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Feedback control applications for flows with a large number of degrees of freedom
require the reduction of the full flow model to a system with significantly fewer
degrees of freedom. This model-reduction process is accomplished by Galerkin
projections using a reduction basis composed of modal structures that ideally preserve
the input–output behaviour between actuators and sensors and ultimately result in a
stabilized compensated system. In this study, global modes are critically assessed as
to their suitability as a reduction basis, and the globally unstable, two-dimensional
flow over an open cavity is used as a test case. Four criteria are introduced to
select from the global spectrum the modes that are included in the reduction basis.
Based on these criteria, four reduced-order models are tested by computing open-loop
(transfer function) and closed-loop (stability) characteristics. Even though weak global
instabilities can be suppressed, the concept of reduced-order compensators based on
global modes does not demonstrate sufficient robustness to be recommended as a
suitable choice for model reduction in feedback control applications. The investigation
also reveals a compelling link between frequency-restricted input–output measures of
open-loop behaviour and closed-loop performance, which suggests the departure from
mathematically motivated H∞-measures for model reduction toward more physically
based norms; a particular frequency-restricted input–output measure is proposed in this
study which more accurately predicts the closed-loop behaviour of the reduced-order
model and yields a stable compensated system with a markedly reduced number of
degrees of freedom.

Key words: control theory, instability control

1. Introduction

As active control strategies are increasingly applied to high-dimensional and
complex flow configurations arising in industrial and academic settings, model
reduction becomes a key technology. The goal of model reduction is the projection
of the high degree-of-freedom flow dynamics onto a smaller system which is
subsequently used in estimating the flow state based on measurement information.
There is a considerable amount of choice for the bases of this projection which in the
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past yielded a wide range of reduction strategies but also varied results. In this article
we specifically consider global modes for the reduction basis, develop measures and
tools to assess their effectiveness and comment on their suitability for feedback control
applications based on reduced-order models.

In our study we will concentrate on two-dimensional incompressible flow over
an open square cavity at supercritical Reynolds numbers, a flow configuration that
exhibits oscillator behaviour in the form of a self-sustained cyclic perturbation
dynamics which is rather insensitive to stochastic outside influences. A global stability
analysis of this type of flow exhibits unstable global modes and provides frequencies
and growth rates as well as the spatial shapes of the self-sustained structures. In many
industrial applications, oscillatory behaviour is typical and often a source of acoustic
radiation and/or structural excitation which can cause material fatigue or damage.
For this reason, passive and active control strategies to weaken or suppress these
oscillations are of great interest.

Passive control strategies, such as mean flow modifications, do not add energy to
the system and are particularly attractive due to their simplicity of implementation and
efficiency (see Strykovski & Sreenivasan 1990; Giannetti & Luchini 2007; Marquet,
Sipp & Jacquin 2008), even though a non-negligible drag penalty may occur. However,
while these strategies can successfully extend the parameter range of stable flows,
they ultimately may not be able to prevent the onset of instabilities as a critical
parameter value is exceeded. In this case, due to their time-independent design, they
can no longer influence the unsteady nature of the flow. Active control, on the other
hand, adds energy to the system in the form of a predesigned actuation (open-loop
control) or an actuation using flow information from sensor measurements (closed-loop
control). Among the closed-loop control theories, the linear quadratic Gaussian (LQG)
strategy (see Burl 1999; Zhou, Doyle & Glover 2002) has been considered for and
successfully applied to the feedback control of unsteady flows (see e.g. Bewley & Liu
1998; Kim & Bewley 2007; Bagheri, Brandt & Henningson 2009a; Barbagallo, Sipp &
Schmid 2009; Sipp et al. 2010). This method is based on a linear description of the
flow behaviour and includes an estimator that optimally reconstructs an approximate
flow field from sensor measurements. This approximate flow state provides the basis
on which an optimal control law is designed. The optimization of the estimation and
control leads to two Riccati equations which can only be solved for a rather low
number of degrees of freedom. It is thus desirable and paramount to reduce the size
of the compensator (i.e. the combined estimator and controller) using a procedure
known as model reduction. However, since this reduction procedure implies a loss
of information, it is of critical importance to retain only the relevant features of the
original model in the reduced-order model. The key feature to be conserved is the
input–output behaviour, i.e. the effect of the actuator on the sensor; its conservation is
a sufficient condition for the success of LQG control design based on reduced-order
models.

Among the various procedures to obtain a reduced-order model, the Galerkin
projection method has been widely used in flow control applications. This method
consists of projecting the Navier–Stokes equations (or linearized Navier–Stokes
equations) onto spatial modal structures (Antoulas, Sorensen & Gugercin 2001;
Antoulas 2005). The choice of these modes is pivotal and changes considerably the
properties of the resulting reduced-order model (see Bagheri et al. 2009b; Barbagallo
et al. 2009). A common choice is to use proper orthogonal decomposition (POD)
modes as the projection basis. These modes are optimal in describing the most
energetic structures of the flow (Lumley 1970; Sirovich 1987; Berkooz, Holmes &
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Lumley 1993) but yield reduced-order models which are not optimal for closed-loop
control applications since they do not take into account the flow’s observability
by the sensors. This difficulty is overcome by projecting onto balanced proper
orthogonal decomposition (BPOD) modes which, by construction, give equal emphasis
to the controllability and observability of the flow (Moore 1981; Rowley 2005).
Closed-loop control with reduced-order compensators based on POD and BPOD
modes have been studied on various globally unstable configurations (see Barbagallo
et al. 2009; Ahuja & Rowley 2010) where stabilization of the flow could be achieved
within the limitations of the linear approximation.

Reduced-order models obtained by a Galerkin projection onto global modes have
also been considered in previous work in an attempt to control globally unstable flows.
The flow over a shallow cavity has been successfully stabilized in Åkervik et al.

(2007) and Henningson & Åkervik (2008) using a reduced-order model merely based
on the unstable and a few stable global modes. A similar model, however, failed
to suppress the instabilities over an open square cavity, irrespective of the number
of stable global modes added to the reduced-order model (Barbagallo et al. 2009).
This failure has been attributed to the ineffectiveness of global modes in capturing
the input–output behaviour of the original system which could further be linked to
the strong non-normality of the global modes yielding, in turn, extreme controllability
coefficients. This feature has subsequently been observed by Ehrenstein, Passaggia &
Gallaire (2010) in a study of the separated flow over a shallow bump. Introducing
the so-called double-projection (i.e. an orthogonal projection for the actuator combined
with a bi-orthogonal projection for the remaining terms in the governing equations) in
an attempt to reduce in magnitude the coefficients arising from the projection of the
actuator, Ehrenstein et al. (2010) were able to stabilize the separated flow.

In the face of these diverse and possibly conflicting results, it seems helpful and
beneficial to assess and clarify the suitability of global modes as a reduction basis
in closed-loop control design for globally unstable flows. This is the primary aim
of this article. A second, and even more important, objective is the development of
appropriate input–output measures that allow the most efficient design of reduced-
order models. For example, balanced truncation, one of the most effective techniques
for model reduction in feedback control applications, minimizes the H∞-error between
the full and reduced transfer function (see e.g. Antoulas 2005); yet, it may appear
too stringent and limiting to focus on the worst-case error over all frequencies and to
tacitly neglect the flow response contained in other frequencies. Our present studies
suggest frequency-restricted input–output measures that reflect physical attributes of
the underlying fluid dynamics which in turn result in more effective reduced-order
models. We will show that concentrating on relevant frequency bands (given by the
unstable global modes) one can bring the size of the reduced-order model below the
one given by the H∞-design without compromising the stability of the compensated
system.

We will begin with a brief description of the flow configuration (§ 2) together with
the mathematical formulation of our problem. After a short outline of closed-loop
control and model reduction techniques (§ 3), we will introduce and motivate selection
criteria for the inclusion of global modes in a reduced-order model (§ 4). Open-
loop transfer functions and stability properties of the compensated system will aid
in assessing the effectiveness of the criteria and, more generally, the limitations of
reduced-order models based on global modes (§ 5). A representative case (Re = 7500)
will be treated in detail. In particular, the introduction of frequency-limited norms
for the transfer function error will show that further significant reductions in the size
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FIGURE 1. (Colour online available at journals.cambridge.org/flm) Sketch of flow over an
open cavity.

of the reduced-order model are possible. Key properties of the analysis will then
be investigated for a range of Reynolds numbers (§ 6). A summary and concluding
remarks will complete this article.

2. Flow configuration and governing equations

The flow configuration chosen to address the suitability of global modes for
closed-loop control applications is the two-dimensional incompressible flow over an
open square cavity. The geometry and control set-up is shown in figure 1 and is
identical to the one studied in Barbagallo et al. (2009). The flow enters the domain
from the left with a uniform horizontal velocity U∞ after which a boundary layer
develops. It then detaches at the left side of the cavity and forms a shear layer
instability if the critical Reynolds number (based on the incoming velocity and the
length/depth D of the cavity) exceeds Rec = 4140 (see Sipp & Lebedev 2007). The
shear layer separates the recirculation motion inside the cavity from the external
flow. Unstable flows that are characterized by self-sustained oscillatory motion, like
the open cavity flow at supercritical Reynolds numbers, are often referred to as
oscillators within a global stability framework. In this present study, we will use
active feedback control schemes and attempt to stabilize the flow for marginal and
supercritical Reynolds numbers ranging from Re = 4140 to Re = 7500.

The essential mechanism for the development of a global instability is based on a
combination of the linear amplification of specific infinitesimal perturbations followed
by their saturation due to nonlinear effects once finite amplitudes have been reached.
In the present approach we aim to stabilize the flow in its linear regime, i.e. under
conditions when the small perturbation amplitudes justify the use of a linearized model
of the flow. This model consists of the Navier–Stokes equations linearized about a
base flow u0 = (u0, v0). This base flow, which represents a solution of the nonlinear
Navier–Stokes equations, is unstable to perturbations and may be computed using a
Newton–Raphson technique. The linearized evolution equations for the perturbation
field u = (u, v, p) are then derived and non-dimensionalized using the length of the
cavity D and the incoming uniform velocity U∞. They are

∂u

∂t
+ (u ·∇)u0 + (u0 ·∇)u = −∇p +

1

Re
1u, (2.1a)

∇ · u = 0, (2.1b)

http://journals.cambridge.org/flm
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where ∇ (resp. 1) is the gradient (resp. the Laplacian) operator. The above
equations are spatially discretized using finite elements of Taylor–Hood type
(P2-P2-P1) implemented in the software Freefem + + (Hecht et al. 2005). The
discretized system of equations can formally be written in matrix form as

Q
dX

dt
= AX, (2.2)

where X = (U V P)T is the state vector composed of the streamwise velocity U,
the normal velocity V and the pressure P. The matrix A represents the linearized
Navier–Stokes operator while the matrix Q contains the weights arising from the
discretization by finite elements. For our case, the total number of degrees of freedom
of the discretized system (i.e. the size of the matrices Q and A) is approximately
n = 900 000. The kinetic energy of the flow can be defined according to

‖ X‖2
2 = 〈X,X〉 = X

∗
QX, (2.3)

where ∗ denotes the transpose conjugate operator. The actuation on the flow by the
controller is modelled as a Gaussian body force on the vertical velocity. This forcing
is spatially localized near the upstream edge of the cavity where it has a distinct effect
on the shear layer and, consequently, on the instability mechanism. Approximating a
realistic actuator requires its spatial extent to be small compared to the size of the
cavity; we choose

v(x, y) = exp

[

−
(x − x0)

2 + (y − y0)
2

2σ 2

]

(2.4)

with x0 = −0.1, y0 = 0.02 and σ = 0.0849. These specific values define a Gaussian
function of unit amplitude and width 0.2. Using a body force (instead of a lifting
procedure) has the advantage of a direct comparison with previous work (Åkervik et al.

2007; Ehrenstein et al. 2010) and results in a simplified formulation of the control
problem compared to a true actuation at the wall (see Barbagallo et al. 2009). The
full control effort is obtained by multiplying the spatial Gaussian profile by a temporal
scalar function u(t) which transforms (2.2) into a forced problem

Q
dX

dt
= AX + QBu, (2.5)

where B is a real vector of dimension n arising from the spatial discretization of the
actuator using the finite-element bases.

Within a closed-loop (feedback) framework the temporal control law u(t) is to be
computed in real time using real-time measurements of the system. In the present
work we choose to measure the wall-shear stress at the downstream edge of the cavity,
expressed mathematically as

m(t) =

∫ x=1.1

x=1

∂u

∂y

∣

∣

∣

∣

y=0

dx, (2.6)

which, after finite-element discretization, yields m = CX with C as a real column
vector of length n extracting the wall-shear stress from the full state vector X . This
concludes the state-space formulation of the flow control problem given by

Q
dX

dt
= AX + QBu, (2.7a)

m = CX . (2.7b)
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FIGURE 2. Block diagram of feedback control set-up showing the plant, estimator and
controller components.

In what follows, this system of equations will form the basis for control design and
model reduction efforts.

3. Closed-loop control design and model reduction

At Reynolds numbers above the critical one, instabilities arise that ultimately lead
to exponential growth in kinetic perturbation energy within the linear framework. In
order to suppress these instabilities we consider an active closed-loop control strategy
that exploits real-time flow information from the sensor and manipulates the flow via
the actuator such that a user-specified objective (the suppression of instabilities) is
achieved with optimal effort.

3.1. Linear quadratic Gaussian (LQG) control

The design of such a control strategy takes advantage of the widely used LQG
theory (Burl 1999; Zhou et al. 2002). The underlying principle of this theory is
graphically presented in figure 2. In this sketch the plant represents the inherent
(uncontrolled) dynamics of the flow, in our case governed by (2.5). The output from
the sensor, i.e. the measurement m(t) = CX, represents the sole information on which
the control law will be based. This measurement is then fed into an estimator which
recovers an approximate state Ŷ which is subsequently multiplied by the control gain

K̂ to produce a control signal u(t); this signal is finally fed back into the flow system.
The objective of the control is the minimization of a given cost functional, in our
case, the kinetic energy of the perturbation. In addition, we consider the small-gain
limit where control efforts are strongly penalized; in this limit, successful control
results in the reflection of the unstable eigenvalues across the neutral line once the
compensator is applied. The design of both an estimator – in particular, the Kalman

gain L̂ which optimally exploits measurement information to recover state information
– and a controller requires the solution of algebraic Riccati equations, a matrix
equation that can only be solved by direct techniques for a rather limited number
of degrees of freedom. For this reason, the feedback loop from measurement m(t) to
control u(t) via the estimator and controller has to be based on a substitute system
of significantly fewer degrees of freedom, i.e. on a reduced-order model (ROM). With

this reduced-order model in place, the Riccati equations for the control gain K̂ and

Kalman gain L̂ can be solved by standard techniques (e.g. Datta 2003).

3.2. Model reduction basics

The goal of model reduction is to represent pertinent features of the original
system (2.7) with a reduced number of states. In its most common form this reduction
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is accomplished by a Petrov–Galerkin projection of the full system onto an identified
basis. The choice of this basis then determines the effectiveness and accuracy of the
reduced system. In the present study, we will evaluate the performance of reduced-
order models obtained from a projection onto global modes and assess their efficiency
when incorporated into a feedback control loop. To this end, we gather a selection of
nr global modes as columns of the n × nr matrix V . The details of the selection will
be left undetermined at this point, but will be specified later. The state X will then be
expressed in this basis as

X(t) = V X̂(t), (3.1)

where X̂ is a column vector of length nr, denoting the reduced state (the symbol .̂ will

be used to indicate reduced variables or matrices). The ith component of X̂ represents
the dynamics of the corresponding ith global mode V (:,i).

Defining a second basis W that is bi-orthogonal to V according to W
∗
QV = I, the

reduced state variable X̂ is given by

X̂ = W
∗
QX . (3.2)

The reduced system in state-space form, obtained by applying the Petrov–Galerkin
projection to (2.7), is written

dX̂

dt
= Λ̂X̂ + B̂u, (3.3a)

m = ĈX̂, (3.3b)

where the reduced system, control and measurement matrices are respectively given by

Λ̂ = W
∗
AV , B̂ = W

∗
QB, Ĉ = CV . (3.4)

The choice of global modes as a reduction basis yields a diagonal reduced system

matrix Λ̂ containing the associated eigenvalues of the selected global modes.

4. Reduced-order models based on global modes

To study the linear stability of non-parallel two- or three-dimensional base flows a
global stability analysis is commonly applied. It consists of a decomposition of the
perturbation into a complex exponential time dependence and a purely spatial structure,
referred to as a global mode:

X(t) = X̃ exp(λt) where λ = σ + iω. (4.1)

The asymptotic temporal behaviour of each global mode is then governed by its
growth rate σ and frequency ω. Positive growth rates (σ > 0) indicate global
instability.

4.1. Direct and adjoint global modes

The assumption (4.1) transforms the initial-value problem (2.2) into a generalized

eigenvalue problem for the eigenvalue λ and the global mode X̃ . We have

AX̃ = λQX̃, (4.2)

which has to be solved by iterative techniques owing to the size (∼106 × 106) of the
matrices A and Q. A shift-invert Arnoldi algorithm (see Lehoucq & Scott 1997) has
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Reynolds number Re 5250 5500 6000 6500 7000 7500

Number of unstable modes 4 4 6 6 6 8
Number of computed stable modes 1324 1391 1511 1636 1764 1875

TABLE 1. Number of unstable and computed stable global modes for flow over an open
square cavity at various Reynolds numbers considered in this study.

been used to determine the global spectrum, where we restricted our computations
to growth rates above σ = −4. Details of the numerical procedure can be found
in Barbagallo et al. (2009). Depending on the Reynolds number Re the number of
eigenvalues found in this domain varies from 1328 to 1883 modes (see table 1). For
eigensolutions with decay rates lower than σ ≈ −4 first effects of round-off errors are
encountered which are exacerbated until they entirely inhibit computations of global
modes beyond σ < −8 due to the non-normality of the matrix A. Moreover, the
availability of O(103) global modes for a model reduction effort was deemed sufficient
for the reduced-order model to still qualify as ‘reduced’; ideally, many fewer modes
should be necessary.

The matrix A is non-normal, resulting in a set of non-orthogonal global
modes (Schmid & Henningson 2000). An additional basis W – the set of adjoint
global modes – is thus necessary. The adjoint global modes are solutions of the adjoint
eigenvalue problem

A
∗
X̃

+
= λ∗

QX̃
+
. (4.3)

The adjoint global modes are denoted by X̃
+
; the eigenvalues of the adjoint

problem are simply the complex conjugate of the direct eigenvalues λ. After proper
normalization, the direct and adjoint global modes satisfy the bi-orthogonality relation

X̃
+∗

i QX̃ j = δij (4.4)

with δij the Kronecker symbol.

4.2. Analysis of the spectrum

Since we wish to construct reduced-order models based on global modes, it will be
instructive to analyse the properties and characteristics of the eigensolutions of A. We
will focus on the case Re = 7500, but would like to stress that equivalent results have
been obtained for lower Reynolds numbers. The global spectrum (restricted to the
half-plane ω > 0 due to symmetry) for Re = 7500 is displayed in figure 3. At this
parameter setting, we have eight unstable global modes with σ > 0 (four appear in the
ω-half-plane in figure 3). The spatial structure of the most unstable global mode is
presented in figure 4, visualized by contours of the streamwise velocity. It is spatially
localized and describes a Kelvin–Helmholtz-type instability of the shear-layer across
the cavity.

In contrast to the unstable eigenspace, the stable subspace (consisting of modes with
σ < 0) is high-dimensional; see table 1. In addition, while the unstable global modes
had a clear physical explanation in terms of observable instabilities, the interpretation
of stable modes is far less obvious. More insight can be gained by computing the
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FIGURE 3. Global spectrum for flow over an open cavity at Re = 7500.
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FIGURE 4. Selected direct and adjoint global modes for flow over an open cavity at
Re = 7500. (a) Most unstable direct global mode, (b) adjoint global mode associated with
the most unstable direct global mode in (a). Both modes are visualized by contours of the
streamwise velocity component.

energy-weighted x-centroid xc for each global mode defined by

xc =

∫ ∫

Ω

xe dx dy

/∫ ∫

Ω

e dx dy (4.5)

with e the energy of the global mode and Ω denoting our computational domain. By
definition, this quantity falls within the interval −1.2 6 xc 6 2.5. The global spectrum,
coloured by the centroid xc, is shown in figure 5 and indicates the energy-weighted
location of global modes within the computational domain.

Two principal groups of global modes can be distinguished: (i) modes located near
the cavity with 0 6 xc 6 1 and (ii) modes located near the outflow boundary of the
domain with xc ≈ 2.5. Eigenvalues for the former group can be found in the upper
right part of the spectrum. These modes describe the stable dynamics of the motion
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FIGURE 5. (a) Global spectrum colour-coded by the x-centroid of associated global modes;
(b) global spectrum colour-coded by the x-centroid of the associated adjoint global modes.
(c,e) Energy density versus the streamwise position for two direct global modes, (c) being
the least stable direct global mode and (e) a strongly damped (σ ≈ −4) direct global mode;
both modes are ringed in (a). (d,f ) Energy density versus the streamwise position for the two
associated adjoint global modes, (d) being the least damped adjoint global mode and (f ) a
strongly damped (σ ≈ −4) adjoint global mode; both modes are ringed in (b).

inside the cavity as well as the unstable motion of the shear layer at the top of the
cavity. Eigenvalues for the latter group (with xc ≈ 2.5) are mainly located near the
left part of the (σ, ω)-plane at higher damping rates; their corresponding global modes
are pinned to the right edge of the computational domain. Surprisingly few global
modes have their energy-weighted centroid in the interval 1 6 xc 6 2.5, thus leaving
essentially only global modes linked to either the cavity dynamics or the outflow
boundary. A similar picture arises for the adjoint global modes: a first group of
modes, whose centroid is located inside the cavity, can be distinguished from a second
group of highly damped modes, whose centroid coincides with the inlet boundary at
x = −1.2.

The localization of the global modes near and inside the cavity and at the
outflow boundary is even better illustrated by computing the energy density d of a
global mode versus the streamwise coordinate. The energy density is defined as the
kinetic energy of a mode at a fixed streamwise location integrated over the vertical
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coordinate, i.e. d(x) =
∫

e(x, y) dy. Results are given in figure 5(c,e). Cavity modes,
with significant energy density values in the interval 0 6 x 6 1, rapidly decrease
in energy density away from the cavity; they show strong localization within our
computational domain. Global modes located at the outlet, on the other hand, show
only low to moderate energy densities near the cavity and exponential growth over
many decades toward the outflow boundary. Similar observations can be made for
the corresponding adjoint global modes (figure 5d,f ): spatially localized adjoint cavity
modes coexist with adjoint modes with strong exponential growth toward the inlet
boundary.

The above analysis raises the question of the physical significance of stable global
modes, in particular, in the light of the fact that increasing the computational domain
will influence the stable global modes and pin them anew against the extended
computational boundary. In this sense, the majority of stable global modes are
linked to numerical details, in particular, to the discretization and location of outflow
boundaries (see Sipp et al. 2010, for more details).

4.3. Selection criteria for inclusion in a reduced model

At this point, the global modes and their adjoint counterparts are available for the
design of a reduced-order model and a feedback control strategy. It remains to be
decided, however, which of the global modes will be included in the reduction
basis V (and the associated basis W ). We recall that all unstable modes have
to be included; for the selection of global modes from the stable half-plane a
criterion has to be specified. Even though many options exist and a clear choice
is far from obvious, we will concentrate on four criteria that have either appeared
in previous studies (Åkervik et al. 2007; Barbagallo et al. 2009; Ehrenstein et al.

2010) or can be argued for mathematically. In the following subsections we will
introduce and discuss these criteria and present their advantages, limitations and
deficiencies. Arguments will be made and presented for the case of Re = 7500; it
is important to stress, however, that the results extend qualitatively to lower Reynolds
numbers.

4.3.1. Damping rate

The first criterion is based on the damping rate of the global modes and employs
the argument that modal structures with large decay rates are dynamically less relevant
than modes that are only weakly damped. This criterion has been applied by Åkervik
et al. (2007) in their study of flow over a shallow cavity. This criterion is particularly
convenient from a numerical viewpoint as highly damped global modes are difficult to
compute by iterative means – even after applying spectral transformations. An obvious
flaw of this criterion is the fact that modes are selected on the basis of their dynamics
rather than their controllability, observability or their contribution to the input–output
behaviour between actuator and sensor. Figure 6(a) displays the stable part of the
global spectrum for Re = 7500, coloured by the growth rate. Using a criterion based
on the damping rate, global modes of darker colours are included first in the basis V ;
global modes of lighter colours are included last.

4.3.2. Contribution to the input–output behaviour

Acknowledging the importance of controllability and observability of each
individual global mode, the criterion (see e.g. Antoulas 2005; Bagheri et al. 2009b;
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Barbagallo et al. 2009)

Γi =
|B̂i||Ĉi|

|λi|
(4.6)

has been introduced, where B̂i is the projection of the actuator onto the ith global

mode, Ĉi is the measured component of the ith global mode and λi is the decay rate of
the ith global mode. This criterion identifies modes that are simultaneously responsive
to control efforts, can be measured by the sensor and are only weakly damped.

Figure 6(b) depicts the global spectrum, again for Re = 7500, coloured by the
criterion Γ . Darker colours indicate modes with high values of Γi; these modes
would be preferentially included in a reduced-order model based on the Γ -selection
criterion. Modes with lighter colours have lower associated values of Γi and would
tend to be neglected in a reduction basis. The first modes selected according to the
criterion are clustered near λ = (σ, ω) ≈ (−0.4, 4.5), (−1.1, 19.7) and (−2.7, 22.7).
Close analysis (see also Barbagallo et al. 2009) reveals that the corresponding modes
show a spatial structure similar to the unstable global modes, that is, linking actuator
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and sensor by a chain of vortical elements. More problematic is the fact that a
substantial number of modes with high damping rates appear to contribute to the
input–output behaviour; even modes near our cut-off damping rate of σ = −4 seem
to be important, which suggests that even higher damping rates would have been
favoured, had they been available.

4.3.3. Orthogonal projection
The third criterion makes use of an additional projection and has been suggested

in Ehrenstein et al. (2010). It has been shown to improve results obtained by only
applying the bi-orthogonal projection introduced earlier. The method combines the
bi-orthogonal projection for the unstable subspace with a least-squares projection
for the stable supplementary one. The central idea stems from the observation
by Ehrenstein et al. (2010) that the actuator expressed in the bi-orthogonal projection
is spatially rather different from its original form. For this reason, they suggest a
least-squares projection method for the actuator as it minimizes the error between the
original and projected actuator. Following this concept, the global modes are ranked
using the criterion

Γ̃i =
|B̃i| |Ĉi|

|λi|
, (4.7)

where the coefficient B̃i is now based on the least-squares projection. The coefficients
are used in (4.7) as well as in the reduced-order model (3.3); hence the Kalman gains

and the estimator equation are based on B̃i. Note that, as in Ehrenstein et al. (2010),

the coefficients B̃i,i=1...n are first computed to rank the set of n = 1601 least stable
global modes; then, for each model consisting of p 6 n global modes, the coefficents

B̃i,i=1...p are computed again and used in (3.3).
Figure 6(c) shows the global spectrum (Re = 7500) coloured by the above criterion

Γ̃ to indicate a classification of global modes (from darker to lighter colours) for
their inclusion in the reduced-order model. A similar general tendency is observed
as in figure 6(b): preference of modes that resemble the globally unstable modes
and of highly damped, low-frequency modes. In addition, the least-squares projection
becomes computationally more sensitive for modes at higher damping rates which

allowed us to accurately evaluate the criterion Γ̃ only for modes with σ > −3.4. This
marked numerical sensitivity has been observed for all Reynolds numbers considered
in this study. It is also worth pointing out that due to the two independent projections
(bi-orthogonal and least-squares), the resulting reduced-order model cannot be written
as a single projection of the initial system onto a set of global modes; rather, the

coefficients B̃i enter the dynamics given by (3.3).

4.3.4. ‘Quasi-optimal’ stability ranking
The fourth criterion is included as a demonstration tool for the ability of reduced

models based on global modes to yield a stable compensated system. As will become
clearer in the following sections, the fully compensated system, i.e. the plant coupled
with a reduced estimator and controller, suffers from instabilities when global modes
are used in the reduced-order model. These instabilities render the ROM ineffective
and illustrate that global modes are inadequate for our closed-loop control application.
The fourth criterion aims to explore the best possible choice of global modes such
that stability of the fully compensated system is approached as swiftly as possible. As
such the criterion provides a benchmark for what is possible with a judicious choice
of global modes. It is computed iteratively and a posteriori as follows. We start with a
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reduced-order model comprising only the unstable modes and compute the growth rate
σ of the compensated system (plant plus reduced-order estimator plus reduced-order
controller). Next we search through all available stable global modes and add the one
to the reduction basis V which results in the largest reduction of σ for the augmented
compensated system. This procedure is repeated, thus building a sequence of global
modes where each added global mode improves the stability of the compensated
system more than any of the remaining modes. Non-normal effects from an interaction
of the included modes are not considered in this criterion, even though the individual
modes account for non-normal effects in the global mode expansion. Since we are
interested in the long-term stability of the compensated system, the concentration on
eigenvalues only can be justified.

We note that for a model with p stable modes, the truly optimal ranking according
to stability would be given by the best combination of p modes chosen from
the complete set of n stable modes. The number of admissible combinations is
n!/(p!(n − p)!) which far exceeds our computational means. For this reason, the
‘quasi-optimal’ sequential algorithm for building a reduction basis has been chosen.

Figure 6(d) illustrates the global spectrum coloured by the ordering based on the
above criterion. The eigenvalues selected by the ‘quasi-optimal’ stability procedure are
reminiscent of some of the eigenvalues chosen by the Γ -criterion (see figure 6b). On
the other hand, many global modes with high values of Γ are not selected by the
stability criterion, a feature that will be discussed in more detail later.

4.4. Final form of the compensator using a reduced-order model based on global modes

We conclude this section by stating the equations governing the compensator. In
particular, we emphasize the partitioning of the reduced-order model into an unstable

(indicated by subscript u) and stable (indicated subscript s) part. The control gain K̂

as well as the Kalman gain L̂ have been computed in the small gain limit (see e.g.
Burl 1999) which introduces zero matrices since the estimator and controller only act
on the unstable subspace. For more details and an explicit formulation of the Riccati
equations in this limit, the reader is referred to Barbagallo et al. (2009). We have

d

dt

(

Ŷ u

Ŷ s

)

=

(

Λ̂u 0

0 Λ̂s

)(

Ŷ u

Ŷ s

)

+

(

B̂2u

B̂2s

)

(

K̂ u 0
)

(

Ŷ u

Ŷ s

)

−

(

L̂u

0

)[

m −
(

Ĉu Ĉs

)

(

Ŷ u

Ŷ s

)]

, (4.8a)

u =
(

K̂ u 0
)

(

Ŷ u

Ŷ s

)

. (4.8b)

The complete compensator is now set up. In the following section we will
present open-loop tests based on the approximation of the full transfer behaviour
by the reduced model and closed-loop tests based on the stability properties of
the compensated system. The four selection criteria will be investigated for the
representative case of cavity flow at Re = 7500.

5. Performance evaluation of reduced-order models for Re = 7500

Two performance measures will be used to assess the performance of the reduced-
order models based on global modes. The first measure is concerned with the accurate
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representation of the input–output behaviour of the full system by the reduced model.
The approximation error is quantified by the mismatch of the true transfer function and
the transfer function of the reduced system, measured in the H2- or H∞-norm. The
second measure probes the ability of the reduced model to yield a stable compensated
system. In this case, the eigenvalue of the coupled plant-compensator system with the
largest growth rate will be used as a performance indicator.

5.1. Open-loop performance evaluation

It is generally acknowledged that a successful control design requires the
representation of the correct input–output behaviour by the reduced model. Since
there is no choice in selecting unstable global modes, only the accuracy of modelling
the stable subspace dynamics needs to be addressed. The governing equations for the
stable subspace dynamics in state-space form can be written as

Q
dX

dt
= AsX + QBsu, (5.1a)

m = CX, (5.1b)

where Bs denotes the actuator projected onto the stable subspace. The input–output
dynamics is computed numerically by imposing a Dirac impulse u(t) = δ(t) as the
control input and subsequently measuring the signal m(t) at the sensor location.
Since, by definition, the subspace system given by As is stable, the signal m(t) will
eventually decay as t → ∞. Transforming this impulse response into the frequency
domain according to m̂(ω) =

∫∞

0
m(t) exp(−iωt) dt (for a causal system), we obtain

the transfer function H(ω) = m̂(ω) which quantifies the response of the system to a
harmonic forcing at a frequency ω. In figure 7 the transfer functions (in the frequency
domain) are shown. The transfer function curves correspond to the amplitude part of
a Bode diagram and exhibit two (nearly constant) plateaus for ω ∈ [0, 3] ∪ [20, 25]
and ω ∈ [5, 19]. The latter range approximately corresponds to the frequency range
of the unstable modes. We also notice an abrupt drop around ω ≈ 4, causing a
nearly vanishing response at this frequency and suggesting the presence of nearly
unobservable states.

Once the transfer function of the full system has been computed from a Fourier
transform of the impulse response, we can juxtapose the transfer functions of the
reduced-order models and assess the quality of the approximation as more and more
global modes are added to the reduction basis according to one of the four criteria.

In figure 7 the amplitude of the transfer function is displayed for reduced-order
models using the selection criteria described in § 4.3. The transfer functions have been

computed using the expression Ĥ(ω) = Ĉ(iωI − Âs)
−1
B̂s. The different reduced-order

models are identified by colours (see the figure legends) and correspond to a specific
number of included global modes ranked by the respective criterion. The transfer
function of the original (full) system is given in black. At a first glance it can be
observed that – perhaps with the exception of the ‘quasi-optimal’ stability criterion
– none of the four selection criteria produces satisfactory results even if more than a
thousand global modes are included.

To quantify the degree of approximation of the original transfer function we
consider the H2- and H∞-norms defined as

‖ H‖2 =

(∫ 25

0

|H(ω) |2 dω

)1/2

, (5.2a)
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FIGURE 7. Approximation of the modulus of the exact transfer function (in black) as global
modes are added to the reduction basis V according to the four selection criteria; (a) adding
modes based on damping rate, (b) adding modes according to their contribution to the
input–output behaviour, (c) adding modes using orthogonal projections, (d) adding modes
based on the ‘quasi-optimal’ stability ranking. The Reynolds number is Re = 7500.

‖ H‖∞ = sup
ω

|H(ω)|. (5.2b)

The H2-norm measures the overall error over a given frequency range, whereas the
H∞-norm concentrates on the worst error that occurs in a frequency range. These
measures account for the degree of approximation between the full and reduced-order
transfer functions. In figure 8 the H2- and H∞-errors are displayed and corroborate
the findings from figure 7. In particular, the ranking based on orthogonal projections of
the controller shows rather discouraging results.

Figure 7(a) displays the amplitude of the transfer function for reduced-order models
of dimension 128, 132, 457, 1350 and 1875 where the modes have been ranked by
damping rate (first criterion in § 4.3). As the dimension of the reduced models is
increased, the transfer functions of the reduced models approach the transfer function
of the original system. This effect is also visible in figure 8 (open squares); in both
norms, the error is gradually decreasing. The convergence, however, is rather erratic:
for example, the transfer functions of a reduced model of order 128 and of order 132
are entirely different, even though they differ merely by four stable global modes that
have been added to the latter model.
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In figure 7(b) we see the amplitude of the transfer function for reduced-order models
of dimension 6, 14, 36, 200 and 1875; this time, the modes have been ranked by
the input–output criterion Γ (see § 4.3). Similarly to the previous case, the transfer
functions approach the one of the original system, but better approximations are
achieved for smaller numbers of included modes. This validates the relevance of the
Γ -criterion in selecting global modes for the reduction basis V . The first few modes
are assumed to contribute significantly to the input–output behaviour; it may thus
seem confusing that the relative errors (upward-pointing triangles in figure 8) do not
decrease as the first modes are added. This phenomenon is due to the fact that the
difference between the full transfer function and the transfer function based on p

global modes is represented by a poorly converging series of the form

H − Ĥ =

N
∑

j=p+1

ĈjB̂j

iω − λj

, (5.3)

where each term in the sum is of considerable size due to the non-normality of
our system. Mutual cancellation by terms is observed, and bounds based on the
magnitude of these terms quickly become unsharp. These effects and their link to the
non-normality of the system are further explained in Barbagallo et al. (2009).

Figure 7(c) depicts the amplitude of transfer functions for reduced models of
dimension 8, 16, 52, 200 and 1601 where the modes have been ranked by the criterion

Γ̃i (see § 4.3). Even though the transfer functions of figures 7(a) and 7(b) show poor
convergence towards the exact system as more unstable global modes are added, the

Γ̃ -criterion yields approximate transfer functions that lack convergence altogether (see
filled squares in figure 8).

Finally, figure 7(d) shows the amplitude of the transfer function for reduced models
of dimension 4, 20, 60, 80 and 139 where the modes have been ranked according
to the ‘quasi-optimal’ stability criterion (see § 4.3). As the dimension of the reduced-
order model increases, we observe an adequate convergence of the reduced transfer
functions toward the original one (in particular, for the frequency interval ω ∈ [5, 20]).
This behaviour may indicate that the transfer function does not have to approximate
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the original transfer function over the entire frequency range – an issue that will be
further investigated in § 5.3.

Overall, we confirm that the relative error norms based on the fourth criterion are
markedly lower than the error norms for the previous three criteria. This indicates that
a particular ordering of global modes may indeed produce an effective reduced-order
model; an a priori and definitive selection criterion, however, may be difficult to
devise. The study of the open-loop behaviour of reduced-order models, expressed by
their transfer function, has established that the criterion for selecting global modes
that are to be included in a reduced-order model is pivotal. Intuitive concepts, such
as growth rate, are often misleading and produce ineffective models; even more
sophisticated criteria cannot guarantee robust success over a broad range of flow
parameters. The underlying reason for this may lie in the fact that most of the stable
global modes carry little physical meaning.

In the following section, the more categorical test of a reduced-order model, namely
the stabilization of the full compensated system, will be presented.

5.2. Performance of the closed-loop system

For supercritical Reynolds numbers, the objective of the LQG-control loop, shown
in figures 1 and 2, is to suppress the instabilities in the system. To test whether
the closed-loop system has succeeded in this, the growth rate σmax of the least
stable eigenvalue of the compensated system is the natural quantity to evaluate. If
at least one unstable eigenvalue exists, the controlled system is still unstable. If all
eigenvalues of the compensated system are stable, the originally unstable system has
been stabilized (in the asymptotic limit t → ∞).

The compensated system is constructed by coupling the plant (2.7) to the
compensator (4.8). The spectrum of this coupled system then provides information
about the success of our closed-loop control design as well as our model reduction
efforts. Since the plant contains a very large number of degrees of freedom (in
our case, nearly one million), spectral information about the coupled system is
challenging to extract. Instead, we will follow Barbagallo et al. (2009) and reduce
the computational costs by replacing the full plant model (2.7) by a reduced-order
model based on unstable global modes and proper orthogonal decomposition (POD)
modes for the stable subspace; see the Appendix for further details. A sufficient
number of POD modes has to be taken into account to accurately represent the plant
dynamics and its response behaviour. With this substitution, the compensated system
can then be written as

d

dt


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with

Âc =


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




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FIGURE 9. Growth rate of least stable eigenvalue of the compensated system as global modes
are added to the reduction basis V according to the four criteria (see text). The Reynolds
number is Re = 7500.

Superscripts gm and pod denote whether the respective matrix has been reduced
by global or POD modes; the subscripts u and s stand, as before, for the
unstable or stable subspace, respectively. The above system then describes the
compensated dynamics, and the growth rate of the least stable eigenvalue of the

matrix Âc indicates failure or success of the reduced-order LQG controller to stabilize
the otherwise unstable system. We will now use this technique to evaluate the
closed-loop performance of reduced-order models based on selected global modes,
again for a representative Reynolds number of Re = 7500.

The eigenvalues of the compensated system matrix Âc have been determined. Direct
methods could be employed since the original system matrix A for the plant has been
replaced by a lower-dimensional matrix based on POD modes. The growth rate σmax

of the least stable eigenvalue determines the stability property of the compensated
system. Figure 9 displays this growth rate σmax as a function of the number n of stable
global modes included in the reduced-order model. The selection and ranking criteria
introduced earlier have been used, and the various stability characteristics for each
criterion are shown in the figure.

The compensated system can only be stabilized by the ‘quasi-optimal’ ranking
procedure (downward-pointing triangles). In this case, stabilization of the flow is
achieved, once more than 120 stable global modes are used in the reduced-order
model. We observe a monotonic decrease of σmax which is expected since at each n

only the global mode that maximally decreases σmax is added to the reduced-order
model.

Models using the growth rate criterion (open squares) also show a decrease in
σmax as more stable modes are taken into account. Within the limits of our available
modes, however, a stable compensated system could not be attained. An interesting
observation is that the growth rate curve (open squares) in figure 9 is highly
correlated with the equivalent curve representing the relative H2-error (open squares
in figure 8a), which appears to suggest a link between a better approximation (in the
H2-sense) of the open-loop input–output behaviour and an improved stability of the
closed-loop system.
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Similar results are obtained when using a ranking of the stable global modes
according to the Γ -criterion (upward-pointing triangles). However, as in the open-loop
test, an improvement of the stability properties of the compensated system emerges
substantially earlier compared to the ranking based on the growth rate. Nevertheless,
within the limit of available global modes, no stabilization could be achieved.

Lastly, the results corresponding to the Γ̃ -criterion (using an orthogonal projection
for the actuator) are displayed (filled squares). The behaviour of σmax displays a
tendency similar to the previous case based on the Γ -criterion: for p 6 100 it shows
performance superior to the Γ -criterion; for larger values of p, however, a more
unstable compensated system results. The favourable properties of this projection
reported in Ehrenstein et al. (2010) could not be recovered for our flow configuration.

5.3. A frequency-restricted norm measuring open-loop behaviour

The similarities between the curves of σmax (figure 9), which express the performance
of the compensator, and the curves of the relative H2-error (figure 8), which express
the accuracy of capturing the input–output behaviour of the original system, are
striking and warrant further investigation.

Special attention has to be paid to the choice of norm when evaluating the
open-loop characteristics. The H∞-norm is commonly adopted in control and model
reduction applications since rigorous error bounds are available for this norm (see e.g.
Antoulas 2005). Our study, however, indicates that the performance of the closed-loop
system (figure 9) is much more closely linked to the H2-errors (figure 8a) than the
H∞-errors (figure 8b) of the reduced transfer function. This suggests that the overall
behaviour of the reduced-order model may be more relevant than its worse departure
from the exact behaviour at a particular frequency.

Another remarkable observation is that, according to the H2-error of the open-loop

behaviour, the reduced-order models based on the Γ̃ -criterion are expected to perform
poorly: the error curve (filled squares) is close to and, eventually, above the curve
representing models based on the growth-rate criterion (open squares) in figure 8(a).

Nevertheless, Γ̃ -models stabilize the system noticeably better than models using the
growth-rate criterion, as can be seen in figure 9. This apparent inconsistency may
give insight into which frequency range of the open-loop transfer function has to be
captured sufficiently by the reduced-order model to yield improved stability properties
for the closed-loop system. None of the reduced-order models reproduces the full
transfer function behaviour adequately at low frequencies (see figure 7). Nevertheless,
it can be observed that the instability of the compensated system is noticeably reduced
as soon as the transfer function is well-approximated over a frequency range of
ω ∈ [10, 20].

This observation is in agreement with the physical understanding of the control
dynamics. In an effort to eliminate an unstable mode, the controller generates an
opposite structure that destructively interferes with the instability. Since the unstable
modes are characterized by well-defined frequencies, the actuator also has to operate
at the same frequencies. Doing so, it mainly triggers the stable part of the flow at
these frequencies. As a result, the control-oriented reduced-order model must largely
capture the full input–output behaviour at these frequencies. Frequencies outside this
range play a subordinate role in the control law, and the transfer behaviour at these
frequencies may not have to be captured as accurately. Based on this argument, we
propose to evaluate the reduced-order models using a frequency-restricted H2-norm;
the frequency range is chosen to include the frequencies of the unstable modes. We
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introduce

‖ H‖ω
2 =

(∫ 17

10

|H(ω) |2 dω

)1/2

(5.5)

and refer to this norm as the H ω
2 -norm. Alternatively, this norm can also be defined

by introducing a bandpass filter as a weight function under the integral. The H ω
2 -error

of the reduced transfer functions is plotted in figure 10. First inspection shows that
all curves reflect the corresponding performance of the closed-loop system (figure 9).
More importantly, the relative positions of the curves are very similar to the results in
figure 9 which confirms our supposition that it is of critical importance to capture the
behaviour of the original system at the frequencies where the control acts.

5.4. A frequency-restricted reduced-order model of the stable subspace

In previous studies of closed-loop control of flow instabilities using a reduced-order
compensator (Bagheri et al. 2009a; Barbagallo et al. 2009), successful stabilization
has been achieved using a reduced-order model for the entire frequency range of
the stable part of the flow. Our findings from the last section, however, indicate
that only the limited frequency range triggered by the actuator should be necessary
to capture the input–output behaviour of the stable subspace. Under this assumption,
a further dimensionality reduction of the reduced-order model is conceivable. This
conjecture will be investigated by constructing a frequency-restricted POD model; the
same analysis can be applied to balanced POD models.

5.4.1. Construction of a frequency-restricted reduced-order model
POD modes for control applications are typically computed from the eigenvectors of

the controllability matrix Gc expressed in the frequency domain (see Willcox & Peraire
2002). We have

Gc =
1

2π

∫ ∞

−∞

(jωI − A)−1
BB

∗(−jωI − A
∗)−1 dω. (5.6)
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A restriction to a specified frequency range is straightforwardly implemented by
modifying the integration limits of the above integral accordingly. We thus obtain,
for a given frequency range [−ω2, −ω1] ∪ [ω1, ω2], the expression

G
ω
c =

1

2π

∫ −ω1

−ω2

(jωI − A)−1
BB

∗(−jωI − A
∗)−1 dω

+
1

2π

∫ ω2

ω1

(jωI − A)−1
BB

∗(−jωI − A
∗)−1 dω. (5.7)

Instead of explicitly constructing the matrix Gc, a snapshot method may be used to
reduce the order of the eigenvalue problem for the POD-modes from the number
of degrees of freedom to the number of snapshots (see Dergham et al. 2011).
Alternatively, it is also possible to evaluate the Gramian (5.7) in the time domain
(using temporal snapshots) by evaluating

G
ω
c =

∫ t

0

X(t)X∗(t) dt with X(t) =

∫ t

0

eA(t−τ)
B

sin(πτ)

(ω2 − ω1)τ
dτ. (5.8)

The additional term in the expression for X(t) corresponds to the transfer function of
our top-hat bandpass filter. Finally, it is worth mentioning that due to the frequency
truncation the reduced-order model obtained by projection onto the ‘frequency-
restricted’ POD modes is not guaranteed to be stable.

5.5. Performance of the frequency-restricted reduced-order models

Four different cases have been computed to evaluate the effect of restricting the
frequency range on the performance of the reduced-order model. As before, both the
deviation from the full transfer function (an open-loop measure) and the stability of
the compensated system (a closed-loop measure) will be assessed. The four cases
cover an increasingly restricted frequency range, starting with the reference case
(case 1) that takes into account all frequencies (ω1 = 0, ω2 → ∞) and progressing
to ω ∈ [4, 20] (case 2) which considers a frequency interval larger than the frequency
band of unstable modes (see figure 3), to ω ∈ [7, 17] (case 3) which covers the
frequencies of the unstable modes, to finally ω ∈ [11, 14] (case 4) which concentrates
on the frequencies of the two most unstable modes.

As a performance measure for the open-loop test we take the effectiveness of the
frequency-restricted reduced-order model to capture the input–output behaviour of the
original system over the most restricted frequency range ω ∈ [11, 14]. We define the
quantity

eH[11,14] =
‖Ĥ(ω) − H(ω) ‖ω∈[11,14]

2

‖H(ω) ‖ω∈[11,14]
2

(5.9)

and plot it as a function of the number of included modes (see figure 11a). In the

above expression Ĥ(ω) stands for the transfer function corresponding to the four cases.
For all cases, the error decreases as more modes are added to the reduced-order
model. As expected, the model corresponding to case 4 (blue curve) best approximates
the input–output behaviour of the original system; the number of modes to do so is
significantly lower than for the reference case.

For the closed-loop measure we take (similarly to the previous section) the real
part of the least stable eigenvalue of the fully compensated system. This quantity
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FIGURE 11. (a) Relative error of the transfer function versus number of modes for reduced-
order models based on frequency-restricted POD modes. (b) Maximum growth rate of the
fully compensated system based on frequency-restricted reduced-order models.

is displayed in figure 11(b) versus the number of modes included in the reduced-
order model. Again, increasing the number of modes in the reduced-order model
improves the stability of the compensated system. Significant differences, however, are
discernible as the frequency range is increasingly restricted. While for the standard
(unfiltered) POD-based model, 21 modes are necessary to stabilize the flow, only
16, 6 and 4 modes (for cases 2, 3 and 4, respectively) are needed to achieve a
stable compensated configuration. This result further supports the fact that only the
input–output behaviour of the most unstable modes is relevant for an effective reduced-
order control performance.

6. Reynolds number dependence

It is apparent from the previous sections that the performance of reduced-order
models based on global modes depends on the details of the instabilities that have to
be controlled, which in turn depend on the Reynolds number. The goal of this section
is to explore the range of Reynolds numbers for which closed-loop control can be
successfully applied with a compensator based on global modes.

6.1. Changes in the spectrum

We start by studying how the stability properties of the uncontrolled flow are modified
as the Reynolds number Re is increased. In figure 12 the spectrum (in the ω > 0
half-plane) is displayed for Reynolds numbers from Re = 4800 to 7500. Only the
branch containing the unstable global modes and the least stable of the stable branches
are shown. The general behaviour is a destabilization of the spectrum as the Reynolds
number increases. The unstable branch is further displaced into the unstable half-plane
and the number of unstable modes increases. The stable eigenvalues move closer to
the unstable half-plane, but ultimately remain stable. This behaviour is to be expected
from an advection–diffusion problem as the diffusive terms play an increasingly minor
role. While the decay rates are affected noticeably, the frequencies and spatial shapes
(not shown) seem rather insensitive to Reynolds number variations.
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FIGURE 12. Changes in the global spectrum of flow over an open cavity as the Reynolds
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FIGURE 13. Growth rate of the least stable eigenvalue of the (green) uncontrolled and the
(red) compensated system using a reduced-order model based on the unstable global modes

only.

6.2. Changes in the stability of the controlled system

An interesting question concerns the ability of the compensator to stabilize the flow for
a range of Reynolds numbers. To this end, a compensator based on global modes of
the flow at a given Reynolds number is computed, after which the previously described
method will be employed to determine the least stable eigenvalue of the compensated
problem – and thus the performance of the reduced-order control problem.

6.2.1. Compensators based only on the unstable global modes
Previously it was argued that the unstable global modes of the flow have to

be accounted for in the reduced-order model. The stable subspace, though, is
not necessarily required, which prompts the questions (i) whether the flow can
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Γ̃i, and (d) ‘quasi-optimal’ stability ranking. The Reynolds numbers range from Re = 4800 to
Re = 6500. Stabilization of the compensated system is achieved when σmax < 0.

be stabilized using only the unstable modes and (ii) if so, up to what Reynolds
number such a primitive compensator will be successful. In answer to these questions,
figure 13 displays the growth rate of the least stable mode (σmax) of the closed-
loop system where the compensator consists of only the unstable global modes. For
Reynolds numbers less than Re ≈ 5250, the growth rate σmax is indeed negative which
indicates that the flow can be stabilized without accounting for the stable subspace
in the reduced-order model. For Reynolds numbers above Re ≈ 5250, the instability
grows too strong, and reduced-order models based on merely the unstable global
modes cease to succeed in stabilizing the flow.

In Barbagallo et al. (2009) it has been shown that the flow can be stabilized at
Re = 7500, if relevant information about the stable subspace, in this case using proper
orthogonal decomposition (POD) modes or balanced (BPOD) modes, is incorporated
into the reduced-order model. The next section explores the question of whether
the same can be accomplished by including global modes where Reynolds numbers
ranging from Re = 5250 to Re = 7500 are considered.



48 A. Barbagallo, D. Sipp and P. J. Schmid

6.2.2. Compensators based on the unstable and selected stable global modes
Unstable and stable global modes are added to the reduction basis V to obtain a

reduced-order model of the flow. Stable modes are included according to one of the
four ranking criteria defined in § 4.3. In figure 14 the largest growth rate σmax of the
compensated system is displayed. Each subplot represents a specific ranking criterion;
the various colours denote different Reynolds numbers.

In figure 14(a), stable global modes are included in the ROM according to
their damping rate. Independent of the Reynolds number, the curves display similar
behaviour. As the first stable modes are included, each curve shows a nearly constant
plateau, until approximately n = 500 stable global modes have been added; at this
point, σmax decreases as more modes are incorporated into the reduced-order model.
If the initial instability is sufficiently weak, as is the case for Re = 5250, 5500 and
6000, the system can eventually be stabilized. However, even with all global modes
(up to σ > −4) included, flow over an open cavity for Reynolds numbers larger than
Re ≈ 6500 can no longer be rendered stable by a compensator based on global modes
for our choice of LQG control parameters.

When the global modes are ranked according the Γ -criterion (see figure 14b)
analogous conclusions can be drawn. However, similarly to the case Re = 7500 studied
in § 5, the stabilization of the compensated system occurs at a lower number of stable

modes. In figure 14(c) we consider stable global modes ranked by the Γ̃ -criterion. In
this case, the system can only be stabilized for Re = 4800. As mentioned previously,
the criterion does not yield favourable results for our case, even though it has been
successfully applied to other configurations (Ehrenstein et al. 2010).

In contrast (and as expected), the system can eventually be stabilized for all
considered Reynolds numbers (5250 6 Re 6 7500) if the ‘quasi-optimal’ ranking is
employed (see figure 14d).

The above results demonstrate that some unstable flows can be stabilized using
reduced-order models based on global modes. Despite that, the number of stable
global modes necessary to model the stable subspace dynamics increases dramatically
with Reynolds number. The question then arises of whether, given an arbitrary (high)
Reynolds number, a sufficient number of stable global modes can be computed
accurately so that such a reduced-order model can be constructed. In our case, a
large but still finite number of global modes could be calculated, before round-off error
deteriorated the iterative computations. This phenomenon can be linked to the non-
normality of the linearized Navier–Stokes matrix A which makes iterative eigenvalue
computations an ill-conditioned (and ill-fated) undertaking. But as more stable global
modes become necessary to stabilize the flow at larger Reynolds numbers, the finite
limit of computable modes will at last be reached.

Another relevant question concerns the reason for the drastic increase in stable
global modes needed to stabilize the flow at higher Reynolds numbers. A facile and
simplistic answer would argue that the stable subspace is generally less damped (see
§ 6.1) which generates a more complex dynamics and, in turn, a larger number of
degrees of freedom. To follow up this argument, we consider a compensator based
on the unstable global modes and POD modes to model the stable subspace. The
minimum number of POD modes required to stabilize the flow is shown in figure 15.
The flow can be stabilized at each Reynolds number considered using at most thirty
POD modes to represent the stable subspace dynamics. Clearly, this behaviour runs
counter to the claim that the complexity of the stable subspace requires a reduced-
order model of high dimensions. We are left with the fact that a few thousand stable
global modes need to be computed, ranked and incorporated into a reduced-order
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global modes and POD modes. At critical values of the Reynolds number (indicated by
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model in order to represent a subspace dynamics that can equally well (or better)
be described by thirty POD modes; we thus conclude that global modes constitute a
poor basis when designing closed-loop control strategies using reduced-order models.
Our study suggests that a reduced-order model based on global modes is capable of
stabilizing systems that are only weakly unstable (such as the configurations studied
by Åkervik et al. 2007 and Ehrenstein et al. 2010). If stronger instabilities (such as the
one studied in Barbagallo et al. 2009) are encountered, reduced-order models based on
global modes will fail and different reduction bases, such as POD modes or balanced
modes, have to be explored.

7. Summary and conclusions

Projection-based model reduction techniques leave a great many choices to compute
low-dimensional systems from high-dimensional models. In this article, we have
investigated the suitability of global modes in closed-loop control applications of
oscillator-type flows (in particular, the flow over an open cavity at supercritical
Reynolds numbers).

The reduced-order models are composed of unstable global modes, capturing the
inherent instability, and selected stable global modes, representing the stable subspace
of the perturbation dynamics. The selection of stable global modes is critical and
has been carried out based on four criteria, yielding four different reduced-order
models composed of global modes. Using a representative test case (Re = 7500) the
open-loop behaviour of these models has first been assessed, which revealed that
the damping rate (criterion 1, Åkervik et al. 2007) is a poor indicator in selecting
global modes, while choosing global modes with high controllability and observability
but low damping rate (criterion 2, Bagheri et al. 2009a; Barbagallo et al. 2009)
showed better performance but nonetheless ultimately failed. A selection criterion
(criterion 3, Ehrenstein et al. 2010) based on double-projection could not demonstrate
the same advantages and potential as reported in Ehrenstein et al. (2010), but rather
showed disappointing convergence behaviour when applied to our configuration. A
fourth criterion, an a posteriori-selection rule, has been added both as a benchmark to
gauge near-optimal results and as verification that highly damped modes have to be
considered to capture the correct input–output behaviour. The closed-loop performance
of the different models has been characterized by the stability of the compensated
system. With the exception of the artificial fourth criterion (‘quasi-optimal’ stability
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ranking), all computed systems were found unstable for the test case, thus confirming

the conclusions drawn from the open-loop study.

While the unstable global modes in the reduction basis capture the part of the flow

dynamics representing the overall oscillatory behaviour, the stable global modes are

ineffective in describing the remaining behaviour. This latter flow behaviour is akin to

an amplifier, and the global modes do not appear to form a proper basis to describe

this type of behaviour. Physically, amplifier flows are dominated by a convective

disturbance dynamics which is known to be poorly represented by global modes.

An interesting finding of our analysis was the strong evidence that the commonly

applied H2- and H∞-measures are not optimal to evaluate the open-loop behaviour

of reduced-order models and their performance in feedback control applications, a

fact that is commonly known in the field of robust control. Since global instabilities

occur at discrete frequencies, the compensator responds at these same frequencies.

For this reason, it seems sensible that a reduced-order compensator that captures the

perturbation dynamics in the vicinity of these frequencies well should perform better

– or more efficiently – than a compensator that approximates the transfer function

over a wide range of (some dynamically irrelevant) frequencies or puts emphasis

on minimizing the largest-magnitude error with no concern at which frequency

this maximum error occurs. This reasoning is in contrast to the widely accepted

H∞-norm minimization intrinsic to balanced truncation (see Antoulas 2005) and

may warrant a re-evaluation of proper input–output measures that favour physically

motivated frequency ranges over mathematically inspired optimization. Based on our

observations, a frequency-restricted H ω
2 -norm, which accurately links open-loop and

closed-loop performance analysis, has been proposed and defined. Applications and

consequences of this definition will be further explored in a future work.

The limits of stabilizability using reduced-order models based on global modes have

been quantified by conducting a parameter study in the Reynolds number ranging from

the critical value of Rec = 4140 to Re = 7500. For very weak global instabilities

(Re 6 5250) only the unstable modes suffice to stabilize the system. Thus, even

entirely neglecting the stable subspace dynamics, the LQG compensator successfully

suppressed the global instability. This seeming robustness of the compensator, however,

does not extend far beyond weak instabilities: already moderate instabilities can no

longer be controlled, even if stable global modes are added. The flow cases considered

in Åkervik et al. (2007) and Ehrenstein et al. (2010) are believed to fall into the

‘weak’ category where reduced-order compensators accounting for all unstable and a

few stable modes are still able to stabilize the flow.

Nevertheless, considering the limitation of controlling only weak instabilities,

recognizing the difficulty of computing a large number of global modes owing to non-

normality and acknowledging the lack of a rigorous and effective selection criterion,

it must be concluded that global modes usually do not constitute a suitable choice of

reduction basis for closed-loop control applications. A hybrid approach, with unstable

global modes capturing the oscillatory flow behaviour and e.g. POD modes describing

the convective flow behaviour, represents a far more promising approach to model

reduction and control design.
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Appendix. Replacing the full system by a reduced-order model

The behaviour of an unstable system can be separated into its unstable and stable
dynamics, which decouple. The system matrix A can be decomposed according to

A =

(

Au 0

0 As

)

(A 1)

where Au (resp. As) denotes the matrix governing the unstable (resp. stable) states (see
Barbagallo et al. 2009; Ahuja & Rowley 2010). We wish to replace the full system by
a reduced model which (i) still captures the unstable dynamics of the original system
and (ii) accurately reproduces the input–output behaviour, that is, the link between
actuator and sensor. The first requirement is satisfied by choosing the unstable global
modes for a reduction basis. For the Reynolds numbers considered in this work the
dimension of the unstable subspace (dimension of Au) varies from two to eight. For
the second requirement we choose proper orthogonal decomposition (POD) modes to
express the stable subspace dynamics. This choice has been shown (see e.g. Barbagallo
et al. 2009) to result in an accurate description of the stable input–output behaviour
with a moderate number of modes. The POD modes are computed for each Reynolds
number using a snapshot method (Sirovich 1987). An impulse response is computed
based on (5.1) until a dimensionless time of T = 20 resulting typically in a decrease of
the perturbation energy by three orders of magnitude. Snapshots are extracted from the
linearized simulations at equi-spaced time intervals of 1t = 0.02. The POD modes are
then computed from these snapshots and used in a Petrov–Galerkin projection of the
system (2.7) resulting in

dX̂

dt
= Â

pod

s X̂ + B̂
pod

s u, (A 2a)

m = Ĉ
pod

X̂, (A 2b)

where the symbol .̂ denotes quantities with reduced dimensions; the superscript pod

indicates a reduction based on POD modes.
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The transfer function of the reduced-order model is given by Ĥ(ω) = Ĉ
pod

(iωI −

Â
pod

s )−1
B̂

pod

s and is displayed for Re = 7500 using 150 POD modes in figure 16(a)
by a solid line together with the transfer function of the full system (in symbols).
Very good agreement is observed which is confirmed by computing the relative
error between the reduced-order and full transfer functions using the H2- and H∞-
norm. Results are shown in figure 16(b); both curves decrease rapidly and eventually
converge to an acceptable error for about 120 POD modes. Similar results have been
obtained at lower Reynolds numbers (not shown here); thus, reduced-order models for
the full linearized dynamics based on 150 POD modes will be considered for each
Reynolds number. It is important to keep in mind, however, that the reduced-order
model does not capture the complete dynamics of the stable subspace but only the
part relevant to our study, namely the input–output behaviour between actuation and
measurement.

In summary, the system given by (2.7) will be replaced by the reduced-order model

d

dt

(

X̂
gm

u

X̂
pod

s

)

=

(

Λ̂u 0

0 Â
pod

s

)(

X̂
gm

u

X̂
pod

s

)

+

(

B̂
gm

u

B̂
pod

s

)

u, (A 3a)

m =
(

Ĉ
gm

u Ĉ
pod

s

)

(

X̂
gm

u

X̂
pod

s

)

, (A 3b)

which is based on unstable global modes for representing the unstable behaviour
(indicated by the superscript gm) and on POD modes for capturing the input–output
dynamics contained in the stable subspace (indicated by the superscript pod).
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