R. Referencesåkervik, E. Hoepffner, J. Ehrenstein, U. Henningson, and D. S. , Optimal growth, model reduction and control in a separated boundary-layer flow using global modes, J. Fluid Mech, vol.579, pp.305-314, 2007.

N. Aubry, On the hidden beauty of the proper orthogonal decomposition, Theor. Comp. Fluid Dyn, pp.339-352, 1991.

A. Barbagallo, D. Sipp, and P. J. Schmid, Closed-loop control of an open cavity flow using reduced-order models, Journal of Fluid Mechanics, vol.44, pp.1-50, 2009.
DOI : 10.1007/s00348-006-0188-8

URL : https://hal.archives-ouvertes.fr/hal-01021129

G. Berkooz, P. Holmes, and J. L. Lumley, The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows, Annual Review of Fluid Mechanics, vol.25, issue.1, pp.539-575, 1993.
DOI : 10.1146/annurev.fl.25.010193.002543

J. Bonnet, D. R. Cole, J. Delville, M. N. Glauser, and L. S. Ukeiley, Stochastic estimation and proper orthogonal decomposition: Complementary techniques for identifying structure, Experiments in Fluids, vol.31, issue.8, pp.307-314, 1994.
DOI : 10.1007/BF01874409

T. Delsole and A. Y. Hou, Empirical Stochastic Models for the Dominant Climate Statistics of a General Circulation Model, Journal of the Atmospheric Sciences, vol.56, issue.19, pp.3436-3456, 1999.
DOI : 10.1175/1520-0469(1999)056<3436:ESMFTD>2.0.CO;2

W. S. Edwards, L. S. Tuckerman, R. A. Friesner, and D. C. Sorensen, Krylov Methods for the Incompressible Navier-Stokes Equations, Krylov methods for the incompressible Navier?Stokes equations, pp.82-102, 1994.
DOI : 10.1006/jcph.1994.1007

K. Hasselmann, PIPs and POPs: The reduction of complex dynamical systems using principal interaction and oscillation patterns, Journal of Geophysical Research, vol.110, issue.D9, pp.10975-10988, 1988.
DOI : 10.1029/JD093iD09p11015

P. Hemon and F. Santi, Simulation of a spatially correlated turbulent velocity field using biorthogonal decomposition, Journal of Wind Engineering and Industrial Aerodynamics, vol.95, issue.1, pp.21-29, 2007.
DOI : 10.1016/j.jweia.2006.04.003

URL : https://hal.archives-ouvertes.fr/hal-01023339

S. Herzog, The large scale structure in the near-wall region of turbulent pipe flow, 1986.

A. K. Hussain, Coherent structures and turbulence, Journal of Fluid Mechanics, vol.30, issue.-1, pp.303-356, 1986.
DOI : 10.1017/S0022112081002917

A. Lasota and M. C. Mackey, Fractals and Noise: Stochastic Aspects of Dynamics, Chaos, 1994.

R. B. Lehoucq and J. A. Scott, Implicitly Restarted Arnoldi Methods and Subspace Iteration, SIAM Journal on Matrix Analysis and Applications, vol.23, issue.2, pp.551-562, 1997.
DOI : 10.1137/S0895479899358595

J. L. Lumley, Stochastic Tools in Turbulence Academic Press. Mezí c, I. 2005 Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dyn, pp.309-325, 1970.

B. R. Noack, K. Afanasiev, M. Morzynski, G. Tadmor, and F. Thiele, A hierarchy of low-dimensional models for the transient and post-transient cylinder wake, Journal of Fluid Mechanics, vol.497, pp.335-363, 2003.
DOI : 10.1017/S0022112003006694

B. R. Noack, M. Schlegel, B. Ahlborn, G. Mutschke, M. Morzynski et al., A finite-time thermodynamics formalism for unsteady flows, J. Non-Equilib. Thermodyn, vol.33, pp.103-148, 2008.

S. A. Orszag, Accurate solution of the Orr???Sommerfeld stability equation, Journal of Fluid Mechanics, vol.45, issue.04, pp.689-703, 1971.
DOI : 10.1093/comjnl/4.4.318

C. Penland and T. Magoriam, Prediction of Ni??o 3 Sea Surface Temperatures Using Linear Inverse Modeling, Journal of Climate, vol.6, issue.6, pp.1067-1076, 1993.
DOI : 10.1175/1520-0442(1993)006<1067:PONSST>2.0.CO;2

C. W. Rowley, I. Mezí-c, S. Bagheri, P. Schlatter, and D. S. Henningson, Spectral analysis of nonlinear flows, Journal of Fluid Mechanics, vol.641, pp.115-127, 2009.
DOI : 10.1017/S0022112003006694

A. Ruhe, 1984 Rational Krylov sequence methods for eigenvalue computation, Linear Algebr Appl, vol.58, pp.279-316

P. J. Schmid, Transition and Transition Control in a Square Cavity, pp.562-569, 2007.
DOI : 10.1007/978-3-540-72604-3_179

URL : https://hal.archives-ouvertes.fr/hal-01026019

P. J. Schmid and D. S. Henningson, Stability and Transition in Shear Flows, 2001.
DOI : 10.1007/978-1-4613-0185-1

P. J. Schmid, L. Li, M. P. Juniper, and O. Pust, Applications of the dynamic mode decomposition, Theoretical and Computational Fluid Dynamics, vol.8, issue.2, 2010.
DOI : 10.1007/s00162-010-0203-9

URL : https://hal.archives-ouvertes.fr/hal-00994506

P. J. Schmid and J. L. Sesterhenn, Dynamic mode decomposition of numerical and experimental data, Bull. Amer. Phys. Soc., 61st APS meeting, p.208, 2008.
DOI : 10.1175/1520-0442(1995)008<0377:POPAR>2.0.CO;2

URL : https://hal.archives-ouvertes.fr/hal-01020654

R. F. Schmit and M. N. Glauser, Use of Low-Dimensional Methods for Wake Flowfield Estimation from Dynamic Strain., AIAA Journal, vol.43, issue.5, pp.1133-1136, 2009.
DOI : 10.2514/1.1722

D. Sipp and A. Lebedev, Global stability of base and mean flows: a general approach and its applications to cylinder and open cavity flows, Journal of Fluid Mechanics, vol.6, pp.333-358, 2007.
DOI : 10.1007/BF00127673

L. Sirovich, Turbulence and the dynamics of coherent structures. I. Coherent structures, Quarterly of Applied Mathematics, vol.45, issue.3, pp.561-590, 1987.
DOI : 10.1090/qam/910462

H. Von-storch, G. Bürger, R. Schnur, and J. Von-storch, Principal Oscillation Patterns: A Review, Journal of Climate, vol.8, issue.3, pp.377-400, 1995.
DOI : 10.1175/1520-0442(1995)008<0377:POPAR>2.0.CO;2