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This paper investigates numerically and through an asymptotic approach the three-
dimensional stability of steady vertical vortex arrays in a stratified and rotating fluid.
Three classical vortex arrays are studied: the Kármán vortex street, the symmetric
double row and the single row of co-rotating vortices. The asymptotic analysis assumes
well-separated vortices and long-wavelength bending perturbations following Billant
(J. Fluid Mech., vol. 660, 2010, p. 354) and Robinson & Saffman (J. Fluid Mech.,
vol. 125, 1982, p. 411). Very good agreement with the numerical stability analysis is
found even for finite wavelength and relatively close vortices. For a horizontal Froude
number Fh � 1 and for a non-rotating fluid, it is found that the Kármán vortex street
for a street spacing ratio (the distance h between the rows divided by the distance
b between vortices in the same row) κ � 0.41 and the symmetric double row for
any spacing ratio are most unstable to a three-dimensional instability of zigzag type
that vertically bends the vortices. The most amplified vertical wavenumber scales
like 1/(bFh) and the growth rate scales with the strain Γ/(2πb2), where Γ is the
vortex circulation. For the Kármán vortex street, the zigzag instability is symmetric
with respect to the midplane between the two rows while it is antisymmetric for
the symmetric double row. For the Kármán vortex street with well-separated vortex
rows κ > 0.41 and the single row, the dominant instability is two-dimensional and
corresponds to a pairing of adjacent vortices of the same row. The main differences
between stratified and homogeneous fluids are the opposite symmetry of the dominant
three-dimensional instabilities and the scaling of their most amplified wavenumber.
When Fh > 1, three-dimensional instabilities are damped by a viscous critical layer.
In the presence of background rotation in addition to the stratification, symmetric
and antisymmetric modes no longer decouple and cyclonic vortices are less bent
than anticyclonic vortices. However, the dominant instability remains qualitatively
the same for the three vortex arrays, i.e. quasi-symmetric or quasi-antisymmetric and
three-dimensional or two-dimensional. The growth rate continues to scale with the
strain but the most unstable wavenumber of three-dimensional instabilities decreases
with rotation and scales like Ro/(bFh) for small Rossby number Ro, in agreement
with quasi-geostrophic scaling laws.
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Figure 1. Sketch of the three vortex arrays: (a) Kármán vortex street, (b) symmetric double
row, both characterized by the spacing ratio κ = h/b, (c) single row. The vortices are initially
two-dimensional with their axis in the vertical z-direction. The vortex rows are infinite along
the x-axis.

1. Introduction

In this article, we investigate the three-dimensional stability in a stratified and
rotating fluid of three classical vortex arrays of two-dimensional vertical vortices:
(i) the Kármán vortex street, which consists of two staggered counter-rotating infinite
rows of co-rotating vortices, (ii) the symmetric double row, which is similar except
that the two rows are not staggered, and (iii) the single row of co-rotating vortices
(figure 1).

Much attention has been devoted to their linear stability in homogeneous fluid using
point vortices. This approach is valid for well-separated vortices with a reference length
taken as the radius of the vortex core. The case of two-dimensional disturbances was
first treated by von Kármán (1911, 1912) and von Kármán & Rubach (1912), who
showed that all vortex arrays were always unstable, except a single configuration of
the Kármán vortex street for which the street spacing ratio κ =h/b (the ratio of the
distance h between the two rows and the separation distance b of the vortices in the
same row, see figure 1) was equal to 0.281. This analysis was presented in the book
by Lamb (1932).
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The case of three-dimensional disturbances was later addressed by Robinson &
Saffman (1982). Their analysis was based on vortex filaments and was therefore
limited to long axial wavelengths and to well-separated vortices as well. Under these
hypotheses, they could make use of the Biot–Savart law to compute the induced
motion of the vortices and the cutoff approximation to determine the self-induced
velocity of the individual vortices. They found that the Kármán vortex street and the
symmetric double row are most unstable to three-dimensional or two-dimensional
disturbances depending on the spacing ratio of the streets while the single row is
always most unstable to two-dimensional disturbances.

The stability of two-dimensional vortex arrays with finite cores has also been
investigated in detail in a rotating fluid through numerical stability analyses (see for
example Leblanc & Cambon 1998; Potylitsin & Peltier 1999). However, it has been less
addressed in a stably stratified and rotating fluid even though these configurations
can be observed in geophysical flows for instance in the wake of mountains or
islands (Kármán vortex street like in Etling 1990) or as the subsequent evolution
of the destabilization of a jet (symmetric double row) or a shear layer (single
row). Potylitsin & Peltier (1998) have investigated numerically the stability of an
infinite vortex row in a weakly stratified and rotating fluid. They found that a weak
stratification has a stabilizing effect on the elliptic instability. Experiments in a strongly
stratified fluid have shown that the vortex streets created by towing a rake of vertical
cylinders (Holford & Linden 1999) or a rake of vertical flat plates (Praud, Fincham &
Sommeria 2005) are destabilized, leading to the formation of horizontal layers. The
emergence of pancake vortices from a stratified horizontal shear layer perturbed by
finite-amplitude fluctuations has also been recently studied numerically by Basak &
Sarkar (2006).

In contrast, the stability of a pair of columnar vertical vortices in a stratified fluid
has been investigated in detail in the counter-rotating (Billant & Chomaz 2000) and
co-rotating (Otheguy, Chomaz & Billant 2006b) cases. These studies have shown
the existence of a three-dimensional instability called zigzag instability that vertically
bends the vortices with little internal deformation. Billant (2010) recently derived a
general theory to treat the stability of a pair of vortices for long-axial-wavelength
bending perturbations and well-separated vortices in a stratified and rotating fluid.
This analysis yields stability equations formally identical to those given by Crow (1970)
in homogeneous fluid using the Biot–Savart law and the cutoff approximation. Only
the expressions of the self-induction and mutual induction functions differ between
homogeneous fluid and stratified and rotating fluid. In the present paper, we make use
of this approach to study the three-dimensional stability of the Kármán vortex street,
the symmetric double row and the single row for long-axial-wavelength perturbations
and well-separated vortices in a stratified and rotating fluid. The asymptotic results
will be contrasted to their counterpart in homogeneous fluids (Robinson & Saffman
1982) and validated against direct numerical stability analyses. Most interestingly, we
shall show that many configurations of vortex arrays in stratified and rotating fluids
are unstable to the zigzag instability.

This paper is organized as follows. The governing equations are given in § 2. In § 3,
we briefly present the asymptotic analysis of Billant (2010), before generalizing it to
vortex arrays following Robinson & Saffman (1982). The method used in the direct
numerical stability analyses is described in § 4. The results are presented in §§ 5–7: § 5
is first devoted to the stability of the different vortex arrays in the case of a strongly
stratified and non-rotating stratified fluid. The effects of varying the stratification and
the background rotation are then presented in §§ 6 and 7, respectively. Concluding
remarks follow in § 8.
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2. Governing equations

The governing equations are the incompressible Navier–Stokes equations within
the Boussinesq approximation in a frame rotating at angular velocity Ωb about the
vertical z-axis:

∂u

∂t
+ u · ∇u + 2Ωbez × u = − 1

ρ0

∇p − g
ρ

ρ0

ez + ν�u, (2.1a)

∇ · u = 0, (2.1b)

∂ρ

∂t
+ u · ∇ρ +

dρ

dz
w = D�ρ, (2.1c)

where u =(u, v, w) is the velocity vector in Cartesian coordinates (x, y, z), p is the
pressure, ρ0 is a constant reference density, ρ is the density perturbation with respect
to the base density ρ0 + ρ(z), g is the acceleration due to gravity, ez is the unit vector in
the upward z-direction, ν is the kinematic viscosity, and D is the molecular diffusivity
of the stratifying agent. The Brunt–Väisälä frequency N =

√−g/ρ0 dρ/dz, measuring
the density gradient, is assumed to be constant.

3. Asymptotic analysis

For clarity, we first present briefly the stability equations for the simple case of
two vortices in a stratified and rotating fluid obtained by Billant (2010) by means of
an asymptotic analysis. The generalization to several vortices is straightforward from
this case.

3.1. Interactions between a pair of vortices in a stratified and rotating fluid

We denote by Γ1 and Γ2 the circulations of two vertical vortices of radius a separated
by a distance b. The Froude and Rossby numbers of each vortex are defined as
follows:

Fhi =
|Γi |

2πa2N
, Roi =

Γi

4πa2Ωb

, with i = {1, 2}. (3.1)

The asymptotic theory is based on three assumptions. First, it is assumed that
the strains Γi/(2πb2) are small compared to the core vorticities Γi/(2πa2). This is
equivalent to stating that the vortices are well-separated: a ≪ b. The second hypothesis
is that the perturbations consist of long-wavelength bending deformations of the
vortices with a vertical wavenumber kz such that kzaFhi ≪ min(1, |Roi |), max(1,

√
Fhi).

These two assumptions are similar to those assumed in vortex stability analyses using
vortex filaments in a homogeneous fluid (Crow 1970; Robinson & Saffman 1982).
The only difference is the small vertical wavenumber hypothesis in the homogeneous
fluid which is kza ≪ 1. The third assumption used here is Fhi ≪ (b/a)2, which means
that the strain Γi/(2πb2), exerted by one vortex on the others, is small compared
to the Brunt–Väisälä frequency N . Since b/a ≫ 1, this condition is fulfilled over a
large range of stratifications, from strongly to weakly stratified flows. Although small
viscous effects can also be taken into account within this approach, we shall consider
here only the inviscid limit.

The position of each vortex centre in each horizontal plane is assumed to be
perturbed by an amount (�̃x1(z, t), �̃y1(z, t)) and (�̃x2(z, t), �̃y2(z, t)). Writing these
perturbations in the form

(
�̃xi

�̃yi

)
=

(
�xi(t)

�yi(t)

)
eikzz + c.c., (3.2)
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where c.c. denotes the complex conjugate, and using the three hypotheses mentioned
above, the following evolution equations for the perturbations of the first vortex are
obtained by means of an asymptotic analysis accurate at first order in k2

za
2F 2

hi and
Γi/(2πb2):

d�x1

dt
= − Γ2

2πb2
�y1 +

Γ2

2πb2
ψ(β)�y2 +

(
f − Γ1

2πa2
ωRe(kz, Fh1, Ro1)

)
�y1

+
|Γ1|
2πa2

ωIm(kz, Fh1, Ro1)�x1, (3.3a)

d�y1

dt
= − Γ2

2πb2
�x1 +

Γ2

2πb2
χ(β)�x2 −

(
f − Γ1

2πa2
ωRe(kz, Fh1, Ro1)

)
�x1

+
|Γ1|
2πa2

ωIm(kz, Fh1, Ro1)�y1. (3.3b)

The complementary pair of equations for the second vortex are found by interchanging
the subscripts 1 and 2. These equations are written in the frame of reference rotating
at angular velocity f + Ωb, where f = (Γ1 +Γ2)/(2πb2) is the rate at which the
unperturbed vortices rotate around each other. In this frame of reference, the base
flow is steady. The functions ψ and χ are the mutual induction functions and
ω = ωRe + iωIm is the self-induction function, which can be complex in a stratified and
rotating fluid. They will be detailed below.

Equations (3.3) are identical to those derived by Crow (1970) or Jimenez (1975)
for a pair of vortex filaments in a homogeneous fluid except that the functions ψ ,
χ and ω are different in a stratified and rotating fluid. The physical meaning of the
three terms on the right-hand side of (3.3) is the following. The first term represents
the strain effect of the basic flow field of one vortex on the perturbation sustained by
the other vortex. The second term is the mutual induction effect, i.e. the effect of the
perturbation of one vortex on the basic flow of the other vortex. This effect depends
on the mutual induction functions:

χ(β) = −β2K′
1(β), ψ(β) = βK1(β), (3.4)

where β = bkzFh1/|Ro1| = bkzFh2/|Ro2| and K1 is the modified Bessel function of the
second kind of first order. Although their explicit forms are different, these functions
are the equivalent, in a stratified and rotating fluid, to Crow’s first and second mutual
induction functions (Crow 1970). Here χ and ψ are equal to unity for β =0, i.e. in the
two-dimensional limit (kz = 0) and for any vertical wavenumber in the non-rotating
limit. These mutual induction functions go to zero exponentially for large β .

The last term represents the effect of the rotation of the vortex pair at angular
velocity f and the self-induction effect, i.e. the effect of a vortex on itself. If alone,
this self-induction corresponds to a rotation of the sinusoidally bent vortex at angular
velocity Γi/(2πa2)ωRe around its unperturbed location. When ωIm < 0, this rotation is
damped at rate σ = |Γ |/(2πa2)ωIm. In a stratified and rotating fluid, the self-induction
function (note that it is not exactly defined as in Crow 1970 or Robinson & Saffman
1982) is given by

ω(kz, Fhi, Roi) = k2
za

2F 2
hi

[A(Fhi)

2
+

B(Fhi)

Roi

− 1

2Ro2
i

(
ln

(
kzaFhi

2|Roi |

)
− D(Fhi) + γe

)]
,

(3.5)
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where γe = 0.5772 . . . is the Euler constant and A, B and D are parameters depending
on the Froude number Fhi and the non-dimensional angular velocity Ω of the
individual vortices (Billant 2010). Their expressions are given in Appendix A. In this
paper, we consider the Lamb–Oseen profile:

Ω(r) =
1

r2
(1 − e−r2

), (3.6)

where r is the distance to the vortex axis non-dimensionalized by a. In this case, the
self-induction is real and positive for Fh � 1 whatever Ro in contrast to homogeneous
fluids for which it is negative. For Fh � 1, the self-induction becomes complex with
a negative imaginary part ωIm because the bending disturbances are damped by a
viscous critical layer at the radius where the angular velocity of the vortex is equal to
the Brunt–Väisälä frequency.

Billant et al. (2010) have shown that the results predicted by (3.3) and their
complementary equations for the other vortex are in excellent agreement with full
numerical stability analyses.

3.2. Generalization to vortex arrays in a stratified and rotating fluid

Robinson & Saffman (1982) have investigated the stability of vortex arrays in a
homogeneous fluid in the limit of well-separated vortices and long-wavelength bending
perturbations following Crow’s stability analysis of a counter-rotating vortex pair.
Their stability equations have the same form as those of Crow (1970) or (3.3) except
that they sum up all the strain and mutual induction effects of each vortex of the
array. In order to determine the three-dimensional stability of vortex arrays in a
stratified and rotating fluid, we can thus follow the analysis of Robinson & Saffman
(1982), except that the mutual induction functions and self-induction functions have
to be replaced by those valid in a stratified and rotating fluid.

Since the detailed derivation of the stability equations of vortex arrays can be found
in Robinson & Saffman (1982), we recall here only briefly the main steps in the case
of the Kármán vortex street. The generalization to the symmetric double row and the
single row is straightforward.

3.2.1. Kármán vortex street

The Kármán vortex street consists of a staggered double row of two-dimensional
vertical vortices. The upper row lies in the plane y = 0, with each vortex having a
positive circulation Γ and a radius a (figure 1). The lower row is in the plane y = −h,
with each vortex having a negative circulation −Γ and also a radius a. The vortices
on each row are separated by a distance b and the two rows are staggered by a
distance b/2. The whole unperturbed vortex array moves with a uniform velocity
U = Γ/(2b) tanh(πh/b) (Lamb 1932) in the frame of reference rotating at rate Ωb

about the vertical axis. Since all vortices have the same absolute circulation, they are
characterized by a single Froude number Fh =Γ/(2πa2N). In contrast, the Rossby
number of the vortices of the upper row is Ro = Γ/(4πa2Ωb) while the Rossby number
of the vortices of the lower row is opposite, −Ro.

In the frame of reference rotating at rate Ωb and translating at constant velocity
U , the position of the perturbed vortices in the horizontal plane (x, y) is

(x1,m, y1,m) = (mb, 0) + [(�x1,m, �y1,m) eikzz + c.c.], (3.7a)

(x2,m, y2,m) = ((m + 1/2) b, −h) + [(�x2,m, �y2,m) eikzz + c.c.], (3.7b)

where the subscripts (1, m) and (2, m) denote a vortex respectively in the upper and
lower rows, m being an integer. The amplitude of the three-dimensional bending
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perturbations of the vortices around their unperturbed position is (�x1,m, �y1,m) eikzz

and (�x2,m, �y2,m) eikzz, and kz is their vertical wavenumber.
By summing up the straining and the mutual induction effects due to each vortex,

the following evolution equations for the perturbations of a vortex m in the upper
row are found:

d�x1,m

dt
= − Γ

2πa2
ωRe(kz, Fh, Ro)�y1,m +

Γ

2πa2
ωIm(kz, Fh, Ro)�x1,m

− Γ

2π

∑

p �=m

�y1,m − ψpm�y1,p

b2
pm

+
Γ

2π

∑

q

(
b̃2

qm − h2
)
�y1,m −

(
b̃2

qmψqm − h2χqm

)
�y2,q

L4
qm

,

+
Γ

2π

∑

q

b̃qmh[2�x1,m − (χqm + ψqm)�x2,q]

L4
qm

, (3.8a)

d�y1,m

dt
= +

Γ

2πa2
ωRe(kz, Fh, Ro)�x1,m +

Γ

2πa2
ωIm(kz, Fh, Ro)�y1,m

− Γ

2π

∑

p �=m

�x1,m − χpm�x1,p

b2
pm

+
Γ

2π

∑

q

(
b̃2

qm − h2
)
�x1,m −

(
b̃2

qmχqm − h2ψqm

)
�x2,q

L4
qm

− Γ

2π

∑

q

b̃qmh[2�y1,m − (χqm + ψqm)�y2,q]

L4
qm

, (3.8b)

where bpm = (p − m)b, b̃qm = (q − m +1/2)b and L2
qm = h2 + b̃2

qm. The subscripts on ψ

and χ indicate that the function arguments are |bpm|kzFh/|Ro| and |Lqm|kzFh/|Ro|
for subscripts pm and qm, respectively. The equations for a vortex of the lower row
are found by applying the following transformations: Γ → − Γ , h → − h and by
interchanging the subscripts 1 and 2. We now consider linear perturbations of the
form

(�x1,m, �y1,m) = (�x1, �y1) eimφ+σ t , (3.9a)

(�x2,m, �y2,m) = (�x2, �y2) ei(m+1/2)φ+σ t , (3.9b)

with σ being the growth rate and 0 � φ � π. As shown by Robinson & Saffman
(1982), φ/b can be considered as a wavenumber of the disturbance in the row
direction. However, it is more convenient to use the wavelength of the disturbance
µb = 2πb/φ in the row direction with 2 � µ � ∞. A value µ = 2 implies a periodicity
every two vortices, µ = 4 every four vortices and so on, while µ = ∞ means that all
the vortices on a single row are displaced in the same direction.

Following Robinson & Saffman (1982), it is also interesting to introduce symmetric
and antisymmetric modes:

(�xs, �ys) = (�x1 + �x2, �y1 − �y2), (3.10)

(�xa, �ya) = (�x1 − �x2, �y1 + �y2). (3.11)

The physical meaning of these modes can be easily understood in the case µ = ∞, i.e.
when all vortices of a given row are displaced in the same direction. The symmetric
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mode then corresponds to a displacement of each row in the same x-direction but in
the opposite y-direction, i.e. a vertical modulation of the row spacing h. Conversely,
the antisymmetric mode corresponds to displacements of each row in the opposite
x-direction but in the same y-direction, i.e. a vertical modulation of the interval b/2
in the x-direction between the two rows.

Inserting (3.9) into (3.8) and the corresponding equations for the lower row, we
obtain the following eigenvalue problem for the symmetric and antisymmetric modes:

M�x =
2πb2

Γ
σ�x, (3.12)

where �x =(�xs, �ys, �xa, �ya)
⊤ and

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−B +
b2

a2
ωIm −A + C − b2

a2
ωRe

b2

a2
�ωIm −b2

a2
�ωRe

−Ã − C̃ +
b2

a2
ωRe −B̃ +

b2

a2
ωIm

b2

a2
�ωRe

b2

a2
�ωIm

b2

a2
�ωIm −b2

a2
�ωRe B +

b2

a2
ωIm −A − C − b2

a2
ωRe

b2

a2
�ωRe

b2

a2
�ωIm −Ã + C̃ +

b2

a2
ωRe B̃ +

b2

a2
ωIm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(3.13)

The various parameters appearing in M are

ω = ωRe + iωIm = 1
2
[ω(kz, Fh, Ro) + ω(kz, Fh, −Ro)], (3.14a)

�ω = �ωRe + i�ωIm = 1
2
[ω(kz, Fh, Ro) − ω(kz, Fh, −Ro)], (3.14b)

and

A =
π

2

3
− π

2

cosh2 κπ

− 2

∞∑

p=1

ψp cospφ

p2
, (3.15a)

B = 2 i

∞∑

q=0

(
q + 1

2

)
κ

[(
q + 1

2

)2
+ κ2

]2
(χq + ψq) sin

(
q + 1

2

)
φ, (3.15b)

C = 2

∞∑

q=0

(
q + 1

2

)2
ψq − κ2χq[(

q + 1
2

)2
+ κ2

]2
cos

(
q + 1

2

)
φ, (3.15c)

with the spacing ratio κ =h/b. The function arguments of ψ and χ are pbkzFh/|Ro|
and [(q + 1/2)2 + κ2]1/2bkzFh/|Ro| for subscripts p and q respectively. Here Ã, B̃ and
C̃ are found by interchanging the symbols χ and ψ in (3.15).

Contrary to homogeneous fluids (Robinson & Saffman 1982), the symmetric and
antisymmetric modes do not always decouple in (3.12) because the self-induction
functions of the vortices of the upper and lower rows are not equal for finite Ro:
�ω �= 0. A decoupling is recovered only in the limits Ro → ∞ and Ro → 0 for which
ω(kz, Fh, Ro) =ω(kz, Fh, −Ro) (see (3.5)).

3.2.2. Symmetric double row

The symmetric double row translates at a velocity U = Γ/(2b) coth(πh/b). In the
frame rotating at rate Ωb and translating at a constant velocity U , the equations
for the perturbations are the same as (3.8), except that b̃qm = (q − m)b. Considering
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perturbations of the form

(�x1,m, �y1,m) = (�x1, �y1) eimφ+σ t , (3.16)

(�x2,m, �y2,m) = (�x2, �y2) eimφ+σ t , (3.17)

leads to exactly the same eigenvalue problem as (3.12), except that the coefficients
A, B and C in the matrix M are slightly different:

A =
π

2

3
+

π
2

sinh2 κπ

− 2

∞∑

p=1

ψp cos pφ

p2
, (3.18a)

B = 2 i

∞∑

q=1

qκ

(q2 + κ2)2
(χq + ψq) sin qφ, (3.18b)

C = −χκ

κ2
+ 2

∞∑

q=1

q2ψq − κ2χq

(q2 + κ2)2
cos qφ, (3.18c)

where the function arguments of ψ and χ are pbkzFh/|Ro|, (q2 + κ2)1/2bkzFh/|Ro|
and κbkzFh/|Ro| for subscripts p, q and κ , respectively. Here Ã, B̃ and C̃ are also
found by interchanging the symbols χ and ψ in (3.18).

3.2.3. Single row

Finally, the case of the single row can be directly obtained by neglecting all terms
related to the second row in (3.12) and M and by taking the limit κ → ∞ for the
coefficients in (3.15):

⎛
⎜⎝

b2

a2
ωIm −A − b2

a2
ωRe

−Ã +
b2

a2
ωRe

b2

a2
ωIm

⎞
⎟⎠

(
�x1

�y1

)
=

2πb2

Γ
σ

(
�x1

�y1

)
, (3.19)

with

A =
π

2

3
− 2

∞∑

p=1

ψp cos pφ

p2
, (3.20)

where the function argument of ψp is pbkzFh/|Ro|. Here Ã has the same expression
as A but with ψ replaced by χ . In this case, the growth rate can be obtained directly:

2πb2

Γ
σ = ±

√(
A +

b2

a2
ωRe

)(
Ã − b2

a2
ωRe

)
+

b2

a2
ωIm. (3.21)

4. Direct numerical stability analysis

In order to check the theoretical results, the dominant instability of the three
vortex array configurations has been determined by means of the following numerical
method.

4.1. Computation of the basic states

The basic flows corresponding to the different vortex arrays have been first computed
thanks to two-dimensional nonlinear numerical simulations initialized by vortices
placed in the required arrangement and each having a Lamb–Oseen profile. For
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Label Configuration a Γ b κ Re Lx Ly Nx Ny δt

K0.2 Kármán vortex street 1 2π 15 0.2 50 000 30 38 512 640 0.01
K0.5 Kármán vortex street 1 2π 15 0.5 50 000 30 38 512 640 0.01
D0.5 Symmetric double row 1 2π 15 0.5 50 000 30 38 512 640 0.01

S Single row 1 2π 15 – 50 000 30 60 512 1024 0.01
K0.2b10 Kármán vortex street 1 2π 10 0.2 50 000 20 38 384 640 0.01
K0.2b7.5 Kármán vortex street 1 2π 7.5 0.2 50 000 15 38 256 640 0.01

Table 1. Overview of the physical and numerical parameters of the basic states.

example, the initial distribution of the vertical vorticity for the Kármán vortex street
is ζ (x, y, t = 0) =

∑
m(ζ1,m + ζ2,m), where ζ1,m and ζ2,m, the dimensional basic vertical

vorticities of the vortices of the upper and lower row, respectively, are given by

ζ1,m =
Γ

πa2
exp

[
− (x − mb)2 + y2

a2

]
, (4.1a)

ζ2,m = − Γ

πa2
exp

[
−

(
x −

(
m + 1

2

)
b
)2

+ (y + h)2

a2

]
. (4.1b)

Only the inviscid limit of the theory will be considered so that the Reynolds number
in the computations has been set to a large value Re = Γ/(2πν) = 50 000. As time
evolves, each vortex rapidly adapts to the strain exerted by each other so that a
quasi-steady state is quickly reached. Since the Reynolds number is large, a and Γ

remain almost constant. The Froude number Fh and the Rossby number Ro are
therefore based on the initial circulation Γ and vortex radius a.

The numerical simulations are performed with a pseudo-spectral method with
periodic boundary conditions. Time advancement is carried out using the classical
fourth-order Runge–Kutta scheme for the nonlinear term and exact integration for
the viscous term (see Vincent & Meneguzzi 1991 for details). Most of the aliasing is
removed by applying a square truncation keeping 9/10 of the Fourier modes along
each direction. Since the base flow is periodic, the computational domain size in the
row direction Lx is taken as 2b, in order to compute two periods of the base flow.
As explained in the next subsection, such a choice enables the computation of the
stability properties for only two values of µ: ∞ and 2. In the other direction, Ly

is taken large enough to minimize the effect of the periodic boundary condition.
The number of collocation points Nx and Ny is chosen in order to have the same
mesh resolution in both directions. The time step is δt = 0.01 in all simulations. The
numerical parameters of all the basic states are summarized in table 1.

4.2. Three-dimensional stability problem

The two-dimensional basic states with velocity U and pressure P are subjected to
infinitesimal three-dimensional perturbations such that the total flow is of the form

⎛
⎜⎝

u

p

ρ

⎞
⎟⎠ (x, y, z, t) =

⎛
⎜⎝

U

P

0

⎞
⎟⎠ (x, y) +

⎛
⎜⎝

ũ

p̃

ρ̃

⎞
⎟⎠ (x, y, t) eikzz+iαx + c.c., (4.2)

where quantities with a tilde denote the perturbations and have a period b in the
x-direction, kz is the vertical wavenumber and α = 2π/(µb) measures the periodicity of
the perturbation along the row-wise direction. The quantity µ has the same meaning
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as in § 3.2. The flow decomposition (4.2) is inserted in (2.1) and the equations are
linearized around the base state.

The linearized equations are integrated numerically for each kz and µ value
using a linearized pseudo-spectral code similar to that described in § 4.1. Here,
we have restricted the analysis to the values µ = ∞ (fundamental mode) and µ = 2
(subharmonic mode), for which the theory predicts the dominant modes to exist.
In practice, the overall most unstable mode for these two values of µ can be
obtained from a single simulation with the length of the computational domain set
to Lx = 2b, i.e. two periods of the base state. The size of the computational domain
in the y-direction Ly and the number of collocation points Nx, Ny are identical
to those used to compute the corresponding basic state U . The Schmidt number
Sc = ν/D is set to unity, Sc = 1. The perturbation velocity ũ(x, y, t = 0) is initialized
with a divergence-free white noise. After integrating the linearized equations for a
sufficiently long time, typically T =2400πa2/Γ , the eigenmode with the largest growth
rate dominates over the perturbation and we can retrieve its structure and growth
rate. Since the asymptotic analysis is valid when the vortices are well-separated, we
have first investigated in the computations a small ratio of the core radius of the
vortices over their separation distance a/b = 0.067. This corresponds to the basic
states labelled K0.2, K0.5, D0.5 and S in table 1. The effective ratio a/d, where d

is the minimum distance between vortices, is however larger and reaches a value as
large as a/d = 0.133 for the symmetric double row for κ = 0.5. Larger values of the
ratio a/b will be considered in Appendix B (basic states K0.2b10 and K0.2b7.5 in
table 1).

5. Strongly stratified and non-rotating fluid

For clarity, we start by presenting the case of a strongly stratified and non-rotating
fluid for each of the three vortex arrays. This particular case is representative and
will serve as a reference to describe the effects of the Froude and Rossby numbers
presented in §§ 6 and 7.

5.1. Kármán vortex street

In the case of a stratified and non-rotating fluid (Ro → ∞), additional simplifications
can be made in the asymptotic eigenvalue problem (3.12). The arguments of the
mutual induction functions are equal to 0, implying that χ and ψ are always equal
to unity. This also implies that A = Ã, B = B̃ and C = C̃. Moreover, we see from (3.5)
that the self-induction functions ω(kz, Fh, ±Ro) tend to a single function ω∞(kz, Fh)
when Ro → ∞:

ω∞(kz, Fh) = lim
Ro → ∞

ω(kz, Fh, ±Ro) =
A(Fh)

2
k2

za
2F 2

h . (5.1)

The symmetric and antisymmetric modes then decouple since �ωRe = �ωIm = 0
in (3.12). Their growth rate is given by

2πb2

Γ
σs = −B ±

√

A2 −
(

C − b2

a2
ω∞ Re

)2

+
b2

a2
ω∞ Im, (5.2a)

2πb2

Γ
σa = +B ±

√

A2 −
(

C +
b2

a2
ω∞ Re

)2

+
b2

a2
ω∞ Im, (5.2b)
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Figure 2. Non-dimensional growth rate 2πb2σRe/Γ as a function of the rescaled vertical
wavenumber bFhkz for the Kármán vortex street with close rows κ =0.2 in a strongly stratified
(Fh = 0.1) and non-rotating fluid: (a) symmetric mode and (b) antisymmetric mode. The growth
rate for µ= ∞ and µ= 2 is plotted by solid and dashed lines, respectively. The symbols (+)
correspond to the growth rate of the dominant mode obtained from the numerical stability
analyses (symmetric, µ= ∞).

where A, B and C are given by (3.15) with χ =ψ = 1. Because B is purely imaginary
and ω∞ Im � 0, (5.2) shows that the vortex array can be unstable only if A2 > (C ±
(b2/a2)ω∞ Re)

2. In the two-dimensional limit kz =0, we have ω∞ =0 so that symmetric
and antisymmetric modes have the same growth rate. Similarly, symmetric and
antisymmetric modes have the same growth rate whatever kz when µ = 2 because
C = 0.

Before presenting our results, it is interesting to recall briefly the results of
Robinson & Saffman (1982) for the Kármán vortex street in homogeneous fluids.
They found that for κ less than about 0.3 (the precise value depends on the vortex
radius a compared to b), the dominant instability is three-dimensional with µ = ∞
and with an antisymmetric configuration (we exclude the short-wavelength instabilities
also found by Robinson & Saffman 1982 but for which the filament approach is not
valid). When κ is greater than about 0.3, the most unstable mode is two-dimensional
with µ = 2 and with either the symmetric and antisymmetric configurations since they
have the same growth rate in this case (see (5.2)). This two-dimensional instability
is a pairing instability where adjacent vortices of the same row tend to merge. Now
looking at the case of a strongly stratified (Fh = 0.1) and non-rotating fluid, figure 2
shows the real part of the non-dimensional growth rate 2πb2σRe/Γ of the symmetric
and antisymmetric modes as a function of the rescaled vertical wavenumber bFhkz

for the street spacing ratio κ =0.2. The theoretical results are shown both for the
µ = ∞ (solid line) and the µ = 2 (dashed line) modes whereas the numerical method
provides solely the growth rate of the dominant mode (symbols), i.e. in the present
case the µ = ∞ symmetric instability. For µ = ∞, we see that the symmetric mode is
most unstable for a finite value of kz while the antisymmetric mode is stable for all
vertical wavenumbers. Strikingly, this is the opposite to the case of a homogeneous
fluid where the symmetric mode is stable while the antisymmetric mode is three-
dimensionally unstable. As seen in figure 2(a), the growth rate of the most unstable
mode is in perfect agreement for small values of kz with the growth rate obtained
from the numerical stability analysis (symbols). The theory predicts very well the
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Figure 3. Contours of the vertical vorticity ζ̃ of the most amplified perturbation in a strongly
stratified (Fh = 0.1) and non-rotating fluid of the Kármán vortex street with close rows κ = 0.2.
Plot (a) corresponds to the asymptotic theory and (b) corresponds to the numerical results. The
arrows indicate the direction of displacement of each vortex that alternates along the vertical
z-direction. The dominant instability is a three-dimensional symmetric zigzag instability with
µ= ∞. Only a domain of size 30 × 18 is shown while the original computational domain is
30 × 38. Shaded areas are regions of negative values. The dotted line indicates the boundary
r = 2 of the vortices of the basic state.

most unstable vertical wavenumber kz max and the maximum growth rate but small
departures at large wavenumbers are observed because the asymptotic theory is
restricted to long-wavelength disturbances. Figure 3(a) shows the vertical vorticity

field ζ̃ of the most amplified perturbation predicted theoretically. It is given at leading
order by

ζ̃ = −
∑

m

[
�x1,m

∂ζ1,m

∂x
+ �y1,m

∂ζ1,m

∂y
+ �x2,m

∂ζ2,m

∂x
+ �y2,m

∂ζ2,m

∂y

]
, (5.3)

where ζ1,m and ζ2,m are the dimensional basic vertical vorticities of the vortices of
the upper and lower rows, respectively (see (4.1)). It is in full agreement with the
dominant eigenmode determined numerically (figure 3b). We see that the perturbations
are localized in the vortex cores and consist for each vortex of two regions of
opposite vorticity. Such perturbations correspond to translations of the vortices in the
direction indicated by the arrows. The displacements are symmetric with respect to
the midplane between the two rows and all the vortices of a given row are displaced in
the same direction since µ = ∞. A three-dimensional sketch of the perturbed vortices
is presented in figure 4. Because such a three-dimensional bending instability in
strongly stratified fluids has been called a zigzag instability for vortex pairs (Billant &
Chomaz 2000; Otheguy et al. 2006b), we also use this term for the present three-
dimensional symmetric instability of the Kármán vortex street in stratified fluids.
In homogeneous fluids, the instability is antisymmetric so that it is the interval in
the x-direction between the two rows which is vertically modulated, as shown by the
sketch in figure 5(a). For a counter-rotating vortex pair, a similar inversion of the
symmetry is observed: the unstable mode is symmetric in homogeneous fluids (Crow
instability), while in stratified fluids, it is the antisymmetric mode which is unstable
(zigzag instability) (Billant et al. 2010). This inversion is because the self-induction is
positive in stratified and rotating fluids while it is negative in homogeneous fluids.
Indeed, since C = − A> 0 for µ = ∞ and Ro = ∞, we see directly from (5.2) that
the symmetric mode is unstable and the antisymmetric mode is stable only because
ω∞ Re > 0.
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z

Figure 4. Three-dimensional sketch of the theoretical dominant instability of the Kármán
vortex street with close rows κ = 0.2 in a strongly stratified (Fh = 0.1) and non-rotating fluid.
The unperturbed vortices are shown by light grey. The perturbed vortices, shown in dark grey,
have been obtained by adding to the basic state the most unstable theoretical eigenmode with
a small but finite amplitude. The dominant mode is a µ= ∞ symmetric zigzag instability that
vertically bends the vortices. Only one and a half vertical wavelengths are plotted.

(a) (b)

Figure 5. Sketch of the displacements in horizontal cross-sections induced by the two different
dominant modes of the Kármán vortex street in homogeneous fluids. (a) Antisymmetric
three-dimensional instability (µ= ∞) existing in homogeneous fluids (Robinson & Saffman
1982) and (b) symmetric pairing mode (µ= 2) existing in homogeneous and strongly stratified
fluids. In the case of three-dimensional instabilities, the direction of the displacements alternates
along the vertical z-direction.

As seen in figure 2, the growth rate for µ = 2 (dashed line) is also positive but
the maximum growth rate is obtained for two-dimensional perturbations (kz =0) and
the symmetric and antisymmetric modes have the same growth rate. As shown in
figure 5 (b), this instability is a pairing instability which tends to move closer or
away from adjacent vortices of a given row (von Kármán 1912; Robinson & Saffman
1982). Because this instability is two-dimensional, the stratification has no effect
on the dominant mode. However, note that the growth rate of three-dimensional
perturbations decreases with bFhkz in strongly stratified fluids instead of bkz in
homogeneous fluids. As Fh → 0, the band of unstable vertical wavenumbers kz thus
widens as for the instability of a horizontal shear layer in stratified fluids (Deloncle,
Chomaz & Billant 2007). It is also worth noting that the maximum growth rate is
significantly lower for µ =2 than for µ = ∞. When µ is varied between 2 and ∞,
the most amplified vertical wavenumber and the maximum growth rate increase
monotonically. The overall dominant instability for the spacing ratio κ =0.2 is
therefore the symmetric three-dimensional instability for µ = ∞.

Figure 6 summarizes the characteristics of the dominant instabilities when κ

is varied. The theoretically predicted maximum growth rate 2πb2σM
Re/Γ , the most

amplified wavenumber bFhk
M
z and row-wise periodicity µM are plotted as a function

of κ for the symmetric and antisymmetric modes. We see that the µ = ∞ antisymmetric
three-dimensional instability is the dominant instability for κ � 0.41 (note that this
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Figure 6. Plots of the maximum growth rate 2πb2σM
Re/Γ , the corresponding wavenumbers

bFhk
M
z and row-wise periodicity µM versus the street spacing ratio κ for the Kármán vortex

street in a strongly stratified (Fh = 0.1) and non-rotating fluid: (a) symmetric mode and
(b) antisymmetric mode.

value is independent of the ratio a/b in a stratified and non-rotating fluid). When the
two vortex rows are more distant κ > 0.41, the dominant overall instability becomes
the µ = 2 two-dimensional instability (pairing instability) with both symmetric and
antisymmetric configurations. Interestingly, the spacing ratio of vortex streets behind
two-dimensional bluff bodies lies usually within the range κ < 0.41, so that they might
be unstable to the zigzag instability in stratified fluids.

5.2. Symmetric double row

In the case of the symmetric double row in a stratified and non-rotating fluid,
simplifications similar to the Kármán vortex street case are made. Symmetric and
antisymmetric modes decouple, leading to the same dispersion relations (5.2) with ω

equal to (5.1) and A, B and C given by (3.18) by taking again ψ and χ equal to 1.
In homogeneous fluid, Robinson & Saffman (1982) have found that the most

unstable instability for this vortex array is always the symmetric mode for µ =2 and
is three-dimensional regardless of the value of the street spacing ratio κ .

As shown in figure 7, the most unstable mode of the symmetric double row for
κ = 0.5 in a strongly stratified (Fh =0.1) and non-rotating fluid is also predicted to
be three-dimensional with µ = 2 (dashed line in figure 7b) like in homogeneous fluid
but with the opposite symmetry, i.e. antisymmetric. The agreement between numerical
(symbols) and theoretical (solid lines) results is again excellent for small wavenumbers
and good for large wavenumbers. The antisymmetric mode for µ = ∞ (solid line in
figure 7b) is also three-dimensionally unstable but its maximum growth rate is much
lower than for µ = 2. The symmetric mode is unstable for µ = 2 but not for µ = ∞
(figure 7a).

The vertical vorticity field of the theoretical most amplified perturbation is displayed
in figure 8(a). It is also given by (5.3) but with (m + 1/2) replaced by m in ζ2,m. The
agreement with the most unstable eigenmode determined numerically is excellent
(figure 8b). We see that two adjacent vortices of a given row tend to move closer
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Figure 7. Similar to figure 2 but for the double symmetric row with κ =0.5. (a) Symmetric
mode and (b) antisymmetric mode. We recall that two row-wise periodicities are displayed:
µ= ∞ (solid lines) and µ= 2 (dashed lines). The symbols (+) correspond to the numerical
results found for the dominant mode (antisymmetric, µ= 2).
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Figure 8. Similar to figure 3 but for the symmetric double row for κ = 0.5. (a) Symmetric
mode and (b) antisymmetric mode.

to or farther from each other, like in the pairing instability since µ = 2. Similarly,
two facing vortices of the two rows are displaced antisymmetrically and tend to be
rotated like in the zigzag instability of a single counter-rotating vortex pair (Billant &
Chomaz 2000).

Figure 9 shows the maximum growth rate of the dominant instability over all
possible values of µ as a function of κ for the symmetric and antisymmetric
configurations. The µ = 2 antisymmetric instability is the most unstable for all values
of κ . In the limit where the rows are very close, i.e. when κ → 0, the growth rate scaled
by Γ/(2πb2) diverges since it is proportional to the maximum strain: σM

Re ∝ Γ/(2πh2)
so that σM

Re2πb2/Γ ∝ 1/κ2. When κ increases, i.e. when the distance between the two
rows increases, the most amplified vertical wavenumber kM

z tends to 0. This is because
the unstable interaction between the facing rows of vortices decreases so that the
µ = 2 three-dimensional zigzag instability tends towards a two-dimensional pairing
instability of adjacent vortices of a given row.
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Figure 9. Similar to figure 6 but for the symmetric double row. (a) Symmetric mode
and (b) antisymmetric mode.

5.3. Single row

The limit κ → ∞ considered above for the Kármán vortex street or the symmetric
double row is in fact identical to the case of a single row since the two rows are
infinitely far away from each other and do not interact. As explained above, the
dominant instability is then a two-dimensional instability with µ =2, i.e. a pairing
instability of adjacent vortices of the row.

6. Stratified and non-rotating fluid: effect of the Froude number

We now investigate the effect of the Froude number, still for a non-rotating fluid.
The growth rate formulae (5.2) for the Kármán vortex street and their equivalent for
the symmetric double row and the single row remain valid.

6.1. Kármán vortex street

Figure 10 shows the theoretical growth rate for the Kármán vortex street of the
symmetric and antisymmetric modes for various Froude numbers from strong
stratification (Fh = 0.1) to moderate stratification (Fh =1.2). For each Froude number,
the agreement between the growth rate of the dominant mode (µ = ∞ symmetric)
obtained numerically (symbols) and theoretically (solid lines) is excellent at small
rescaled wavenumbers and satisfactory at large wavenumbers. The numerical stability
analysis predicts a slightly larger band of unstable wavenumber than the theory. We
see that the growth rate curves (solid lines) of the three-dimensional zigzag instability
for Fh = 0.1 and Fh = 1 are almost similar except for a small decrease of the most
amplified wavenumber. Equations (5.1) and (5.2) show that the growth rate σRe is a
function of Fh and kz only through the product bFhkz

√A(Fh), when A is purely real,
i.e. when Fh < 1 (see Appendix A). Consequently, the maximum theoretical growth
rate is independent of Fh when Fh < 1. For this reason, for all Fh < 1, the threshold
κ = 0.41, below which the dominant instability is three-dimensional, is the same as
for Fh =0.1. The stratification has thus little effect on the zigzag instability as long as
Fh � 1. However, when the Froude number is further increased to Fh = 1.2, an abrupt
drop of 60 % of the maximum growth rate is observed. This damping is because ωIm

is no longer zero but negative when Fh > 1 because the bending disturbances have a
viscous critical layer (Billant 2010). This is confirmed in figure 11: the corresponding
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Figure 10. Similar to figure 2 but for various Froude numbers. (a) Symmetric mode and
(b) antisymmetric mode. We recall that two row-wise periodicities are displayed: µ= ∞ (solid
lines) and µ= 2 (dashed lines). The curves represent the asymptotic theory and correspond,
from right to left, to the Froude numbers: Fh =0.1, Fh =1 and Fh = 1.2. The symbols
correspond to the numerical results obtained for the dominant mode and for the same
Froude numbers: +, Fh =0.1; �, Fh = 1; �, Fh = 1.2.
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Figure 11. Similar to figure 3 but for Fh = 1.2. Only numerical results are presented. (a) The
global view of the eigenmode and (b) a close-up view of one vortex core showing the viscous
critical layer.

numerical eigenmode exhibits a viscous critical layer in each vortex core at the radius
where the angular velocity of the vortex is equal to the Brunt–Väisälä frequency. In
contrast, the maximum growth rate of the two-dimensional pairing instabilities is not
affected by the stratification (figure 10). Only the width of the unstable wavenumber
band varies with Fh.

When Fh further increases beyond 1.2 (figure 12a), the maximum growth rate of
the zigzag instability (solid line) drops to zero at Fh = 1.83 and then re-increases. The
two-dimensional pairing instability therefore becomes dominant for 1.34 <Fh < 3.25
since its maximum growth rate (dashed line) is independent of Fh. It should be stressed
that these thresholds for the Froude number are specific to the spacing ratio κ = 0.2
presented here and differ for other values of κ . The corresponding most amplified
wavenumber of the three-dimensional instability (figure 12b) also drops to zero for
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Figure 12. (a) Non-dimensional maximum growth rate 2πb2σM
Re/Γ of the most unstable mode

for µ= ∞ (solid line) and µ= 2 (dashed line) and (b) the corresponding unstable wavenumber
bFhk

M
z as a function of the Froude number Fh for the Kármán vortex street with close rows

(κ = 0.2) in a non-rotating fluid.
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Figure 13. Similar to figure 10 but for the symmetric double row with κ = 0.5.
(a) Symmetric mode and (b) antisymmetric mode.

Fh = 1.83 and then re-increases. In fact, the instability becomes antisymmetric for
Fh > 1.83, like in homogeneous fluids. This reversal of the symmetry is because the
real part of the self-induction function (3.5) becomes negative.

However, it should be recalled that the asymptotic theory is restricted to moderate
Froude numbers, Fh ≪ (b/a)2 (see § 3.1). Therefore, the results found by Robinson &
Saffman (1982) in homogeneous fluid (Fh = ∞) cannot be recovered by the present
theory.

6.2. Symmetric double row

As seen in figure 13, the maximum theoretical growth rate for the symmetric double
row also remains identical when the Froude number is increased from Fh = 0.1 to
Fh = 1. However, when the Froude number is further increased to Fh = 1.2, the µ = 2
instability is no longer most unstable for a finite value of kz because the three-
dimensional bending disturbances are strongly damped by a viscous critical layer as
for the Kármán vortex street. The dominant instability is then the two-dimensional
pairing mode. Good agreement is again found between numerical (symbols) and
theoretical (dashed lines) results for the dominant mode in figure 13(b).
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Figure 14. Similar to figure 12 but for the symmetric double row (κ = 0.5). (a) Symmetric
mode and (b) antisymmetric mode. Only the curves for µ= 2 (dominant instability) have been
plotted.

Figure 14 shows the maximum growth rate and the most amplified wavenumber as
a function of Fh. It confirms that the instability is three-dimensional only for Fh < 1.2.

6.3. Single row

As discussed in § 5.3, the dominant instability of the single row is a two-dimensional
pairing instability. The stratification has thus no effect except that the width of the
band of unstable vertical wavenumbers scales like 1/Fh for Fh → 0 and narrows when
Fh is increased.

7. Strongly stratified and rotating fluid: effect of the Rossby number

We now turn our attention to the effect of the Rossby number for a fixed Froude
number. In the case of a rotating fluid (Ro �= ∞), symmetric and antisymmetric modes
do not decouple and the asymptotic eigenvalue problem (3.12) is solved numerically
using the eigensolver eig of Matlab.

7.1. Kármán vortex street

We have determined the dominant mode of the Kármán vortex street for a strongly
stratified fluid (Fh = 0.1) for Rossby numbers from non-rotating fluid (Ro → ∞) to
strong rotation (Ro =0.75) and for various spacing ratios. Only positive Rossby
numbers need to be considered since the problem is independent of the sign of
Ro because the vortices of the two rows are counter-rotating. In the rotating case,
the problem depends on the core radius to separation distance a/b because of the
logarithm term in (3.5) that does not vanish. Here, we have taken a/b = 0.067 as in
the numerical stability analyses (see table 1).

Figure 15 shows the growth rate of the dominant mode for the two typical
configurations studied in the previous section: close rows (κ = 0.2) and distant rows
(κ = 0.5). In both cases, the most unstable mode remains qualitatively the same
as in the non-rotating case: it is a µ = ∞ three-dimensional bending instability for
close rows and a two-dimensional pairing instability for distant rows. For close
rows (figure 15a), we see that the maximum growth rate of the three-dimensional
mode decreases significantly (∼40 %) for Ro = 6 compared to Ro → ∞ and then
remains approximately constant when Ro is further decreased. The corresponding
most unstable vertical wavenumber decreases monotonically with Ro. The agreement
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Figure 15. Non-dimensional growth rate 2πb2σRe/Γ of the dominant mode as a function of
the rescaled vertical wavenumber bFhkz for Fh =0.1 for the Kármán vortex street with (a)
close rows κ = 0.2 and (b) distant rows κ = 0.5. The dominant instability is the µ= ∞ and
µ= 2 mode, respectively. The solid lines correspond to the asymptotic theory and the symbols
to the numerical results. In each plot, the curves from right to left correspond to the Rossby
numbers: +, Ro → ∞; �, Ro = 6; �, Ro = 2; �, Ro = 0.75. All curves have been determined
for a/b = 0.067.
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Figure 16. (a,b) Similar to figure 3 but in a rotating fluid with Ro = 2.

between theoretical (solid lines) and numerical (symbols) results is again satisfactory.
We further show in figure 16(a) the most amplified eigenmode for a typical rotating
case (Ro = 2). The eigenmode is not perfectly symmetric but only quasi-symmetric
because symmetric and antisymmetric modes are coupled for finite Rossby numbers.
The dipole perturbation structure is more intense for vortices in the lower row than
in the upper row, indicating that anticyclonic vortices in the lower row are more
displaced by the zigzag instability than the cyclonic vortices in the upper row. This
is in agreement with the numerical results displayed in figure 16(b). For distant rows
(figure 15b), we see that, although the maximum growth rate of the two-dimensional
growth rate is not affected by rotation, the band of unstable vertical wavenumbers
narrows dramatically when the rotation increases. Theoretical and numerical results
are in excellent agreement.

Figure 17 further displays the maximum growth rate and most amplified
wavenumber as a function of Ro for κ = 0.2. We note that the most unstable vertical
wavenumber decreases linearly to zero when Ro goes to zero. This behaviour is in
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Figure 17. (a) Non-dimensional growth rate 2πb2σM
Re/Γ of the most unstable mode and

(b) the corresponding unstable wavenumber bFhk
M
z as a function of the Rossby number Ro

for the Kármán vortex street with close rows (κ = 0.2) in a strongly stratified (Fh = 0.1) and
rotating fluid.

agreement with the quasi-geostrophic scaling law and can be deduced directly from
the asymptotic stability problem in the limit Ro → 0. Indeed, we see from (3.15) that
the coefficients A, B and C are only functions of bkzFh/Ro, through the arguments
of the mutual induction functions ψ and χ . In addition, the self-induction terms
(b2/a2)ω(kz, Fh, ±Ro) that appear in the eigenvalue problem (3.12) converge to a
single function when Ro → 0:

lim
Ro→0

b2

a2
ω(kz, Fh, ±Ro) = − b2k2

zF
2
h

2Ro2

(
ln

(
bkzFh

2Ro

)
+ ln

(a

b

)
− D(Fh) + γe

)
, (7.1)

which is also a function of bkzFh/Ro for small Fh since D(Fh) ≈ const. for Fh < 0.5
(see Appendix A and figure 22). Consequently, kz, Fh and Ro never appear separately
but always as the group bkzFh/Ro in the eigenvalue problem (3.12). Thus, the growth
rate is also only a function of bkzFh/Ro, i.e. σ (kz, Fh, Ro) ≡ σ̃ (bkzFh/Ro). It implies
that the maximum vertical wavenumber of a three-dimensional instability scales like
Ro/(bFh) = N/(2bΩb) for small Ro and, similarly, that the size of the unstable band
of vertical wavenumbers of the pairing instability scales as Ro/(bFh) for small Ro, as
observed in figures 15 and 17.

7.2. Symmetric double row

Like for the Kármán vortex street, we have determined the dominant mode of the
symmetric double row for κ = 0.5 for various Ro. Again, only positive Rossby numbers
need to be considered because of the symmetry of the base flow. As seen in figure 18
the growth rate curves keep the same shape when Ro is decreased from Ro → ∞
to Ro = 0.75 but the unstable wavenumber band is narrowed. The most unstable
mode remains a µ = 2 three-dimensional instability like in the non-rotating case. The
agreement between asymptotic and numerical growth rates is again good especially
for small wavenumbers. We see in figure 19 that the theoretical and numerical most
amplified eigenmodes for Ro =2 are also in very good agreement. The eigenmode
with background rotation is similar to that for Ro → ∞ (figure 8) except that it is
not exactly antisymmetric but only quasi-antisymmetric. Like for the Kármán vortex
street, the anticyclonic vortices in the lower row are more displaced than the cyclonic
vortices in the upper row. Figure 20 further shows the maximum growth rate and the
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Figure 18. Similar to figure 15 but for the symmetric double row (κ = 0.5). We recall that
four rotation rates are presented (from right to left curves): +, Ro → ∞; �, Ro = 6; �, Ro =2;
�, Ro =0.75. All curves have been determined for a/b = 0.067.
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Figure 19. (a,b) Similar to figure 8 but for a rotating fluid with Ro =2.
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Figure 20. (a,b) Similar to figure 17 but for the symmetric double row (κ = 0.5).

most unstable vertical wavenumber of the dominant mode as a function of the Rossby
number Ro. Contrary to the Kármán vortex street, the maximum growth rate is only
slightly reduced by the rotation: it is about 10 % smaller for Ro → 0 compared to
Ro → ∞. The most unstable vertical wavenumber is proportional to Ro for small Ro
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Figure 21. Non-dimensional growth rate 2πb2σRe/Γ as a function of the rescaled vertical
wavenumber bFhkz for the single row in a strongly stratified (Fh = 0.1) fluid and for various
Rossby numbers. The numerical results are represented by open symbols for positive Rossby
numbers: +, Ro → ∞; �, Ro = 6; �, Ro = 2; �, Ro = 0.75 and by filled symbols for negative
Rossby numbers: �, Ro = − 6; �, Ro = − 2; �, Ro = − 0.75. The corresponding theoretical
results are shown by solid lines for positive Ro and dashed lines for negative Ro. All curves
have been determined for a/b = 0.067.

like for the Kármán vortex street (§ 7.1) and in agreement with the quasi-geostrophic
theory.

7.3. Single row

The effect of rotation on the single row in a strongly stratified fluid is presented in
figure 21. In this case, the velocity of the base flow is constant but in the opposite
direction for y → ∞ and y → −∞. Therefore, the base flow cannot be computed
directly with a pseudo-spectral code that imposes periodic boundary conditions.
To circumvent this difficulty, a symmetric double row with κ =8, i.e. with almost
independent rows, has been first computed. Half of this flow, i.e. one row, has
been cropped and the remaining part has been taken here as basic state. For this
vortex array, the base flow is not symmetric so that the sign of the Rossby number
matters. For positive Rossby numbers, the unstable band decreases monotonically
when Ro decreases as observed before. For negative Rossby numbers, the unstable
wavenumber band first widens for intermediate values of Ro but then also shrinks
for small negative values. There is excellent agreement between numerical (symbols)
and theoretical (solid lines) results except for Ro = −2, where a departure is observed
at large wavenumbers like for co-rotating vortex pairs (Billant et al. 2010).

8. Conclusion

We have investigated by asymptotic and numerical approaches the three-
dimensional stability in a stratified and rotating fluid of three steady vertical vortex
arrays: the Kármán vortex street, the symmetric double row and the single row
of co-rotating vortices. The asymptotic approach assumes long-wavelength bending
perturbations and well-separated vortices. It is accurate to first order in the rescaled
vertical wavenumber k2

za
2F 2

h and in strain Γ/(2πb2). The stability equations have
the same form as those derived by Robinson & Saffman (1982) in a homogeneous
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fluid. The differences between homogeneous and stratified and rotating fluids lie only
in the explicit expression of the mutual induction functions and the self-induction
function (Billant 2010).

Using this approach in a strongly stratified and non-rotating fluid and assuming
a Lamb–Oseen vortex profile for each individual vortex, we have found that the
Kármán vortex street for a spacing ratio κ � 0.41 and the symmetric double row for
any spacing ratio are most unstable to a three-dimensional instability which bends the
vortices. This bending instability is similar to the zigzag instability observed on vortex
pairs in strongly stratified fluid (Billant & Chomaz 2000; Otheguy et al. 2006b).

Similar bending instabilities also exist on vortex arrays in a homogeneous
fluid (Robinson & Saffman 1982) but a striking difference is the opposite symmetry of
the unstable mode in a stratified fluid. For the Kármán vortex street, the most unstable
mode for close rows is three-dimensional symmetric while it is three-dimensional
antisymmetric in homogeneous fluid (Robinson & Saffman 1982). Similarly, the
symmetric double row is most unstable to a three-dimensional antisymmetric mode
while it is a three-dimensional symmetric mode in a homogeneous fluid (Robinson &
Saffman 1982). This inversion of the symmetry of the unstable mode is rooted in the
different sign of the self-induction in a stratified fluid compared to a homogeneous
fluid (Billant et al. 2010).

Another important difference is the scaling of the most amplified vertical
wavenumber: it scales like 1/(bFh) (or 1/(hFh) if κ ≪ 1 for the symmetric double row)
in a stratified fluid instead of 1/b in a homogeneous fluid. The instabilities predicted
in the present study are therefore expected to produce layers of typical thickness
bFh. In contrast, for both homogeneous and stratified fluids, the maximum growth
rate scales like the strain Γ/(2πb2). Interestingly, Praud et al. (2005) and Holford &
Linden (1999) have observed that the columnar vortices, created by towing a rake
of vertical bars in a stratified fluid, are bent and evolve into pancake vortices. The
present instability of the Kármán vortex street in a stratified fluid might explain these
experimental observations.

It is also interesting to remark that the spacing ratio of atmospheric vortex streets
in the wake of mountains or islands is typically 0.3–0.4 (Etling 1989, 1990; Li et al.
2000; Young & Zawislak 2006), i.e. in the range unstable to the zigzag instability.
However, an additional constraint for the zigzag instability to develop is that the
vertical wavelength λ should be smaller than the height H of the vortices. This
height H is typically of the same order as the height of the islands or mountains, i.e.
H/D ≈ 0.01–0.1, where D is the diameter of the mountain. The horizontal Froude
number can be assumed to be small and the Rossby number large since the typical
vortex radius is O(20 km) (Etling 1989). As seen in figure 6, the most amplified
wavelength of the zigzag instability is then λ≈ Fhb for κ ≈ 0.3. Since the separation
distance h between the rows is approximately the same as the diameter of the
mountain D, we obtain λ/D ≈ Fh/κ ≈ 3Fh. For Froude numbers Fh ≈ 0.01–0.1 typical
of these flows, the ratios λ/D and H/D are therefore of the same order, meaning
that at least one wavelength of the zigzag instability could fit in the vortex height. A
similar discussion for the case of oceanic vortices can be found in Otheguy, Billant &
Chomaz (2006a).

For the Kármán vortex street with a large spacing ratio κ > 0.41, or for the single
row, the dominant instability in a strongly stratified fluid remains a two-dimensional
pairing instability like in a homogeneous fluid. This result might seem in contradiction
with the study of the nonlinear evolution of a horizontal shear layer in a stratified fluid
by Basak & Sarkar (2006), which reports the formation of a row of three-dimensional
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pancake vortices. However, Basak & Sarkar (2006) have perturbed the initial two-
dimensional shear layer with relatively strong three-dimensional fluctuations. Such
initial conditions should lead not only to the growth of the dominant mode but also
to the growth of subdominant three-dimensional modes which are unstable over a
large range of vertical wavenumbers in a strongly stratified fluid. Thus, the results of
Basak & Sarkar (2006) are not in contradiction with our finding that the single row
is most unstable to two-dimensional disturbances.

Taking as a reference the stability properties of the three vortex arrays in a strongly
stratified and non-rotating fluid, we have next investigated the effect of the Froude
and Rossby numbers. In rescaled variables (non-dimensional growth rate 2πb2σRe/Γ

and vertical wavenumber bFhkz), the Froude number has almost no effect as long
as Fh < 1. However, when Fh is increased above unity, three-dimensional instabilities
become strongly damped because long-wavelength bending perturbations exhibit a
viscous critical layer.

For a strongly stratified fluid in the presence of background rotation, symmetric
and antisymmetric modes do not decouple but we have always found that the
dominant instability remains qualitatively similar to the non-rotating case: it is a
three-dimensional zigzag instability for the Kármán vortex street with a small spacing
ratio and for the symmetric double row with any spacing ratio; it is a two-dimensional
pairing instability for the Kármán vortex street with a large spacing ratio and for the
single row. However, the most unstable wavenumber of three-dimensional instabilities
decreases with rotation and scales like Ro/(bFh) =N/(2bΩb) for small Ro. In this
quasi-geostrophic limit, the decoupling between symmetric and antisymmetric modes
is also recovered and the dominant three-dimensional instabilities have the same
symmetry as for a stratified and non-rotating fluid.

The asymptotic results are in good agreement with the numerical stability analyses
for all the Rossby and Froude numbers investigated even for finite wavelengths. In
Appendix B, we also study numerically the effect of larger vortex radius to separation
distance ratio, a/b, and show that the asymptotic theory remains qualitatively valid.
This proves that the theory can be used to predict the stability of almost all vortex
configurations. This should be useful since numerical stability analysis as performed
here requires huge computing resources compared to the theory.

Finally, we emphasize that even if the theory is restricted to displacement
perturbation of vortices, the results of the numerical stability analyses prove that these
perturbations, either two-dimensional or three-dimensional, are the most unstable in
stratified and rotating fluids over a wide range of Froude and Rossby numbers. We
have not found any other dominant perturbations of a different nature, at least over
the range of vertical wavenumbers investigated.

However, other types of instabilities could exist for higher vertical wavenumbers.
For example, the centrifugal instability is known to exist when Ro < − 1/2 in the
case of a Lamb–Oseen vortex. The maximum growth rate σc of this instability
is reached for kz → ∞ in the inviscid limit. In stratified and rotating fluids,
σc is independent of the stratification and given by σc = Γ

√− min(φ)/(2πa2),
where min(φ) is the minimum over r of the generalized Rayleigh discriminant
φ = (2Ω + Ro−1)(2Ω + r dΩ/dr + Ro−1) (Kloosterziel & van Heijst 1991; Billant &
Gallaire 2005). When Ro increases from Ro = −∞, the maximum growth rate increases
up to σc max =0.3Γ/(2πa2) at Ro = −1.6 and then decreases back to zero at Ro = −1/2.
Therefore, the centrifugal instability can be stronger than the zigzag instability when
σc max >σ = O(Γ/(2πb2)), i.e. typically when a/b <O(1), in an intermediate band of
Rossby numbers around |Ro| =1.6 whose extent depends on the ratio a/b.
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(dashed-line) and D (dotted line) as a function of the Froude number Fh for the Lamb–Oseen
vortex.

Appendix A. Expression of the parameters A, B and D
The parameters A, B and D used in the expression of the self-induction function

ω valid in stratified and rotating fluids (see § 3.1) depend on the Froude number and
the non-dimensional angular velocity Ω of the individual vortices. Their expressions
are (Billant 2010)

A(Fh) = lim
η0→∞

∫ η0

0

r3Ω(r)4

1 − F 2
h Ω(r)2

dr − 1

4F 2
h

ln

(
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h

η4
0

)
, (A 1)

B(Fh) = lim
η0→∞
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)
, (A 3)

where r is the radius non-dimensionalized by a. These parameters are plotted in
figure 22 for the Lamb–Oseen vortex profile.

Appendix B. Strongly stratified and non-rotating fluid: effect of the vortex

radius to separation distance ratio: a/b

In this appendix, we investigate the effect of the vortex radius to separation distance
ratio a/b for the Kármán vortex street with κ = 0.2 for a fixed set of Froude and
Rossby numbers: Fh = 0.1 and Ro → ∞. Figure 23 shows the growth rate of the
dominant mode for various ratios a/b from well-separated vortices (a/b = 0.067) to
very close vortices (a/b = 0.133). These cases correspond to the basic states labelled
K0.2, K0.2b10 and K0.2b7.5 in table 1. We recall that the effective ratio a/d, where d is
the minimum distance between vortices is even larger and goes here from a/d = 0.124
to a/d = 0.248. As the vortices get closer, the maximum growth rate decreases slightly
and the band of unstable vertical wavenumbers widens. We see a departure between
the numerical results (dotted line with symbols) and the asymptotic theory (solid line)
which is valid only for well-separated vortices (i.e. at leading order in a/b). However,
the instability remains qualitatively the same.
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Figure 23. Non-dimensional growth rate 2πb2σRe/Γ of the dominant mode as a function of
the rescaled vertical wavenumber bFhkz with Fh = 0.1 and Ro → ∞ for the Kármán vortex
street with κ =0.2. The dotted lines with symbols correspond to numerical results and the
solid line to the asymptotic theory valid for well-separated vortices. Different vortex radius to
separation distance ratios are presented: +, a/b = 0.067; �, a/b = 0.100; �, a/b = 0.133.
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