Global stability of swept flow around a parabolic body: Features of the global spectrum

Abstract : The global temporal stability of three-dimensional compressible flow about a yawed parabolic body of infinite span is investigated using an iterative eigenvalue technique in combination with direct numerical simulations. The computed global spectrum provides a comprehensive picture of the temporal perturbation dynamics of the flow, and a wide and rich variety of modes has been uncovered for the investigated parameter choices: stable and unstable boundary-layer modes, different types of stable and unstable acoustic modes, and stable wavepacket modes have been found. A parameter study varying the spanwise perturbation wavenumber and the sweep Reynolds number reproduced a preferred spanwise length scale and a critical Reynolds number for a boundary-layer or acoustic instability. Convex leading-edge curvature has been found to have a strongly stabilizing effect on boundary-layer modes but only a weakly stabilizing effect on acoustic modes. Furthermore, for certain parameter choices, the acoustic modes have been found to dominate the boundary-layer modes. © 2011 Cambridge University Press.
Complete list of metadatas

Cited literature [37 references]  Display  Hide  Download

https://hal-polytechnique.archives-ouvertes.fr/hal-00997979
Contributor : Denis Roura <>
Submitted on : Thursday, June 5, 2014 - 8:48:06 PM
Last modification on : Wednesday, March 27, 2019 - 4:39:25 PM
Long-term archiving on: Friday, September 5, 2014 - 10:55:46 AM

File

S0022112010005252a.pdf
Publisher files allowed on an open archive

Identifiers

Collections

Citation

Christoph Mack, Peter Schmid. Global stability of swept flow around a parabolic body: Features of the global spectrum. Journal of Fluid Mechanics, Cambridge University Press (CUP), 2011, 669, pp.375-396. ⟨10.1017/s0022112010005252⟩. ⟨hal-00997979⟩

Share

Metrics

Record views

344

Files downloads

295