation is not localized, but has a constant value over
much of the domain, only decreasing at the edge of the domain
to satisfy the boundary conditions, while the final perturbation
has been strongly localized in the center of the domain and has
a much larger amplitude than the initial state vector.

2. Frozen turbulent viscosity analysis: FROZ case

The laminar analysis we just performed is equivalent to a
frozen turbulent viscosity stability analysis [perturbation of
the form q̃ = (ũ,0)�] for r = 0 (and so no turbulent viscosity,
or indeed any turbulent property in the system). In the FROZ
case, the base mean flow q is a solution of the complete set
of base flow equations (47) with a nonzero viscosity ratio r ,
defined by (45). The parameters in this set of equations are
essentially arbitrary, and we choose to use ν = 0.05, r = 0.5,
c1 = 0.75, and c2 = 2, which are a good set of parameters in
order to produce enough turbulent viscosity to have an effect
on the base mean flow, but not to remove all the dynamics
of the system. This appeared to be a balanced choice of
parameters allowing us to examine all the interesting features
of the system.

The observed gain for the FROZ case must be smaller
than in the LAM case for two reasons. First of all, the total
base mean flow viscosity will be larger than the laminar
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FIG. 7. (a) LAM case; (b) FROZ case. Optimal initial conditions
(in solid lines) and final state (in dashed lines) at global maximum gain
time TEopt = 1.15, for r = 0.5 as defined in (45). The perturbation is
concentrated in the middle of the domain under the action of the base
mean flow. For the FROZ case, the focusing is weaker (smaller base
flow gradient), and the damping is larger.

value because it now includes the space-dependent turbulent
viscosity. The damping term DE in equation (53) will as a
consequence be stronger. Moreover, a direct consequence of
having more viscosity is a smaller slope for the base mean
flow velocity which is directly involved in the production of
energy PE1 which will therefore be smaller than in the LAM
case. The optimal gain curve for the FROZ case must then be
beneath that of the LAM case. In Fig. 6, we plot the optimal
curves corresponding to r = 0 (LAM case) and r = 0.5 (FROZ
case). We note that even if the ratio of the turbulent viscosity
to the laminar viscosity is small, the optimal gain curve is
substantially affected. However, this depends in a nontrivial
way on the modeling coefficients c1 and c2. We also notice that
the optimal horizon time decreases as the amount of turbulence
(modeled by the parameter r) increases.

3. Full linearized analysis: FULL case

a. Total norm optimization: SVD analysis. The analysis
of the full linearized system of equations (49) requires the
use of a norm for the two-component perturbation state
vector q̃ = (ũ,ν̃)T . We will present the results for the time
dependence of the objective functional J of interest defined in
(56), first for the total gain GN (T ) [defined in (73)] optimized
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in the total normalization norm ‖ · ‖N defined by (59) using
SVD analysis, and then optimizing gain with respect to the
energy seminorm ‖ · ‖E defined by (57). Let us first start
with the case of the total norm (‖ · ‖N ) gain optimization.
For this total norm optimization, we will consider the gain
in the energy seminorm for comparison with the other cases
(in particular with the results obtained using our variational
framework based on seminorm constraints) although the
coherent perturbation kinetic energy is not actually the quantity
being optimized. Other quantities which are also of interest
to characterize the nature of the state vector are the time-
dependent generalizations of the initial condition ratios R0

and C0 defined in (65).
These quantities measure the relative importance of the

turbulent viscosity perturbation to the coherent velocity pertur-
bation. A state vector having a high value of C (or equivalently
R � 1) will be identified with a “turbulent” state, while a state
vector with a low value of C (or equivalently R � 0) will be
associated with a “laminar” state.

We plot GN (T ) [as defined in (73)] against optimization
time interval T for the optimal and first suboptimal state
vectors (i.e., the two first singular values of the evolution
operator, as discussed in Appendix C) in Fig. 8(a). In this
case, two modes are competing in order to define the overall
optimal perturbation: a transient mode (plotted with a black
line) which has strong transient growth of the value of the
total norm at short times, and the least stable mode (plotted
with a gray line) responsible for the weakest possible long
time decay. For the sake of simplicity, we will denote these
two modes by STO (short time optimal) perturbation and
LTO (long time optimal) perturbation. The STO perturbation
reaches its maximum (GNopt = 3.46) for TNopt = 0.38 and the
switching time for which the two modes have the same (total)
gain is Ts � 1.25. The main result of this SVD analysis is that
there is a competition between two modes for which a clear
transient growth is observed, meaning that two perturbation
growth mechanisms are relevant. Even if this dynamics cannot
be associated exclusively with coherent velocity perturbation
energy production (as in the LAM and FROZ cases discussed
above), we can now say that the presence of the second
perturbation evolution equation [for ν̃ in (49)] introduces new
dynamics to the system’s behavior. Indeed, the term PE2 of
Eq. (53) can now be a new source of energy. This term is
directly proportional to both the magnitude of the slope of the
coherent velocity perturbation and to the perturbation turbulent
viscosity, and is thus responsible for much richer dynamics of
the system.

However, it is legitimate to question whether this transient
growth is associated with transient growth of the kinetic energy
seminorm of the perturbation or merely with growth of the
seminorm of the turbulent viscosity perturbation. We can
determine the value of C0 (and hence the relative magnitudes
of the perturbation velocity and the turbulent viscosity) for
each optimization interval for both the initial state vector
C0 = C(0) and for the final state vector C(T ), as plotted in
Fig. 8(b). We notice that the (short-time) STO perturbation
is associated with “turbulent” (C0 � 1) initial perturbations
for sufficiently long optimization intervals, which evolves
towards a more laminar [C(T ) � 1] state, with a larger
contribution from the coherent perturbation velocity ũ. This
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FIG. 8. (a) The variation of GN (T ) [defined in (73)] with
optimization time T of the short time optimal (STO) perturbation
(plotted with a black line) and long time optimal (LTO) perturbation
(gray line) total norm for the FULL perturbation equations case,
when the total norm ‖ · ‖N defined in (59) is optimized using an
SVD analysis. (b) The variation of the ratio C0 as defined in (64)
(plotted with solid lines) and C(T ) as defined in (65) (plotted with
dashed lines) with optimization time T of the STO perturbation
(black lines) and the LTO perturbation (gray lines) for both the
optimal (black) and suboptimal (gray) mode. We notice that there
is a competition between two modes: the short time optimal (STO)
perturbation and the long time optimal (LTO) perturbation. The STO
perturbation is typically associated with large values of C0, meaning
that the STO perturbation is initially “turbulent,” although it evolves
to have C(T ) � 1, meaning that ultimately the perturbation is almost
exclusively composed of coherent perturbation velocity. On the other
hand, the LTO perturbation is dominated at all times by the coherent
perturbation velocity [C(T ) � C0 � 1] and thus we refer to it as a
“laminar” perturbation.

implies that this transient growth is due to perturbation kinetic
energy production. The (late-time) LTO perturbation (which
is actually optimal starting from T = Ts � 1.25) is on the
contrary initially mostly laminar (with low values of C0) and
evolves toward an almost completely laminar state, even more
dominated by perturbation velocity [i.e., with C(T ) � 1].

In order to identify the associated transient growth of the
perturbation kinetic energy, we now consider the evolution of
the perturbation velocity kinetic energy gain GE(T ) as defined
in (71). We plot this quantity (for both the STO perturbation
and the LTO perturbation) in Fig. 9. We can see that this gain
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FIG. 9. Variation of energy gain GE(T ) as defined in (71) with
the optimization time interval T for the full linearized perturbation
system of equations (49) for perturbations which optimize the total
norm gain GN (T ), as defined in (73). The STO perturbation (plotted
with a black line) achieves very large values of GE(T ), while the LTO
perturbation (plotted with a gray line) is associated with substantially
smaller values of GE(T ), comparable to those obtained in the FROZ
case. The STO perturbation has a larger energy gain than the LTO
perturbation in the plotted time window but eventually has a larger
decay rate and is thus less efficient in preserving a large energy gain.

(which is not the optimal energy gain) can have very large
values compared to the previous studies. Indeed, the perturba-
tion kinetic energy is amplified by approximately five orders
of magnitude and reaches its maximum for TEopt = 1.21 with a
gain of GEopt = 9.3 × 104. We consider these two quantities as
the “optimal” time and gain values extracted from a full-norm
gain optimization. Since GE(T ) is not optimized, but is just de-
rived from the results of the full-norm optimal perturbation for
the entire perturbation velocity-viscosity state vector, it is not
surprising to see that the STO perturbation remains the mode
with larger GE(T ) after T = Ts � 1.25. For sufficiently long
times, the LTO perturbation will ultimately become dominant
with respect to kinetic energy gain as well. Besides, this figure
clearly underlines the difference in the order of magnitude
between the “laminar” perturbations of the LTO perturbations
and the “turbulent” perturbations of the STO perturbations.
Indeed, the turbulent STO perturbation is associated with very
large values of energy gain while the laminar LTO perturbation
shows an energy gain which can be compared most closely to
the LAM case optimal gain shown in Fig. 6.

The linear optimal gain analysis of this small problem
brings to light the fact that there is a competition between
essentially laminar and turbulent perturbations. The turbulent
perturbation is strikingly associated with a very large transient
growth of the perturbation kinetic energy [due to the term
PE2 of Eq. (53)], and is optimal for short times. On the other
hand, the laminar perturbation is only optimal for longer times,
and is in fact the least stable perturbation, responsible for
the weakest possible decay. We show the initial and final
time (at T = TEopt ) structure of the STO perturbations and
LTO perturbations in Figs. 10 and 11, respectively. The STO
(turbulent) perturbations are antisymmetric in ũ and symmetric
in ν̃ whereas the LTO (laminar) perturbations have the opposite
symmetries.
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FIG. 10. Variation with x of the initial perturbation (plotted with
solid lines) and final perturbation (at T = TEopt , plotted with a dashed
line) of (a) coherent perturbation velocity ũ and (b) perturbation
turbulent viscosity ν̃ for the STO perturbation. We notice a decay of
the turbulent viscosity perturbation [through diffusion, destruction,
and other mechanisms described by Eq. (55)] giving rise to large
perturbation velocities in the final perturbation state vector. This
perturbation is not present in either the LAM case or the FROZ
case, and arises from the richer dynamics in the FULL case where
the turbulent viscosity evolves in space and time.

This SVD analysis used to find the optimal perturbation
associated with the largest achievable total norm gain given
by (73) shows the major difference between the FROZ case
and the FULL case (as defined in Table I). Indeed, we see that
a new type of perturbation appears, for which the turbulent
viscosity component ν̃ of the state vector is much larger
than the coherent perturbation velocity ũ, which leads to a
substantially larger kinetic energy gain. The main drawback of
this method is that we only access the energy gain information
through the optimization of a nonphysical norm (the total
norm). Therefore, the calculated energy gain is not optimal
in any sense. Indeed, the optimized total gain defined in (73)
is a product between the energy gain and a term which is a
nontrivial function of the parameter C0. As a consequence,
in this analysis this contribution parameter C0 is an output
of the optimization [see Fig. 8(b)] instead of being an input
parameter.

The seminorm framework introduced in Sec. II allows us
to consider the optimization of the energy gain directly, and
it is interesting to investigate what, if any, are the points of
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FIG. 11. Variation with x of the initial perturbation (plotted with
solid lines) and final perturbation (at T = TEopt , plotted with a dashed
line) of (a) coherent perturbation velocity ũ and (b) perturbation
turbulent viscosity ν̃ for the LTO perturbation. The turbulent viscosity
perturbation has a minor role in the dynamics. Indeed, the behavior
of the coherent perturbation velocity ũ is very similar to the behavior
observed in the FROZ case [see Fig. 7(b)].

connection between the results of calculations based on the
seminorm framework, and the SVD analysis based around
optimization of the gain expressed in terms of the total norm
‖ · ‖N .

b. Energy optimization: Seminorm constraints. The pertur-
bation kinetic energy gain GE defined in (71) is a highly rele-
vant quantity in the dynamics of the system. As a consequence
we will now use the seminorm framework developed in Sec. II
to optimize this quantity over finite time intervals. We present
in Fig. 12 the variation of GE(T ) with optimization time
interval T for different values of C0 [as defined in (64)]. Gray
curves represent energy gains for C0 < 1 (i.e., for “laminar”
perturbations) whereas the black curves represent energy gains
for C0 > 1 (i.e., for “turbulent” perturbations) while the black
curve corresponds to the balanced case C0 = 1. We can clearly
see that laminar perturbations corresponding to low values of
C0 are associated with very low gain values, while the turbulent
perturbations (with C0 > 1) can lead to much higher gains. We
do not plot on the figure the optimal curves for large values of
C0 because we find that the gain increases linearly with C0 for
large C0.
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FIG. 12. Variation of the energy seminorm gain GE(T ) as defined
in (71) with optimization time interval T for values of C0 = K0/E0

ranging from 10−2 to 101. Gray curves corresponds to C0 = 10−2

and C0 = 10−1, the black dashed curve corresponds to the balanced
case C0 = 1, and the black curve corresponds to C0 = 10. We notice
that when the contribution of the turbulent viscosity perturbation
increases, higher gains are achieved. A whole family of black curves
exists with gains evolving linearly with C0 for larger values of C0.

We plot in Fig. 13 the maximum gain GEopt as a function
of the ratio C0 as defined in (64). The perturbation velocity
energy gain in the limit of low C0 is constant (GEopt � 1.13).
In order to compare the limit of the FULL case and the frozen
turbulent viscosity FROZ case [using the same values for
ν = 0.05 and r = 0.5, where r is defined in (45)], we plot
the two corresponding optimal gain curves in Fig. 14. The
first observation is that the FULL case does not converge
toward the FROZ case when the contribution from the turbulent
viscosity perturbation is very small compared to the coherent
velocity perturbation (i.e., in the limit C0 → 0). This means
that no matter how small C0 is, the contribution of the viscosity
perturbation to the dynamics is never negligible. Indeed, the
maximum gain we obtained for FROZ case was approximately
GEopt = GNopt � 1.18. This means that the stability analysis
of mean flows is a singular problem, since in the limit of
low values of the turbulent viscosity perturbation, we do not
recover the results of the FROZ case.

Moreover, in the limit of large C0 (turbulent perturbations),
GEopt evolves linearly with C0:

GEopt ∝ C0, (80)

with a proportionality coefficient of about 3 in our case.
This is the signature of the linear relation involved in the
energy production mechanism [term PE2 of Eq. (53)]. As a
consequence, we can linearly extract energy from the base
flow via the perturbation turbulent viscosity perturbation as
the ratio C0 increases. Indeed, the growth of the turbulent
perturbations is larger for initially large values of K because
for large values of ν̃, we consequently have a large production
term PE2 in (52). In fact, ν̃ catalyses very strong growth of E

for the turbulent modes. For the laminar modes however, this
mechanism exists but is not proportionally significant. (It is
totally absent for the FROZ case.)

Turning our attention to time dependence, Fig. 13(b) shows
that turbulent perturbations are associated with larger optimal
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FIG. 13. Variation with C0 = K0/E0 as defined in (64) of
(a) optimal gain GEopt and (b) optimal times TEopt for the FULL case.
We see that the optimal gain increases linearly with C0, meaning that
we can linearly extract as much energy as we want from the base
flow and turbulent viscosity perturbation. The optimal time is also
increasing with C0, but not in such a neat fashion. The line types are
the same as in Fig. 12.

times than laminar perturbations, though once again, the
optimal time as C0 → 0 for the FULL case is still different
from the optimal time for the FROZ case. In summary, we
present the results of the three different analyses in Table II.
We distinguish between laminar perturbations (C0 � 1) and
turbulent perturbations (C0 � 1) for the FULL case, i.e.,
solutions of the full linearized equation system defined by (49).

Another way to understand the mechanism of energy
production is to consider the plot of the kinetic energy of the
coherent perturbation velocity as a function of the seminorm
of the perturbation turbulent viscosity, parameterized by time
t . We consider all the optimal perturbations for a given
optimization time interval T = 0.3 for different values of
the ratio C0 = K0/E0 [defined in (64)] and evolve the
corresponding optimal perturbations in time. In Fig. 15 we
plot parametric curves defined by Xopt(t),Yopt(t) where Xopt(t)
and Yopt(t) are defined as

Xopt(t) = K(t)

E0 + K0
= GE(t)C(t)(1 − R0), (81)

Yopt(t) = E(t)

E0 + K0
= GE(t)(1 − R0). (82)
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FIG. 14. Variation of coherent perturbation kinetic energy gain
GE(T ), as defined in (71) for the FROZ case (plotted with a gray
line) and the FULL case in the limit C0 → 0 (plotted with a black
line). These results have been obtained with the same set of parameter
values, and especially with r = 0.5. Even in this limit, the results for
the two cases differ quantitatively, both in optimal time and optimal
gain predictions.

In the figure initial conditions are shown as black dots,
which from the definitions (82) and (81) clearly must lie on
the curve x + y = 1, which is plotted with a dashed line. Using
the same line types as Fig. 12, gray curves denote “laminar”
perturbations (C0 � 1) and black curves denote “turbulent”
perturbations (C0 � 1) while a black dashed curve denotes
the marginal perturbation with C0 = 1.

The gain GE can be retrieved from this figure by evaluating
the difference in y coordinate from an initial condition to the
maximum of the corresponding curve, due to the logarithmic
scalings. The gray curves (for the laminar perturbations) are
associated with very low gains since there is little vertical
variation while the black curves (turbulent perturbations) show
a very large energy gain since the distance from an initial
condition to the maximum of the curves is getting larger
and larger as the amount of perturbation turbulent viscosity
in the initial perturbation increases. Moreover, we can see
that the energy production for the turbulent perturbations does

TABLE II. Summary of the results section. LAM: laminar case
using the frozen turbulent viscosity assumption ν̃ = 0 with r = 0 =
νt ; FROZ: frozen turbulent viscosity case with ν̃ = 0; FULL: full
linearized case solving (49); SVD: singular value decomposition;
SN: seminorm; STO: short time optimal; LTO: long time optimal;
LAM: laminar (C0 � 1); TURB: turbulent (C0 � 1). The bold font
means that this quantity is optimal.

FULL

SVD SN

LAM FROZ LTO STO LAM TURB

r 0 0.5 0.5 0.5 0.5 0.5
C0 0 0 �1 �1 �1 �1
TEopt 1.15 0.31 0.12 1.21 0.22 0.42
TNopt 1.15 0.31 0.16 0.38 0.22 0.39
GEopt 2.91 1.18 3.34 9.3 × 103 1.13 ∝ C0

GNopt 2.91 1.18 1.59 3.46 1.13 3.43
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FIG. 15. Evolution diagram with time of scaled perturbation
turbulent viscosity Xopt(t) and perturbation velocity Yopt(t), defined
by (81) and (82), respectively, parameterized by time t for an optimal
perturbation with optimization interval T = 0.3, for different values
of the initial ratio C0. We can clearly see the two different types of
perturbation: laminar perturbations (C0 � 1) are plotted with gray
lines, and turbulent perturbations (C0 � 1) are plotted with black
lines which are the two limit cases. Initial conditions are represented
with black circles, and lie on the curve x + y = 1 (plotted with a
short dashed line). The laminar perturbations do not have significant
transient growth, while the turbulent perturbations in black have very
large transient growth of the energy. An intermediate state (plotted
with a dashed line) exists for C0 = 1, corresponding to the point
(0.5,0.5) on this figure.

not immediately lead to a decrease of the turbulent viscosity
perturbation norm, implying (of course) that the energy has
been taken from the mean flow. Indeed, the optimal turbulent
perturbation has the best symmetry and shape for both ũ and
ν̃ in order to maximize this production, through the large size
of the catalytic term PE2 in (53).

In order to compare these results with the SVD analysis
presented in Sec. IV A3 a, we plot the equivalent parametric
curves for an STO perturbation and an LTO perturbation (for
the same values of the parameters as before) in Fig. 16. We
can see that these two perturbations correspond closely to what
we have identified using the optimization of the FULL case
using seminorm constraints. The STO perturbations appear to
be appropriately classified as “turbulent” perturbations, while
the LTO perturbations appear to be appropriately classified as
“laminar” perturbations.

However, even if the SVD analysis appears to give some
relevant information, it is completely unable to predict the
optimal gain and time. Indeed, the SVD also finds an
(unphysical) optimal value for the ratio C0 for all optimization
time intervals (e.g., the initial condition used to produce
Fig. 16), which prevents the calculated GE gain from being
“optimal” in any meaningful sense.

The addition of the dynamic constraint on the turbulent
viscosity perturbation brings new dynamical properties to the
system of equations, in terms of both optimal time and gain
value, compared to the simpler FROZ case with a frozen
turbulent viscosity. Such a method misses a fundamental
physical process, the possibility of extracting energy from
the mean flow due to spatial and temporal variations in
the turbulent viscosity. Indeed, the frozen turbulent viscosity
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FIG. 16. Evolution diagram with time of scaled perturbation
turbulent viscosity Xopt(t) and perturbation velocity Yopt(t), defined
by (81) and (82), respectively, parameterized by time t for a
full-norm optimal perturbation (for T = TEopt , T = 1.21 for the
STO perturbation and T = 0.12 for the LTO perturbation) for the
optimization of the total norm ‖ · ‖N defined in (59) using the SVD
analysis as described in Sec. IV A3 a. The gray curve plots the time
evolution of the LTO perturbation and the black curve plots the time
evolution of the STO perturbation. By comparison with Fig. 15,
there is apparently a close relationship between the STO perturbation
and the turbulent perturbation from the FULL case, and the LTO
perturbation and laminar perturbation from the FULL case.

model yields a different result from the full linearized analysis
even with an initial ratio C0 = K0/E0 → 0. In other words, in
order to capture the true dynamics of the system, analysis of the
full linearized system of equations seems to be indispensable,
because of the new source of perturbation kinetic energy
associated with fluctuating turbulent viscosity perturbation ν̃.

Applying our seminorm framework allows us to identify
two qualitatively different perturbations associated with two
different dynamics. The first perturbation is driven principally
by coherent perturbation velocity and hence energy extraction
from the mean flow via the term PE1 in (53). Such perturbations
do not typically have a large perturbation kinetic energy gain,
and we refer to them as “laminar” perturbations since they
typically have small turbulent viscosity perturbation. The other
perturbation is on the contrary essentially driven by a dominant
turbulent viscosity perturbation, and is associated with very
large energy production. Indeed, the energy gain increases
linearly with the ratio C0 = K0/E0 describing the relative
contribution of the initial turbulent viscosity to the initial
kinetic energy in the perturbation vector. In essence, we have
performed a multiscale stability analysis where we are able
to control the type of perturbation we imposed to the system,
and we find that small-scale perturbations (parameterized by
spatially varying turbulent viscosity) are much more efficient
at driving the growth of velocity perturbations (through the
term PE2 ). We can in fact extract as much energy as we want
from the base mean flow, given that the magnitude of the term
ν̃∂xũ is large and has the appropriate symmetry.

However, nonlinear effects as well as feedback on the mean
flow will certainly lead to saturation of this energy production
and then lead to an identification of an optimal C0 defining an
energy gain (GE) curve which will be different from that which
was obtained using the singular value decomposition. We
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indeed think nonlinear saturation is needed in this particular
case to find the optimal initial ratio C0(T ), but another set of
linear equations describing a whole different problem might
well be suitable for the identification of an optimal initial ratio
C0(T ) associated with an optimal energy gain GE(T ) which
will be different from the couple [GE(T ),C0(T )] obtained
when optimizing GN (T ) through a SVD analysis. Moreover,
it is reasonable to suppose that in some particular problems,
physical arguments may lead to estimates of the appropriate
size of the initial turbulent viscosity (or more generally the
respective size of the different components of the state vector),
and hence give us a physically acceptable range for the
parameter C0.

The underlying physics described is of course consistent
with SVD analysis optimizing the (nonphysical) gain of
the total 2-norm of the perturbation state vector, since we
showed that the dynamics of the calculated short time optimal
(STO) perturbation and long time optimal (LTO) perturbation
corresponds respectively to the turbulent perturbations and
laminar perturbations dynamics of the full linearized system
of equations. The new framework yields detailed information
on the problem and, in fact, allowed us to have a full
understanding thanks to the possibility of separation of scales
in the perturbation vector. Furthermore, the framework allows
us to approach the problem from a physical point of view
by choosing the type of perturbation to impose and then
identifying the associated dynamics.

B. Sensitivity analysis

Naturally, we are also able to conduct a sensitivity analysis,
which will give us some information about how a change in
the mean flow q or any of the three parameters ν, c1, or c2

influences the optimal value of the objective functional J . We
focus on the most interesting case where C0 � 1, meaning
that we have a large transient growth due to a draining of
energy from the velocity mean flow to the velocity perturbation
through the catalysis allowed by the optimal symmetry chosen
by both ũ and ν̃.

We plot in Fig. 17(a) the sensitivity of the final optimal
energy Eopt(T ) to the mean flow velocity ∇uJ and in Fig.
17(b) the sensitivity of the final optimal energy to the mean
flow turbulent viscosity ∇νt

J . The general structure of these
space-time diagrams (where time is the optimizing time
interval T ) is useful to understand the role of the base mean
flow structure in the production of energy. Indeed, we can
see by looking at the general trend of these two figures that
the zones of the domain which give the largest sensitivity
magnitude are situated on both sides of the middle of the
domain for the base mean flow velocity and centered in the
middle of the domain for the mean turbulent viscosity. This
can be simply explained by the fact that an increase of the slope
of the mean flow velocity (increase of the mean velocity for
0 < x < 1/2, or decrease for 1/2 < x < 1) will give rise to a
larger energy production (see for instance Fig. 12). Moreover,
since the perturbation is mostly localized in the middle of
the domain, an increase in the mean turbulent viscosity will
be more dramatic in this zone compared to the edges of
the domain. However, when looking more carefully at the
sensitivity functions, we notice that a zone of high sensitivity

FIG. 17. (Color) Space-time plots of the sensitivity of the final
optimized energy Eopt(T ) for varying optimization time intervals T

with respect to (a) the mean flow velocity ∇uJ and (b) the mean flow
turbulent viscosity ∇νt

J for C0 � 1.

appears on each side of the domain for T � 0.2 for the mean
flow velocity. These layers have an opposite sign to what we
would simply expect to increase the negative slope amplitude
∂xu. In the same way, two other zones of sensitivity appear for
times T � 0.4 in the ∇νt

J plot and are situated close to the
boundaries of the domain. These zones are also associated with
negative sensitivity but a smaller absolute value compared to
what is observed in the middle of the domain. This is consistent
with the zones of high sensitivities at the boundaries in ∇uJ
and suggests that the steeper the positive slope at the boundary,
the larger the effect on the energy production.

In Fig. 18, we plot the sensitivities to the constraint
parameters of the problem. For the mean flow, both ∇νJ and
∇c1J are negative since they are respectively associated with
dissipation and production of viscosity (indirect dissipation),
while for ∇c2J , this term is positive since the destruction of
viscosity decreases the energy dissipation of the mean flow.
Interestingly, there is qualitatively different behavior when
we look at the perturbation contribution. Indeed, except for
ν for which the sign of the sensitivity is the same for mean
and perturbation sensitivities, we observe an opposite trend
between these two contributions for c1 and c2 sensitivities.
As we have seen, the base flow total viscosity (composed
of both laminar and turbulent viscosity) is only responsible
for decay while the perturbation turbulent viscosity actually
triggers large energy growth. As a consequence, increasing
base flow turbulent viscosity will lead to a decrease of J
whereas adding some perturbation turbulent viscosity will
boost the energy growth. The trends can now be explained
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FIG. 18. Variation of the sensitivity of the final optimal energy
Eopt(T ) with optimization time interval T to (a) the viscosity ∇νJ ,
(b) the turbulent viscosity production coefficient ∇c1J , and (c) the
turbulent viscosity destruction coefficient ∇c2J . Solid lines show the
variation with optimization time interval of the total sensitivities,
dashed lines show the variation of the mean flow sensitivities,
and dashed-dotted lines show the variation of the perturbation
sensitivities. Increasing ν decreases the value of the objective
functional J , and mean and perturbation contributions act in the
same way, with a larger sensitivity due to the perturbation. A positive
variation of c1 also leads to a decrease of the objective functional,
although the perturbation and mean flow sensitivity act oppositely,
with the perturbation sensitivity being positively correlated with the
total sensitivity. The change in J due to a variation in c2 is opposite
(in both mean and perturbation sensitivity) to the one observed with
c1, but is an order of magnitude smaller.

by noticing that this process of production and destruction of
either base or perturbation turbulent viscosity is driven by the
parameters c1 and c2. However, it is important to notice that
the total sensitivities are separated by an order of magnitude,
with

∇νJ � ∇c1J � ∇c2J , (83)

and so the turbulence modeling parameters actually have a
relatively minor impact on the dynamics of the perturbation
compared to modifications in the viscosity.

C. Discussion

Interestingly, although the conventional SVD analysis is not
a formally correct method to study optimal energy growth in
this system where the energy is a seminorm of the state vector,
it still yields valuable insight, in particular that the frozen
turbulent viscosity assumption is not appropriate. Indeed,
we find a mode associated with a large turbulent viscosity
perturbation amplitude which triggers, as we expected from the
energy analysis carried out in Sec. III, a new energy production
mechanism and gives rise to a very large transient growth of
the energy. The interpretation and validation of the results of
the SVD analysis however relies on the use of the seminorm
framework presented in this paper. The seminorm framework
allows us to conclude that we can linearly extract energy from
the turbulent viscosity component, and the larger its amplitude,
the larger the optimal energy at the end of the optimization
interval. We can identify two qualitatively different types of
behavior depending on the initial value C0 of the ratio of
the turbulent viscosity perturbation amplitude to the velocity
perturbation amplitude. When this ratio is small, the energy
production is small and is only due to the interaction between
the mean flow velocity and the perturbation velocity, and the
perturbation is essentially “laminar.” However, for large values
of this parameter, a new behavior appears, and such “turbulent”
perturbations exhibit very large perturbation kinetic energy
gain for which the gain evolves linearly with C0 suggesting
some universal behavior. Finally, from a sensitivity analysis,
the influence of the modeling parameters can be shown to be
very small compared to the influence of the laminar viscosity
parameter on the flow evolution.

V. EXTENSIONS

This paper is, to the best of our knowledge, a first
attempt to formally treat the seminorm gain optimization
problem and, more generally, the inclusion of seminorm
constraints. We address this problem by using a Lagrangian
variational framework which, instead of having a single
initial normalization constraint, has complementary seminorm
constraints allowing us to control the relative contributions of
the different components in the perturbation vector. The gain
is then simply computed by calculating the ratio of the value of
the seminorm at the final time (resulting from the optimization)
to the value at the initial time (chosen through normalization).
The optimization procedure can then be repeated for different
values of the parameter quantifying the relative size of the
initial amplitudes of the different components of the state
vector.
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This kind of multiscale nonmodal stability analysis is
of a particular interest for systems where the definition of
the energy arises from different physical contributions. Our
framework then provides a systematic procedure to separate
the different energy contributions and optimize any desired
gain, even defined with seminorms. A few of the problems
where nonmodal stability analysis is being applied, and where
the multiscale stability analysis presented here could be
appropriate, include turbulent mean flows [16,17], compress-
ible flows and thermoacoustics [23,30–32], Rayleigh-Bénard
type flows with thermally induced density gradients due
to temperature effects [33], coupled fluid and electric field
systems [24,25], magnetohydrodynamics [26], and irreversible
mixing in density stratified flows [34,35].

Moreover, more than just being a way to calculate seminorm
gains, the method can be used on other types of problems.
Indeed, in flow control, the optimal placing and type of
action of actuators could be derived from the optimization
of conventional objective functionals (energy, drag, etc.) with
constraints on seminorms defined on a compact support of
the domain. By constraining the complementary part of the
domain, and choosing a relatively large value for the seminorm
defined on the area of interest with a relatively small value for
the complementary seminorm, we would be able to identify the
optimal localized forcing. We have developed our framework
in terms of seminorms because of their relevance to fluid
dynamics problems, but norm properties are not essential
to the framework, and it is straightforward to generalize it
for arbitrary functionals f , developing appropriate (physical)
constraints to bound the magnitude of elements of the entire
state vector space (in particular the kernel of f ).

VI. CONCLUSION

In this paper, we develop a general Lagrangian variational
framework for optimization problems using seminorm con-
straints. We present a systematic way to study optimal gains
defined in terms of the state vector, with the introduction
of new parameters setting the ratio between the different
components of the perturbation state vector. This framework
is a way to perform multiscale stability analysis, where the
different components of the perturbation state vector do not
have (necessarily) the same amplitude (which is relevant
for multiphysics problems). To demonstrate the utility of
this framework, we consider a simple idealized problem
with a coupled set of two Burgers equations describing the
evolution of flow velocity and a transport equation for a
turbulent viscosity for which the production and destruction
are controlled through two modeling parameters. This con-
stitutes a minimal set to describe much of the key physics
underlying the Reynolds-averaged Navier-Stokes equations
and also some properties of mean flows in closed nonlinear
dissipative systems. The Reynolds-averaged Burgers (RAB)
equations are a simple one-dimensional approximation of
a RANS equation for which a Boussinesq hypothesis of
turbulence is considered, and a new turbulent viscosity is
introduced, governed by a transport equation, reminiscent of
the Spalart-Allmaras turbulence model [20]. The nonmodal
stability analysis of this system also allows us to investigate

the usefulness of the assumption that the turbulent viscosity is
“frozen” at a constant value.

After deriving the perturbation equations for this system,
we perform the stability analysis in three different cases:
the laminar case (“LAM”) where the turbulent viscosity was
zero, the frozen turbulent viscosity case (“FROZ”) where the
turbulent viscosity was set at a constant value, and the fully
linearized analysis case (“FULL”) where a turbulent viscosity
perturbation was considered. The results obtained in the first
two cases show that the only effect of the frozen turbulent
viscosity is to add spatially varying damping in the system
and thus a straightforward decrease of the energy gain. For the
full linearized problem, the analysis of the total gain optimal
(i.e., optimizing the 2-norm of the state vector) using SVD
analysis establishes the presence of a new type of perturbation
driven largely by turbulent viscosity perturbation effects, and
associated with substantially larger gains than was found in
the two simpler cases. The suboptimal perturbation identified
by the SVD analysis is mainly driven by perturbation velocity
and is very close in terms of perturbation structure and gain
to the optimal perturbation identified for the frozen turbulent
viscosity case.

The use of the seminorm gain optimization framework
developed in this paper allows us to investigate the depen-
dence of the different types of perturbations possible on
the optimization method. Indeed, instead of obtaining the
relative contribution of turbulent viscosity and mean flow
in the perturbation vector as a result of the optimization of
the most obvious 2-norm of the initial perturbations, we can,
thanks to the new framework, consider this as an input of the
optimization problem and then investigate it in a much deeper
way.

In the limit of very low turbulent viscosity perturbation
to mean flow perturbation ratio (i.e., C0 = K0/E0 � 1), the
results are (in order of magnitude) similar to the frozen
turbulent viscosity case, though the fully linearized model
never converges toward the frozen turbulent viscosity case’s
behavior, even as this ratio tends to zero, clearly illustrating
the singularity of the problem. On the other hand, in the
limit of very “turbulent” perturbations (i.e., when C0 � 1),
we show that a second type of behavior arises, leading to
a large transfer of energy from the base mean flow to the
perturbation velocity, catalyzed by substantial variation in the
turbulent viscosity. This transfer of energy is possible because
the turbulent viscosity perturbation adopts an optimal shape in
order to extract energy from the mean flow. More precisely, we
show that the perturbation energy gain evolves linearly with
the ratio between the two components of the state vector which
seems to be a universal behavior.

These results show that the seminorm framework is an
interesting way to retrieve the physics given by the modal
decomposition of a SVD analysis, through physical consid-
erations, rather than through (at least potentially artificial)
mathematical arrangements.

With a classical SVD approach, it is possible to make a
decomposition of the linear mapping (in the time domain,
or via a standard transfer function in the frequency domain)
from any component of the state vector to any other, assuming
that the initial perturbation (or the forcing, in the case of a
transfer function) is only composed of a single component of
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the state vector [36]. This decomposition is accomplished by
performing an SVD analysis of the individual block matrix
(of the full evolution operator) which connects the chosen
input component to the chosen output component. In the
above-presented seminorm framework, this component-wise
analysis can be reproduced formally by choosing the ratio of
relevant seminorms to be zero for the energy gain optimization
problem (i.e., energy transport between the same state vector
components over some finite optimization time interval).
However, an equivalent analysis for the energy transport across
state vector components would require a rearrangement of both
the cost functional and the ratio of the relevant seminorms. In
contrast, the above-presented seminorm variational framework
allows us to consider all intermediate configurations of the
initial state vector components that fall between the extremes
given by the component-wise SVD analysis. This feature
presents an opportunity to explore composite initial state
vectors and assess their role in observed physical processes.
To the authors’ knowledge, such a compound state vector
optimization problem cannot be handled within an SVD-based
framework.

Besides, a sensitivity analysis of the system shows that the
influence of modeling parameters (in particular the production
and destruction of turbulent viscosity) is smaller than the
influence of physical parameters (the viscosity). Moreover,
for turbulent perturbations, we show that the mean and
perturbation sensitivities with respect to modeling parameters
have a different sign, meaning they are competing.

The main conclusion of our investigation of this model
problem is that the frozen turbulent viscosity assumption might
be relevant if the perturbation in turbulent viscosity is very low
compared to the magnitude of the mean flow perturbation,
although there still appears to be nontrivial quantitative
differences. In the other limit, when the perturbation turbulent
viscosity has significant initial magnitude, we clearly conclude
that frozen turbulent viscosity is unable to describe the real
dynamics of a perturbation governed by the full perturbation
RAB equations (49). Therefore, we believe frozen turbulent
viscosity is highly unlikely to describe correctly more compli-
cated systems such as the Reynolds-averaged Navier-Stokes
(RANS) equations since our one-dimensional model (47)
possesses many of the key features of the RANS equations:
i.e., time dependence, advection effects, a dissipative nature,
and a closed nonlinearity. It is important to stress that the
variational framework employed here also gives as an output
the sensitivity with respect to the constraints of the problem,
and thus offers a powerful analysis tool. Finally, we wish to
reiterate that the problem chosen here (optimal perturbation
gain defined in terms of a seminorm of the state vector) is one
of the simplest we could have imagined and was chosen in
order to present this method in a (hopefully) pedagogical way.
However, nonlinearity, time averaging norms, nonautonomous
operators, and more can be added to the framework with minor
impact on the algorithmic approach.
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APPENDIX A: LINEARIZED RAB OPERATORS

1. Direct operator

The direct linearized Reynolds-averaged Burgers operator
defined in Sec. III in Eq. (47) is defined as follows:

L̃ =
(

L̃11 L̃12

L̃21 L̃22

)
, (A1)

with the following corresponding block matrices:

L̃11 = −u∂x − ∂xu + (ν + νt )∂xx + ∂xνt∂x,

L̃12 = ∂xu∂x + ∂xxu,
(A2)

L̃21 = c1sgn(∂xu)νt∂x − ∂xνt ,

L̃22 = −u∂x + ∂xxνt + 2∂xνt∂x + (ν + νt )∂xx

+ c1 |∂xu| − 2c2νt .

We notice that the matrix L̃11 corresponds to the frozen
turbulent viscosity equation.

2. Adjoint operator

The linear adjoint Reynolds-averaged Burgers operator
defined in Sec. III in Eq. (68) is defined as follows:

L̃† =
(

L̃
†
11 L̃

†
12

L̃
†
21 L̃

†
22

)
, (A3)

with the following corresponding block matrices:

L̃
†
11 = u∂x + (ν + νt )∂xx + ∂xνt∂x,

L̃
†
12 = −∂xνt − c1sgn(∂xu)(νt∂x + ∂xνt ),

(A4)
L̃
†
21 = −∂xu∂x,

L̃
†
22 = u∂x + ∂xu + (ν + νt )∂xx + c1 |∂xu| − 2c2νt .

APPENDIX B: EXPRESSION OF SENSITIVITY
FUNCTIONS AND MATRICES

1. Base flow sensitivity functions

The sensitivity functions defined in (75), describing the
sensitivity of the objective functional J defined in Eq. (56) to
a change in the base mean flow q = (u,νt ), are defined as

Su(q̃) = ũ∂xũ
† + ν̃∂xxũ

† + ∂xν̃∂xũ
† − ν̃†∂xν̃

+ c1sgn (∂xu) (ν̃†∂xν̃ + ν̃∂x ν̃
†), (B1)

Sνt
(q̃) = −∂xũ∂xũ

† + ν̃∂xx ν̃
† − 2c2ν̃

†ν̃ + ũ∂x ν̃
†

+ ν̃†∂xũ − c1sgn (∂xu) ν̃†∂xũ. (B2)

2. Parameter sensitivity vectors and matrices

Base mean flow contribution. The sensitivity vectors de-
fined in (79), describing the change of the objective functional
J defined in Eq. (56) under a change of the parameters in the
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base mean flow equations (47), are defined as

Sν(q) =
(

∂xxu

∂xxνt

)
, (B3)

Sc1 (q) =
(

0
− |∂xu| νt

)
, (B4)

Sc2 (q) =
(

0
ν2

t

)
. (B5)

Perturbation contribution. The sensitivity vectors defined
in (79), describing the change of the objective functional J
defined in Eq. (56) under a change of the parameters in the
perturbation equations (49), are defined as

S̃ν =
(

∂xx 0
0 ∂xx

)
, (B6)

S̃c1 =
(

0 0
−sgn (∂xu) νt∂x − |∂xu|

)
, (B7)

S̃c2 =
(

0 0
0 2νt

)
. (B8)

APPENDIX C: OPTIMAL PERTURBATION WITH
SINGULAR VALUE DECOMPOSITION (SVD)

Given that the flow is stable for any value of the viscosity
(the flow tends toward neutral stability when ν becomes small),
we expect to be able to capture the properties of the dynamics
by focusing on the transient growth mechanisms involved. For
a general linear equation (discretized) of the type dtq = Lq,
we can derive the exact solution at time T , which will from
now on be called the horizon time. This solution can simply
be expressed in term of the evolution operator M (which
is the matrix exponential of LT ) and the initial condition
q(0) = q0; i.e.,

q(T ) = Mq0 = eT Lq0. (C1)

Let us now define the energy of a state vector as the following
weighted scalar product:

‖q‖2
E = qH Wq. (C2)

The maximum gain we can achieve for a time T is simply
expressed as an optimization problem:

G(T ) = max
q0 
=0

‖q(T )‖2
E

‖q0‖2
E

= max
q0 
=0

‖eT Lq0‖2
E

‖q0‖2
E

. (C3)

Now, assuming that W is a symmetric positive definite matrix,
we use a Cholesky decomposition to write

W = FH F. (C4)

We then change the variable from q to q′ defined as

q′ = Fq. (C5)

With this small transformation, we are able to write the gain
in the following way:

G(T ) = max
q′

0 
=0

‖FeT LF−1q′
0‖2

‖q′
0‖2

, (C6)

which is simply the 2-norm of the matrix M′ = FeT LF−1,
which can be computed through a singular value decomposi-
tion. The output of the SVD is a diagonal matrix �, consisting
of all the singular values which are real positive numbers, and
two orthogonal matrices U′ and V′:

M′ = U′�V′H. (C7)

The norm of the matrix (and as a consequence the gain) is
given by the largest singular value (i.e., the first coefficient
in �), while the first column of V = F−1V′ gives the optimal
perturbation q0 and the first column of U = F−1U′ gives the
optimal state at the horizon time T . With this method, we are
able to find the optimal gain for different horizon times, as
well as the associated optimal perturbation.
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