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We study the linear dynamics of global eigenmodes in compressible axisymmetric
wake flows, up to the high subsonic regime. We consider both an afterbody flow
at zero angle of attack and a sphere, and find that the sequence of bifurcations
destabilizing the axisymmetric steady flow is independent of the Mach number and
reminiscent of that documented in the incompressible wake past a sphere and a disk
(Natarajan & Acrivos, J. Fluid Mech., vol. 254, 1993, p. 323), hence suggesting that
the onset of unsteadiness in this class of flows results from a global instability. We
determine the boundary separating the stable and unstable domains in the (M, Re)
plane, and show that an increase in the Mach number yields a stabilization of the
afterbody flow, but a destabilization of the sphere flow. These compressible effects
are further investigated by means of adjoint-based sensitivity analyses relying on the
computation of gradients or sensitivity functions. Using this theoretical formalism, we
show that they do not act through specific compressibility effects at the disturbance
level but mainly through implicit base flow modifications, an effect that had not been
taken into consideration by previous studies based on prescribed parallel base flow
profiles. We propose a physical interpretation for the observed compressible effects,
based on the competition between advection and production of disturbances, and
provide evidence linking the stabilizing/destabilizing effect observed when varying the
Mach number to a strengthening/weakening of the disturbance advection mechanism.
We show, in particular, that the destabilizing effect of compressibility observed in the
case of the sphere results from a significant increase of the backflow velocity in the
whole recirculating bubble, which opposes the downstream advection of disturbances.

Key words: compressible flows, instability, wakes/jets

1. Introduction

Axisymmetric wakes have been studied experimentally and numerically for different
geometries of revolution (Mair 1965; Achenbach 1974; Fuchs, Mercker & Michel
1979). It has generally been acknowledged that this class of flows is dominated
by an instability of the helical mode, resulting in the low-frequency shedding of
large-scale coherent structures. In the context of afterbody flows, this vortex shedding
is detrimental to the engineering application, as it may increase drag and cause
flow-induced vibrations, resulting in fluctuating dynamic loads whose magnitude
can be critical during the transonic phase of flight. We consider here a compressible
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afterbody flow at moderate Reynolds number and at a Mach number M =0.5,
a parameter setting which may be of practical interest for the low-density flows
encountered in the stratosphere by high-altitude rockets and re-entry vehicles. In
this range of Reynolds numbers, the vortex-shedding activity has been linked to
an instability of helical modes of azimuthal wavenumbers m =41 (Siegel & Fasel
2001; Seidel et al. 2008). For the higher Reynolds numbers found at lower altitudes,
vortex shedding persists as a coherent large-scale phenomenon superimposed on the
turbulent flow field (Achenbach 1972; Taneda 1978; Deprés, Reijasse & Dussauge
2004), which suggests that the present results rigorously derived at moderate
Reynolds numbers can carry over as a first step towards the turbulent case.

We consider two model geometries of blunt and bluff bodies, namely an
axisymmetric blunt-based afterbody modelling an ideal rocket shape and a sphere.
An eigenvalue solution of any compressible stability problem depends on the base
flow profiles and on the Mach number, the base flow itself being an implicit
function of the Mach number. When the latter is varied, compressible effects are
thus simultaneously at work at the perturbation and the base flow levels, since the
Mach number is modified both in the disturbance and the base flow equations. The
effect of compressibility on the stability of shear flows has been so far addressed
in the framework of the local theory of parallel flows (Michalke 1971; Pavithran &
Redekopp 1989, amongst others). The most widely used approximation is to prescribe
analytical base flow profiles satisfying the inviscid Navier—Stokes equations. In this
case, the base flow is independent of the Mach number, meaning that this approach
is relevant only to assessment of the effect of compressibility at the perturbation
level. Another approximation is to add the Crocco-Busemann relation derived
from the steady boundary-layer equations (Schlichting 1978) to include a Mach
squared compressible correction in the density and temperature profiles (Jackson &
Grosch 1990; Jendoubi & Strykowski 1994). This allows recovery of the effect of
compressibility on the base flow thermodynamic variables. Still, it fails to consider its
effect on the base flow velocity profiles, which turns out to be of crucial importance
for the non-parallel wake flows considered here, as will be shown in the following.

The present study uses the framework of the global stability of non-parallel flows, i.e.
flows that are inhomogeneous in both the cross-stream and the streamwise directions
(Jackson 1987), for which the base flow underlying the stability analysis is first
computed as a solution of the compressible Navier—Stokes equations, without any
other approximation. In the incompressible regime, Natarajan & Acrivos (1993)
have shown that the axisymmetric solution prevailing at low Reynolds numbers
is generically unstable to a steady and a time-periodic global mode. The onset of
unsteadiness in the real flow ultimately results from the leading-order nonlinear
interaction of these concomitantly unstable modes (Fabre, Auguste & Magnaudet
2008; Meliga, Chomaz & Sipp 2009a): the sequence of bifurcation undergone by
the real flow then involves the destabilization of the steady three-dimensional branch
by an antisymmetric or a symmetric perturbation made of the superposition of two
counter-rotating oscillating modes with different phases. This competition between
modes is not within the scope of the present study, which deals instead with the effect
of compressibility on the oscillating mode, believed to trigger the onset of the periodic
regime at higher Reynolds numbers (Ormiéres & Provansal 1999; Tomboulides &
Orszag 2000). Increased computer capacities now make it possible to apply this
approach to the compressible regime, where a number of computational issues arise
(see Crouch, Garbaruk & Magidov 2007 or Crouch et al. 2009 on the shock-induced
buffet over a two-dimensional airfoil, Bres & Colonius 2008 on the flow over an open
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FIGURE 1. Schematic of the configurations under study. (a) Slender body of revolution of
diameter D and total length [ =9.8D. (b) Sphere of diameter D.

Flow

cavity, Robinet 2007 on shock wave/boundary-layer interactions or Mack, Schmid &
Sesterhenn 2008 on the flow around a swept parabolic body).

We develop a gradient-based sensitivity formalism for the study of compressible
non-parallel flows. Compressible effects are viewed as an input/output sensitivity
problem relying on the evaluation of the gradient of an eigenvalue (output) with
respect to small modifications of the Mach number (input). Emphasis is put on the
role of the base flow in the perturbation dynamics, as we generalize to compressible
flows the sensitivity formalism originally formulated for parallel flows by Bottaro,
Corbett & Luchini (2003) and Hwang & Choi (2006), and recently extended to
spatially developing flows by Marquet, Sipp & Jacquin (2008). By investigating how
the growth rate of an unstable mode is affected by changes in the shape of the
base flow profiles, this analysis is appropriate to theoretical investigation of the
mechanisms leading the instability. We use here adjoint methods to compute
the gradients of interests by solving only once the state and adjoint problems. As
will be shown, such an approach requires a relatively low’ computational cost and
allows us to provide physical interpretations for the observed effects by splitting a given
gradient into the sum of production, streamwise advection and cross-stream advection
terms.

The paper is organized as follows. The flow configuration and numerical method
are presented in §2. The base flow and disturbance equations are solved in § 3, where
we investigate the impact of compressibility on the bifurcating modes. Section 4
presents a brief summary of the adjoint-based sensitivity formalism encompassing
small modifications of the Mach number. The observed compressibility effects are
ultimately discussed in §4.3, where we show that the interpretations admitted up to
now are not relevant to the case of wake flows. A physical interpretation is proposed
in Section 5, in terms of a competition between the advection and production of
disturbances.

2. Flow configuration and theoretical formulation

We investigate the stability of the axisymmetric flow developing in the compressible
regime past two model geometries of revolution, namely the afterbody and the
sphere shown in figure 1. The afterbody models a rocket shape, with a blunt trailing
edge of diameter D placed into a uniform flow at zero angle of attack (Mair 1965;
Weickgenannt & Monkewitz 2000), and is identical to that experimentally investigated
by Sevilla & Martinez-Bazan (2004), with a total length /=9.8D and an ellipsoidal
nose of aspect ratio 3 : 1. The problem is formulated using a standard cylindrical
coordinate system (r, 0, z) of axis I',, whose origin is taken at the centre of the base
for the afterbody, and at the centre of the body for the sphere.
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2.1. Governing equations

The fluid is a non-homogeneous compressible perfect gas with constant specific
heat c,, thermal conductivity ¥ and dynamic viscosity u, related by a unit Prandtl
number. The fluid motion is described by the state vector ¢ =(o, u, ©, p)’, where
the superscript 7' designates the transpose, o is the density, @ is the temperature,
p is the pressure and u = (u, v, w)? is the three-dimensional velocity field with u, v
and w its radial, azimuthal and streamwise components, respectively. The state vector
q obeys the unsteady compressible Navier—Stokes equations, thus leading to a set
of six nonlinear equations (continuity, momentum, internal energy and perfect gas)
formulated in non-conservative variables as

do+0oV-u+u-Vo=0, (2.1a)
1 1
. —_V- = 2.1

odu+oVu-u+ yM2Vp Rev T(u) =0, (2.1b)
M? Y 2

00,0 +ou-VO +(y —1)pV-u—y(y —1)— t(u) :dlu) — ——V-0 =0, (2.1¢)
Re PrRe

p—00 =0, (2.1d)

with d(u) and t(u) the strain and stress tensors defined as
1 2
d(u) = 5(Vu + vu'), t(u)= —3(Veu )T +2d(w). (2.2)

Note that a different set of equations can be used, if the internal energy equation is
replaced by its total energy or entropy counterpart. Equations (2.1) have been made
non-dimensional using the body diameter D and the upstream quantities W_, o,
®_ and p_ as respective velocity, density, temperature and pressure scales, and the
Reynolds and Mach numbers are defined as

~DW,, W,
Re=92""2 T (2.3)

o VY RO ’
with R, the ideal gas constant. For the afterbody flow, the Reynolds number for
transition to turbulence in the developing boundary layer is Re ~ 12 000, as estimated
from Weickgenannt & Monkewitz (2000). The Reynolds numbers prevailing here
being such that Re < 1500, we assume that the boundary layer thus remains laminar
up to the trailing edge. This assumption also holds for the sphere, for which the
transition occurs at Reynolds numbers Re = 800 (Tomboulides & Orszag 2000).

2.2. Numerical method

From now on, all governing equations are given as formal relations between
differential operators. Equations (2.1) are thus conveniently written as

B(q)oq + (g, %) =0, (24)

where 4 and .# are differential operators and % is a set of relevant control parameters
made here of the Reynolds and Mach numbers only (in particular, the angle of attack
remains zero throughout the study). In the following, one must distinguish between
the complete form of these operators, defined for the state vector ¢ = (o, u, ©, p)T,
and their reduced forms defined for the state vector g = (o, u, @)", which can be
straightforwardly deduced by replacing the pressure terms by their expressions arising
from the perfect gas state equation. The complete form is more suitable to the
presentation of the theoretical framework, whereas the reduced form is used in the
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FIGURE 2. Schematic of the computational domain §2 for the afterbody flow: z_, zo, and ro,
denote the location of the physical inlet, outlet and lateral boundaries. This physical domain
is padded with a sponge zone of width /°, shown as the light grey shaded area. The inner solid
lines delimit regions characterized by different vertex densities. The dark grey shaded area
corresponds to the near-wake domain £2;, used to normalize the eigenmodes.

numerics as it requires smaller computational resources. To ease the reading, we
omit voluntarily the difference between both forms, the choice of the relevant one
being clear from the context. The complete form of all operators is detailed in
Appendix D.

The choice of the boundary conditions is crucial in compressible flows. In order
to apply appropriate far-field conditions, the body is enclosed into two concentric
cylinders defined as

r<r, and z__ <z<z, (inner cylinder), (2.5a)

r<r,+Il and z_, —I <z<z, +I (outer cylinder). (2.5b)

The inner enclosing cylinder corresponds to the footprint of the computational domain
that would have been used for an incompressible flow, whereas the outer cylinder
defines the location of the inlet, outlet and external boundaries (denoted I3;,, I,
and I, ,, respectively) in the numerics. In the domain enclosed between the cylinders,
shown as the light grey shaded area in figure 2, all fluctuations are progressively
damped to negligible levels through artificial dissipation, as the Reynolds number is
smoothly decreased from its value defined in (2.3) to the small value Re, =0.1 at the
boundary of the computational domain. The purpose of such sponge regions is to
minimize numerical-box-size effects by gradually attenuating all vortical and acoustic
fluctuations before they reach the boundary of the domain (Colonius 2004). The
Reynolds number in all equations should therefore be replaced by a ‘computational’

Reynolds number Re defined by Re(r, z) = Re in the inner cylinder, and

IAQE(r, z) = Re+ (Re, — Re)¢(z,z,,) if r<r, and z>z,, (2.6a)
ﬁ(r, z) = Re+ (Re, — Re)¢(z,z_,) if r<r, and z<z_,, (2.6b)
Re = Re(r,,z) + (Re, — Re(r,,, 2))¢(r.r,) if r>r,, (2.6¢)

where ¢ is the function defined by

! _n, la—bl
{(a,b)—z—i-ztanh{atan( 2+7t s )} (2.7)
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along with « =4. In addition to this artificial damping, numerical dissipation in the
sponge zones is increased by progressive grid stretching. The governing equations are
then solved using a uniform free-stream flow condition

u=(0,0,1)7",060=1 onrl,url, Url,,. (2.8)
We enforce additional no-slip adiabatic wall conditions at the body wall
u=006=0 onl,, (2.9)

where 9/0, is the derivative normal to the surface.

We use the FreeFem++ software (http://www.freefem.org) to generate a two-
dimensional triangulation of the azimuthal plane 6 =0 with the Delaunay—Voronoi
algorithm. The mesh refinement is controlled by the vertex densities imposed on both
external and internal boundaries. Regions where the mesh density varies are depicted
by the solid lines in figure 2. All equations are numerically solved by a finite-element
method using the mesh M, shown in Appendix A to provide the most accurate results,
built with z_,, =—100, z,, =300, r,, =25 and /; =200 and made of 662816 triangles.
A set of equations is first multiplied by r to avoid the singularity on the r =0 axis.
The associated variational formulation is then derived and spatially discretized onto
a basis of Arnold—Brezzi—Fortin MINI elements (Matsumoto & Kawahara 2000),
with four-node P;, elements for the velocity components and three-node P, elements
for the density and temperature. The sparse matrices resulting from the projection
of these variational formulations onto the basis of finite elements are built with the
FreeFem++ software.

3. Global stability analysis

The stability analysis relies on the existence of a steady solution about which
perturbations are superimposed. The total flow field is split into a steady
axisymmetric base flow Q =(p, U,0, W, T, P)" and a three-dimensional perturbation
g =, u, v, w, T, p)T of small amplitude €. Unless specified otherwise, we present
here results pertaining only to the afterbody configuration, the results obtained for
the sphere being very similar.

3.1. Base flow calculations

The base flow @ is solution of the steady axisymmetric form of the nonlinear system
(2.4), written formally as

M\(Q,9) =0, (3.1)
where .#, is the axisymmetric form of operator .#. The base flow
satisfies boundary conditions (2.8) and (2.9) along with the additional condition
U=0,0W=0,0=09,T=0 on I, obtained for axisymmetric solutions from mass,
momentum and internal energy conservation as r — 0. The base flow is obtained
using an iterative Newton method (Barkley, Gomes & Henderson 2002): starting
from a guess value @, this method involves iterations of the guess value Q + 5Q
where & Q is the solution of a simple linear problem. At each step, a matrix inversion
is performed using the UMFPACK library, which consists in a sparse direct LU
solver (Davis & Duff 1997; Davis 2004). The process is carried out until the #*-norm
of the residual of the governing equations for Q becomes smaller than 10~!2. In the
low-Mach-numbers limit, the flow quantities are expanded as power series in y M?
(Nichols, Schmid & Riley 2007) and the initial guess is obtained by continuation
from the incompressible solution computed using the solver presented in Meliga
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FIGURE 3. Afterbody flow: spatial distribution of the base flow streamwise velocity,
Re=998.5; M =0.5.

et al. (2009a). For Mach numbers M > 0.3, the initial guess is simply chosen as a
solution of the compressible equations computed for a lower value of the Mach
number. Since we do not use the governing equations under their conservative form,
the numerical method cannot easily account for the presence of shock waves in the
computational domain, as this would require the use of mesh refinement techniques
to fully resolve the viscous structure of the shock. Consequently, the local Mach
number M,=M|U|/ ﬁ must remain smaller than one everywhere in the flow, and
the free-stream Mach number can therefore be increased up to M ~ 0.7 for the present
computations.

The dynamics is from now on exemplified by setting M =0.5. Figure 3 shows
iso-contours of the base flow streamwise velocity W computed in the high subsonic
regime (Re=998.5, M =0.5). The solid line is the streamline linking the separation
point to the stagnation point on the r =0 axis, and defines the separatrix delimiting
the recirculation bubble developing in the lee of the afterbody, whose length is
approximately 2.5 diameters. The negative values of the streamwise velocity close to
the axis reach 30 % of the free-stream velocity.

3.2. Eigenvalue calculations
All perturbations are sought under the form of normal modes

"= §(r, z)e "N 4 e, 32)
q9 =9

where ¢ is the eigenmode, the so-called global mode, for which both the cross-stream
and streamwise directions are eigendirections. The azimuthal wavenumber of the
global mode is m, its growth rate and pulsation are o and w, respectively. Substituting
(3.2) into (2.4) and retaining only terms of order e yields a system of equations
governing the normal mode under the form of a generalized eigenvalue problem for
A=0 +iw and §:

‘B0 + ,(Q.9)4 =0, (33)

with .«Z,, the complex linearized evolution operator obtained from .« =9.#/9q by
replacing the 6 derivatives by im, whose expression is detailed in Appendix D.
The perturbation satisfies homogeneous boundary conditions linearized from the
Navier—Stokes conditions, and the additional conditions at the axis I, depend on
the azimuthal wavenumber m. For the mzAil modes discussed throughout this
study, we use the specific condition w=p=T =0, 8,i =09,0=0. This eigenproblem
is solved using the ‘implicitly restarted Arnoldi method’ of the ARPACK library
(http://www.caam.rice.edu/software/ARPACK) based upon a shift and invert
strategy (Ehrenstein & Gallaire 2005).

To normalize the m =+1 global modes, we impose first the phase of the radial
velocity to be zero at r=0 and z=1, ie. (0, 1) is real positive. To normalize the
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FIGURE 4. Afterbody flow: spatial distribution of streamwise velocity for the leading global
modes, M =0.5. The black hue corresponds to vanishing magnitudes of perturbation.
(a) Stationary mode 1 at threshold of the first instability (Re; =483.5). (b) Oscillating mode 2
at the threshold of the second instability (Re, =998.5). Only the real part is shown.

mode amplitude, we introduce the near-wake domain £2;, defined as

z€[—-12.3,525] and r <2 (afterbody), (3.4a)
ze€[-2.5,525] and r <2 (sphere), (3.4b)

shown as the dark grey shaded area in figure 2. We also use the inner product
fQ&-brd.Q, where @ and b belong to €, d§2 is the surface element on the
computational domain £2, and - refers to the canonical Hermitian scalar product
in C". The eigenmode is then normalized so that

/ §-BGrd2 =1. (3.5)
Qin

This normalization choice has no physical effect but eases the comparison between
results obtained on different meshes when convergence tests are carried out. For
incompressible flows, this choice has a simple physical interpretation, as the integrand
reads simply

q-%4=al’, (3.6)
so that condition (3.5) imposes the kinematic energy of the perturbation to be unity
in £2;,. In the present compressible case, this inner product is convenient for the
numerics but is not physically motivated, as the integrand does not represent any
meaningful physical quantity, either the total energy or the total enthalpy of the
perturbation. Still, we insist that the compressible effects discussed in the following
are intrinsic and do not depend on the choice of the inner product.

For all values of the Mach number in the range M < 0.7 prevailing here, the sequence
of bifurcations undergone by the axisymmetric solution is identical to that previously
documented in the incompressible regime for spheres and disks (Natarajan & Acrivos
1993). When the Reynolds number is increased, the axisymmetric base flow is first
destabilized at Re (M) by a stationary mode 1 (w=0) whose eigenvector chosen as
4, =(p,, iy, 1d,, @, T,)7 is real using the present normalization. For the afterbody
flow at M =0.5, we find the critical Reynolds number Re; =483.5 (Re; =212.5 for
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FIGURE 5. Oscillating mode 2: boundary separating the unstable domain (shaded area labelled
U) from the stable domain (area labelled S) in the (M, Re) plane. (a) Afterbody. (b) Sphere.

the sphere at M =0.5). Figure 4(a) shows the streamwise velocity disturbances w, at
threshold for the afterbody, which extend far downstream of the body. The velocity
perturbation is negative in figure 4(a), meaning that the total flow slows down in
this azimuthal plane. The azimuthal wavenumber of this mode being m =1, the
streamwise velocity perturbation is opposite on the other side of the revolution axis,
where the total flow speeds up, hence inducing an off-axis displacement of the wake,
as in the case of a sphere at zero Mach number (Johnson & Patel 1999). Owing to
compressibility, similar effects exist for the temperature and density perturbations,
although at a lower level of magnitude. Namely we find that the low-velocity wake
region is hotter and lighter than the base flow, whereas the high-velocity wake region
is cooler and heavier (not shown here for conciseness).

When the Reynolds number is increased further above Re,, the axisymmetric
solution is destabilized at the second threshold value Re,(M) by a pair of oscillating
m =1 modes of frequency w= +w,, whose eigenvectors are complex conjugates. In
the following, only the mode of frequency w;, naIned mode 2, will be discussed,
its eigenvector being denoted §,=(p,, ii,,iD,, W,, T;)". For the afterbody flow at
M =0.5, we find a critical Reynolds number Re, =998.5 and a frequency w; =0.40
corresponding to a Strouhal number St=w,D/(2nU,)=0.063 (resp. Re,=275.2,
w; =0.66 and Str=0.11 for the sphere at M =0.5). Figure 4(b) shows the real parts
of the streamwise velocity disturbances w,, at threshold for the afterbody: it exhibits
positive and negative velocity perturbations alternating downstream of the body, in a
regular, periodic way that defines a spatial period of approximately 12 diameters. The
imaginary part (not shown here) displays a similar structure, but are approximately
in spatial quadrature with extrema located close to the nodes of the real parts. This
mode therefore corresponds to the development of a spiral in the wake of the body,
which rotates in time at the frequency w;.

3.3. Impact of compressibility

We investigate from now on the effect of the free-stream Mach number on the flow
stability by focusing on the oscillating mode 2, which is expected to dominate the
flow dynamics at sufficiently large Reynolds numbers. The subscript 2 is therefore
systematically omitted to ease the notation.

We show in figure 5(a) the boundary of the stability domain for mode 2 in the
(M, Re) plane: the flow is unstable (resp. stable) for combinations of parameters



508 P. Meliga, D. Sipp and J.-M. Chomaz

located in the shaded region labelled U (resp. in the white region labelled S). The
values for M =0 arise from the resolution of the incompressible stability problem
on a mesh made only of the inner cylinder defined by (2.5a), the numerical method
being derived from Meliga et al. (2009a) and Meliga, Chomaz & Sipp (2009b).
Owing to the choice of the reference scales, the low-Mach-number limit agrees
with the incompressible results without supplemental rescaling. Compressibility has a
stabilizing effect as increasing the Mach number is seen to yield a moderate increase
in the critical Reynolds number, by approximately 17 % (from Re, =909.1 at M =0
to 1061.1 at M =0.7). Still, it must not be inferred from the present study that
compressibility systematically acts as a stabilizing mechanism for compressible wake
flows. Indeed, we present in figure 5(b) the boundary of the stability domain for the
sphere: interestingly, increasing the Mach number from small values now yields a
destabilizing effect, as the critical Reynolds number decreases by approximately 3 %
(from Re,=280.8 at M =0 to 273.8 at M ~0.63). In contrast, the stabilizing effect
already documented for the afterbody flow is ultimately retrieved for high subsonic
Mach numbers. Although such variations may seem small, it will be shown in the
following section that they are the consequence of competitive significant effects that
are simultaneously at work.

3.4. Effect of the baroclinic torque

It has been suggested by Soteriou & Ghoniem (1995) that the difference in the
stability properties of homogeneous and non-homogeneous shear layers results from
the existence of a baroclinic torque. The main idea is that a baroclinic torque arising
from misaligned gradients of base flow density and pressure perturbations, reading

1 _. 1

= yM2Vp xV (,o) (3.7
can act as a source term for the vorticity perturbations. For the parameter setting
prevailing here, the existence of this torque has been used in a previous paper by
the authors to interpret the stabilizing effect of compressibility observed for model
parallel wakes (Meliga, Sipp & Chomaz 2008). The main idea, originally formulated
by Nichols et al. (2007), is that the baroclinic torque, which arises from the shear layer
undulation, induces a further deformation which is out of phase with the total shear
layer displacement, thus decreasing the temporal growth of the absolutely unstable
mode.

To assess the effect of the baroclinic torque on the global stability of the fully
non-parallel wake flows considered here, we generalize the idea initially introduced by
Lesshafft & Huerre (2007) in the context of parallel hot jets. These authors proposed
solving a modified dispersion relation in which the linearized momentum equations are
artificially forced so as to cancel the baroclinic torque. In this case, the torque has only
one non-trivial component owing to the parallel assumption and to the axisymmetry
of the relevant disturbances. In contrast, the torque is fully three-dimensional here,
owing to the non-parallelism of the flow and to the non-axisymmetry of the relevant
disturbances. In practice, we solve the forced compressible stability problem

(A + 8, AB(Q) + ,,(Q.9)§ = pSq. (3.8)

where 84 is the eigenvalue variation resulting from the addition of the forcing term

S, appropriately defined by
1 1
Sq =— pv () . (3.9)

y M? o
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FIGURE 6. Effect of the baroclinic torque on the oscillating mode 2 at the threshold of
instability, i.e. for parameter settings along the neutral curve shown in figure 5. (a) Afterbody.
(b) Sphere. The solid curve stands for the growth rate variation ¢ induced by an appropriate
forcing defined by (3.9), whose aim is to cancel the effect of the baroclinic torque. The dashed
curve represents the maximum magnitude of the baroclinic torque.

It can be checked that V x(S§)= —I, meaning that this forcing exactly
counterbalances the baroclinic term when one recasts the momentum equations
into their vorticity counterpart. When considering the growth rate variation é,0, a
positive value means that cancelling the baroclinic torque has a destabilizing effect,
i.e. the baroclinic effects are stabilizing. On the contrary, a negative value means that
cancelling the baroclinic torque has a stabilizing effect, i.e. that baroclinic effects are
destabilizing.

The solid lines in figures 6(a) and 6(b) represent the variation § 4 computed
along the neutral curves shown in figure 5. For both configurations, we find positive
variations, meaning that the torque has a stabilizing effect, a result consistent with the
results arising from the local analysis. Moreover, this effect increases with the Mach
number, as both curves are monotonically increasing. This is due to the increasing
magnitude of the torque, as depicted by the dashed lines in figure 6, which present
the maximum amplitude of the baroclinic torque | I'||,,,. as a function of the Mach
number. Still, such results question the usual interpretation of compressibility in terms
of baroclinic effects, as the effect of the torque is identical for both the afterbody
and the sphere, the difference being only in order of magnitude. In particular, this
approach does not explain the destabilizing effect observed in the case of the sphere.

4. Sensitivity analysis to a modification of the Mach number

We investigate how the stability of the global mode, taken at threshold of instability,
is affected by a small but finite modification of the Mach number of magnitude §M.
A given eigenvalue A is explicitly a function of the base flow @ and of the Mach
number. The base flow itself being an implicit function of the Mach number, the
eigenvalue can be written formally as A=/A(Q(M), M). To understand the complex
compressible effects discussed in § 3.3, one must therefore keep in mind that when the
Mach number varies from M to M + §M, compressible effects are simultaneously at
work at two different levels: (i) at the perturbation level, as a result of the change in
the Mach number in the disturbance equations, (ii) at the base flow level, as a result of
the change in the Mach number in the base flow equations. From this point of view,
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the baroclinic torque defined in (3.7) can be written formally as I' =T (Q(M), M),
meaning that the introduction of the forcing term (3.9) acts both at the disturbance
and the base flow levels.

The effect at the disturbance level corresponds to a fictitious flow for which the base
flow would be artificially frozen. Actually, it corresponds to the effect investigated
up to now in the framework of the local stability of parallel flows. Indeed, in this
approach, the base flow is not a solution of the governing equations. It is prescribed
under the form of analytical profiles independent of the Mach number and satisfying
the inviscid equations: see, for instance, the model velocity profiles introduced by
Monkewitz & Sohn (1988) to study the stability of hot jets, and recently used to
assess the effect of compressibility on the stability of jets and wakes (Lesshafft &
Huerre 2007; Meliga et al. 2008). In contrast, the effect at the base flow level
corresponds to a fictitious flow for which the Mach number would remain constant
in the disturbance equations whereas the base flow would adapt the variations of
compressibility, an effect which lies outside the scope of most local analyses, for which
a compressible Mach squared correction can be included only in the base density and
temperature profiles by adding in the Crocco—Busemann relation to the governing
equations (Pavithran & Redekopp 1989; Jackson & Grosch 1990). Although such an
approach has proved fruitful in providing quantitative results for weakly non-parallel
shear flows such as mixing layers and jets, it will be shown here that the change in
the base momentum profiles is exactly the key to interpretation of the stability of
compressible, non-parallel wake flows.

Provided the Mach number modification is small enough for the linear assumption
to hold, it is possible to analyse separately both effects, which are in the end likely to
affect the disturbance dynamics. The eigenvalue variation induced by a change in the
Mach number § M can therefore be written as

, 04 9L 00

8/ = 8M8M + 0 8M5M =0yl +3g4, 4.1
with §,,4 the variation induced at the perturbation level, and §,4 the variation
induced by the implicit modification of the base flow. The expression of each specific
variation can be derived by carrying out direct stability calculations, as developed in
Appendix B. However, such an approach is extremely computationally intensive and
time-consuming owing to the tremendous number of degrees of freedom involved. We
rather use here a more systematic technique relying on sensitivity analyses, whose aim
is to compute the gradients of the eigenvalue with respect to the Mach number and to
the base flow variables. This analysis relies on the computation of an adjoint global
mode ¢t =(pf,a’, TT, p7)7, ie. a Lagrange multiplier for the global mode, obtained
as the solution of an eigenvalue problem. Such an approach is classically used
in flow control and optimization problems (Luchini & Bottaro 1998; Gunzburger
1999; Corbett & Bottaro 2000, 2001). The detailed calculations are postponed to
Appendix C, and we only mention here that the adjoint global mode is normalized
with respect to the global mode so that

/q*-@qrdg =1. (4.2)
2

The specific localization of the adjoint global modes resulting from the convective non-
normality of the linearized evolution operator (Chomaz 2005; Marquet et al. 2009)
is illustrated for the afterbody flow in figure 7, where one observes high amplitudes
within the recirculating bubble and steadily decreasing amplitudes upstream of the
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FIGURE 7. Same as figure 4 for the oscillating adjoint global modes at threshold of instability.

body, as classically reported for incompressible wakes (Meliga et al. 2009b). The
correctness and accuracy of the adjoint method is assessed in Appendix B, where
we present a comparison between the values of the variations do /M arising from
the adjoint formalism and that arising from direct stability calculations.

4.1. Compressible effects at the disturbance level

A change of the Mach number in the disturbance equations induces a change in
the pressure gradient exerted on the perturbation and in the amount of energy it
exchanges with the base flow. In practice, when the Mach number is increased from
M to M + §M, the flow stability is altered as a forcing term §f proportional to the
perturbation quantities occurs in the right-hand side of the disturbance equations:

N 2 T
of = (0, mvp, 2)/()/—1)% (1(U):d(ft)+t(ft):d(ﬁ))> SM.  (4.3)

The resulting eigenvalue variation §,,4 is computed here assuming that the base
flow is artificially kept constant. If §M is small, the forcing (4.3) acts as a weak
perturbation of the linearized evolution operator under the form of momentum and
internal energy sources in the perturbation equations (Giannetti & Luchini 2003,
2007). Following these authors, the variation is simply given by projection of the
forcing onto the adjoint global mode:

8y = / gt-sfrde, (4.4)
2

the corresponding growth rate variation being obtained by retaining only the real
part of (4.4).

4.2. Compressible effects at the base flow level

A change to the Mach number in the base flow equations induces a change in the
pressure gradient exerted on the base flow and in the viscous dissipation of its energy.
In practice, the flow stability is altered, as the base flow on which disturbances develop
is modified. Provided §M is small, the base flow solution of (3.1) for the new Mach
number M + 8§M can indeed be approximated by Q + 8 @, where § Q is the base flow
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modification computed as the solution of the linear problem

2 M r
A (Q, M)§Q = (0, WVP, 2y(y =), TU) :d(U)) SM. (4.5)

The resulting variation §,4 is computed here assuming that the Mach number
remains constant in the disturbance equations. To this end, we generalize now to
compressible flows the sensitivity analysis to base flow modifications, as originally
formulated for parallel flows by Bottaro et al. (2003) and Hwang & Choi (2006) and
recently generalized to spatially developing flows by Marquet et al. (2008), whose
aim is to compute the gradients of the eigenvalue with respect to the base flow
variables. All results are from now on discussed in terms of the physically relevant
conservative variables, as the modification of base flow density also integrates effects
of the modification of momentum and internal energy when using non-conservative
variables. To this end, the base flow is recast into conservative variables, namely
Q.= (p, pU, pT, P)". The corresponding base flow modification can be simply
expressed in terms of § Q as

80, =X460, (4.6)
with o7 the matrix mapping from non-conservative onto conservative perturbation
quantities. Introducing the complex fields V, 4, V 4, V ;4 and V,4 defining the
sensitivity of the eigenvalue to a modification of the base flow density, momentum,
internal energy and pressure, the eigenvalue variation can be written as

SQ/1=/9(Vp/l'&o—i—VpUi-S(,oU)—l—VpT/l-é(pT)—I—VP/l-SP)rd.Q, (4.7)

the corresponding sensitivities for the growth rate being obtained by retaining only
the real parts of these complex fields. The sensitivity of the eigenvalue to base flow
modifications is defined by the field Vy 2=(V,4,V 4,V 4, V)7, so that

8ol = /QVQCX'Schd.Q. (4.8)

Using the normalization condition (4.2), we obtain

3 . AL
Vo i=—A" {ag(wq + &/mq)} g, (4.9)

where the f{ superscript denotes the adjoint of the preceding operator (see
Appendix C).

4.3. Application to the observed compressible effects

For both configurations, we have computed the variations §,0/6M and §,0/5M
along the neutral curve of the oscillating modes 2 presented in figure 5. Results are
shown as the dashed and dash-dotted lines in figure 8, where the overall variation
80 /8M computed from (4.1) is also reported as the solid line. Positive values (resp.
negative values) mean that an increase in the Mach number induces an increase
(resp. decrease) in the growth rate, and therefore correspond to a destabilizing (resp.
stabilizing) effect. The variation 8,,6/6M is negative for both configurations, meaning
that the compressible effects at the disturbance level are always stabilizing. This
result is consistent with the idea arising from local analyses that an increase in
the Mach number prevents the upstream propagation of disturbance waves and
thus yields a stabilization of shear flows by promoting a convective instability
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FIGURE 8. Variation 8o /3M corresponding to a small modification of the Mach number,
computed along the neutral curves shown in figure 5 for the oscillating mode 2 at the
threshold of instability. (a) Afterbody. (b) Sphere. The solid curve stands for the overall
variation §0/6M. The dashed and dash-dotted curves represent the variations §,0/6M and

8,,0/8M corresponding respectively to the base flow variation 0 @ /9 M, and to the modification
of the Mach number in the disturbance equations.

(Pavithran & Redekopp 1989). In contrast, the compressible effects at the base flow
level are stabilizing for the afterbody (§,0/6M <0) but destabilizing for the sphere
(890 /8M =0). The key idea here is thus that the compressible effects discussed in
§3.3 are triggered by the modification of the base flow profiles on which disturbances
develop. For the afterbody, the overall stabilizing effect of compressibility is indeed
due to the domination of the variation §,0/8M, which represents 90 % of the
total variation in the range of Mach numbers considered. Both contributions are
significant for the sphere, hence explaining the small variations of the Reynolds
numbers mentioned previously on this configuration. Still, the overall destabilizing
effect again results from the variation §,0/6M being dominant for M <0.63 (this
limit value being in excellent agreement with the one above which the effect of
compressibility is reversed and starts being stabilizing, as seen from figure 5b).

5. Physical interpretation
5.1. Effect of the advection and production mechanisms

For a base flow modification § Q, it is possible to interpret the eigenvalue variation in
terms of a competition between an advection mechanism and a production mechanism.
In the local theory, this distinction has been formalized via the concepts of convective
and absolute instability: the flow is said to be locally convectively unstable if the
advection of disturbances by the base flow dominates over their production, and
locally absolutely unstable when production is strong enough to sustain the flush
of the base flow. For incompressible flows, Marquet et al. (2008) have shown that
it is straightforward to split the sensitivity function and to identify contributions
accounting for the advection and production of disturbances. The case of compressible
flows is more involved, as the perturbation may exchange energy with the base flow
in different ways. To identify advection and production terms, we linearize the
governing equations, first expressed using an integral formulation and conservative
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variables. The physical origin of all terms in (3.3) then naturally arises when turning
back into non-conservative variables. For instance, the nonlinear term ou-Vu in
the momentum equation (2.1b) corresponds to the advection of momentum by the
flow. Its linearization gives rise to two classes of terms in the linearized momentum
equation: (a) pU VU + pU - Vit is an advection term corresponding to the advection
of the momentum disturbance pU + pit by the base flow, (b) pit - VU is a production
term corresponding to the reciprocal advection of the base flow momentum pU by the
perturbation. It is thus possible to gather all advection terms into the single advection
operator %,, accounting for the advection of the perturbation (see Appendix D
for a detailed expression). All other terms are production terms accounting for the
production of disturbances through the advection of the base flow quantities by the
perturbation and through the sink/source terms of the governing equations.

It is now possible to split the eigenvalue variation into §yA =58, 44+ 8 p4, Where
8,44 1s the variation arising from the change in the advectlon terms and §, p4 18
the variation arising from the change in the production terms. Physically, a positive
value of &, 4/ indicates a destabilization of the eigenmode owing to a weakening
of the disturbances advection. Similarly, a positive value of §, ,4 indicates a
destabilization owing to an increase in the production of disturbances. These terms
are computed respectively as

(SQ.A;LZ/ Vo.uh 80, rde, SQ,PAZ/ Vo.ri80,rde, (5.1)
2 2

where V,, ,/ and V, p4 are the advection and production sensitivity functions,
computed by isolating the contribution of the advection and production terms in the
sensitivity functions (4.9). We obtain simply

[
Vo ah=—H" {

.
8Q(w;q+(gmq)} Q' Vo pi=Voi-Vo i (52)

Figure 9(a) presents the values of §, ,0/8M (solid line) and 6, o /M (dash-dotted
line) computed from (5.1) as functions of the Mach number, at the critical Reynolds
number. The total variation § ,0/8M shown in figure 8 is also reported as the dashed
line. The contribution of the production terms is negative, meaning that increasing
the Mach number is stabilizing by weakening the production of disturbances for both
the afterbody and the sphere. This contrasts with the contribution of the advection
terms, which is found to be strikingly different: it is negative for the afterbody, for
which the downstream advection of disturbances is strengthened and thus yields a
simultaneously stabilizing effect when the Mach number increases; however, it is
positive for the sphere, for which the downstream advection strongly weakens and
yields a competitive destabilizing effect. For both the afterbody and the sphere, the
effect of advection dominates over that of production. When the Mach number is
varied, the change in the advection of disturbances resulting from the modification of
the base flow profiles is therefore the leading mechanism, hence explaining why the
compressible effects discussed in § 3.3 differ for both configurations.

As an attempt to further analyse this mechanism, we have computed separately
the contribution of the four components of the state vector to the variation 3, ,0,
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FIGURE 9. Growth rate variation corresponding to a small modification of the Mach number,
computed for the oscillating mode 2 at the threshold of instability. (a) Afterbody. (b)
Sphere. The dashed line represents the variation §,0/6M. The solid line (resp. dash-dotted

line) represents the contribution of the variation 8, ,0/8M owing to the modification of
the advection mechanism (resp. the variation §, p0/6M owing to the modification of the
production mechanism), so that §,0/8M is the sum of these two contributions.

defined as

8,0,Ai=/ VA prde2, 3PU’AA=/ Vuak8(pU) rde,
2 2 (5.3)

apT,Az=/va,Az-a(pT)rd9, aP,AJ,=/vP,AA-5Prd9,
2 2

so that §, 44 is the sum of these four contributions. Physically, §,, 4o corresponds
to the growth rate variation induced by the modification of the base flow momentum
in the terms already identified as advection terms, ie. the variation that would be
computed in a fictitious flow for which only the momentum components would
be allowed to vary, all other components being kept artificially fixed. Of course,
for real developing flows such as those considered here, the Mach number acts by
modifying all components of the base flow, meaning that the modifications of density,
momentum, internal energy and pressure cannot be prescribed individually but are
connected to one another through relation (4.5). Such a decomposition is therefore
qualitative and is used only as a means to gain insight at the mechanisms at work
by estimating the importance of each individual base flow component in the complex
effect observed.

Results of decomposition (5.3) are given in table 1, where the dominant contribution
is systematically displayed in a grey shaded cell, so as to ease the reading. We
find that when the Mach number is varied, the induced growth rate variation is
entirely dominated by the contribution of momentum, as the density, energy and
pressure modifications contribute very little to the overall variations. Such results
have important physical interpretations in terms of base flow calculations, as they
suggest that small errors in the computation of p and T have a limited impact
on the stability of the oscillating mode 2. They also indicate that the compressible
correction of the base density and temperature profiles that can be included in the
local approach by use of the Crocco—Busemann relation is not relevant to the case
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Total 8p 8(pU) 8(pT) SP
Afterbody —4.4 %1072 24x1074 —4.5x 1072 —6.4 x 1077 0
Sphere 3.6 x 107! —2.3x1073 3.6 x 107! —7.3x 107 0

TaBLE 1. Oscillating mode 2 at the threshold of instability, M =0.5: growth rate variation
89.40/8M induced by the modification of the advection mechanism. The variations §, ,o/8M,

8,0.40/8M, 8,7 40/8M and 8p 40/8M are obtained by evaluating the individual variations

arising from the modification of density, momentum, internal energy and pressure, so that the
overall variation 8, ,0/8M is the sum of these four contributions.

Total 8(pU), 8(oU),
Afterbody —4.5%x 1072 —8.1 x 1072 3.7 x 1072
Sphere 3.6 x 107! —1.0 x 107! 4.6x 107!

TaBLE 2. Oscillating mode 2 at the threshold of instability, M =0.5: growth rate variation
30/8M induced by the modification of the cross-stream and streamwise momentum
components.

of wake flows, for which the correct compressible effects are entirely triggered by the
momentum components.

The dominant variation 8,y ,0/8M can itself be split into its contributions related
to cross-stream and streamwise momentum, as reported in table 2 using the subscripts
1 and ||, respectively. For both the afterbody and the sphere, the modification of
the cross-stream momentum component is stabilizing, whereas that of the streamwise
component is destabilizing. Still, if cross-stream momentum induces variations of same
order of magnitude in both cases, the streamwise component induces a variation larger
by one order of magnitude for the sphere. This competition between cross-stream and
streamwise advection precisely explains the opposite compressible effects reported for
the two geometries. The afterbody flow is indeed stabilized because the modification
of the cross-stream advection of disturbances is dominant, whereas the sphere flow is
destabilized since the modification of the streamwise advection dominates.

5.2. Discussion

Regions in space responsible for the destabilizing weakening of the advection
mechanism triggered by the streamwise momentum component may be identified by
plotting the spatial distribution of the integrand V ;;, ,o - d(pW)/dM (figures 10a and
10b), whose integration over space yields the variation § ;, ,0/6M. The colour look-
up table has been set up so that the dark grey hue indicates vanishing contributions,
hence showing that the magnitude is almost zero everywhere in the flow, except in the
core of the recirculating bubble. The latter region exhibits a complex alternation of
regions contributing either to a stabilization (negative values) or to a destabilization
(positive values) of the flow. The difference between the afterbody and the sphere is
limited to the magnitude of the integrand, which is about 2-3 times larger for the
sphere, and to the existence of a strongly stabilizing region located very close to the
afterbody base.

This difference does not arise from a different level of sensitivity, as the spatial
distributions of the gradient V , .o presented in figures 10(c) and 10(d) are
remarkably similar, but from the base flow modification itself. We present in
figures 10(e) and 10(f) the spatial distribution of the modification of streamwise
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FiGURre 10. Oscillating mode 2 at the threshold of instability, M =0.5. (a) Spatial distribution
of the momentum integrand V ou ) A0 " (pW)/OM for the afterbody. The integration over space
of this flow field yields the variation § ou|.a9/8M involved in the stabilizing/destabilizing effect

of compressibility. The grey hue corresponds to vanishing magnitudes of the integrand. (b)
Same as (a) for the sphere. (c) Spatial distribution of the gradient V ;; ,o for the afterbody.

(d) Same as (c) for the sphere. (e) Spatial distribution of the streamwise momentum variation
d(pW)/OM for the afterbody. (f) Same as (e) for the sphere.

momentum d(pW)/dM for both configurations. We find negative values in the
recirculating bubble of the afterbody flow, in a region limited to the internal periphery
of the separation line. An increase in the Mach number therefore induces a moderate
increase in the backflow velocity, a result consistent with the fact that the modification
of the streamwise momentum component weakens the advection of the perturbations.
Results are somewhat similar for the sphere, but the negative values found in the
recirculating bubble are seen to be larger by one order of magnitude, so that the
backflow velocity now strongly increases with the Mach number. Such a difference
may be explained by the blockage effect induced by both geometries, which is
somewhat limited for the high-aspect ratio afterbody but large for the sphere. In
return, the corresponding destabilizing effect is expected to be larger for the sphere,
consistent with the results discussed from table 2.

A similar analysis can be carried out for the cross-stream momentum component,
which shows that the stabilizing effect is due to an increase in the cross-stream
velocity in the recirculating bubble (not shown here for conciseness), the latter
being responsible for the strengthening of the cross-stream advection mechanism. In
closing this section, it should be noted that the momentum variations found along
the separation lines, namely d(pW)/0M <0 and 9(pU)/0M =0, also mean that the
recirculation bubble of the base flow extends as the Mach number increases, as
illustrated in figure 11 where we present the evolution of the recirculation length.
This may be understood by recalling that the low-pressure levels prevailing in the
recirculation bubble limit its spatial extension. When increasing the Mach number, this
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FIGURE 11. Recirculation length L, of the base flow computed as a function of the Mach
number, the Reynolds number being kept constant and equal to its critical value at M =0.5:
(a) afterbody, Re, =998.5; (b) sphere, Re, =275.2.

effect is relaxed as 1/y M? decreases, hence explaining the increase in the recirculation
length. This mechanism persists at high Reynolds numbers, as Merz, Page &
Przirembel (1978) earlier reported a similar increase in the recirculation length of the
turbulent mean flow developing past an axisymmetric afterbody. The results presented
here are therefore believed to be valid also for turbulent flows, at least qualitatively.
The importance of the recirculation length on the stability of compressible flows has
been briefly discussed by Bouhadji & Braza (2003), who carried out direct numerical
simulations of the wake developing past a two-dimensional NACA 0012 wing at
zero angle of attack and at a Reynolds number of 10000. These authors report that
the flow is steady at M =0 but that vortex shedding can be triggered by simply
increasing the Mach number, an effect that they have attributed to the increase of the
recirculation length. Our results question this interpretation since we show that the
flow stability properties are different for the afterbody and the sphere, even though
the recirculation length increases in both cases. As a result, the variation of the
recirculation length must not be seen as the leading mechanism involved in these
complex compressible effects, but rather as a systematical consequence of the base
flow modification itself. In return, the flow can be either stabilized or destabilized,
depending on the competition between the strenghs of the stabilizing cross-stream
and destabilizing streamwise advection mechanisms, as sketched in figure 12.

6. Conclusion

A theoretical framework for the study of global modes in compressible flows has
been developed and applied to strongly non-parallel axisymmetric wake flows in
the high subsonic regime. The base flow, stability and adjoint stability equations
have been derived and numerically solved for an axisymmetric blunt-based afterbody
modelling an ideal rocket shape and a sphere. A consistent sequence has been found
for the destabilization of the steady, axisymmetric solution, that does not depend on
the value of the Mach number. A first instability occurs for a stationary global mode
(named mode 1) of azimuthal wavenumber m = 1, and a second instability occurs at a
larger Reynolds number, for an oscillating global mode (named mode 2), of the same
azimuthal wavenumber m = 1. The similarity between this sequence of destabilization
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FiGUure 12. Effect of the Mach number on the advection of disturbances for the (a) afterbody
and (b) sphere. The solid and dashed lines delimit the recirculation bubbles for Mach numbers
M and M + 5M, respectively. The arrows indicate the direction in which advection of
disturbances is strengthened, the dominant contribution being shown as the black arrow.

and the one known from the incompressible flow past a disk and a sphere gives
credence to the interpretation of the large-scale oscillation observed in this class of
flows at large Reynolds numbers in terms of a global instability triggered by the
destabilization of the oscillating mode 2.

The boundaries separating the stable and unstable domains in the (M, Re) plane
have been determined, and it has been shown that increasing the Mach number
has a stabilizing effect on mode 2 in the case of the blunt-based afterbody. As an
attempt to generalize such results to other configurations of axisymmetric wakes, we
have computed the same stability boundary for the sphere configuration, and have
shown that a similar increase in the Mach number now yields a destabilization of
mode 2. This complex stabilizing/destabilizing effect has been further investigated
using adjoint-based sensitivity analyses, aimed at predicting the variations of the
eigenvalue with the Mach number. The key point here is that compressible effects
are simultaneously at work at the base flow and at the perturbation level. The
eigenvalue variation arising from both contributions has been derived analytically,
and we have shown that the observed compressible effects are triggered by a
modification of the base flow profiles. Using this adjoint-based theoretical formalism,
a physical interpretation has been proposed, based on a competition between the
terms of production, cross-stream advection and streamwise advection. The proposed
decomposition provides evidence linking the dominant compressible effect to the
modification of the streamwise momentum profiles. If blockage effects are large,
an increase in the Mach number strongly strengthens the backflow velocity in the
recirculating bubble and makes it able to oppose the downstream advection of
disturbances, hence explaining the overall destabilizing effect found for the sphere.

The authors acknowledge financial support of CNES (the French Space Agency)
within the framework of the research and technology programme Aerodynamics of
Nozzles and Afterbodies.

Appendix A. Sensitivity results to mesh spacing

Seven different meshes, denoted M; to M; have been used to assess convergence in
the numerical results. These meshes, detailed in table 3, exhibit various spatial extents
and vertex densities, as well as various sizes for the sponge zones. Results presented in
this appendix correspond to the finest mesh M;. A comparison of the results obtained
with the meshes M; to M; is provided in table 4 and shows that a good convergence
is already achieved for the coarser mesh Mg, as results are identical down to the third
digit.
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Z Zoo Too A n, DoF, DoF,,
M, —100 200 25 100 662816 2664620 3662183
M, —100 150 25 100 631559 2539022 3489557
M; —70 200 25 100 653569 2627322 3610937
M, —100 200 20 100 642370 2582908 3549 820
M;s —100 200 25 70 644067 2589454 3558851
Mg —100 200 25 100 441227 1774726 2439021
M; —100 200 25 100 662816 2664620 3662183

TaBLE 3. Properties of the meshes as a function of the parameters z_.,, Zo, ro and I,
corresponding to the location of the physical inlet, outlet and lateral boundaries, and to the
size of the sponge zone: n, is the number of triangles, DoFy is the number of degrees of
freedom for axisymmetric state vectors used in the base flow calculations, and DoF,, is the
number of degrees of freedom for three-dimensional state vectors used in the global stability
calculations. Meshes M; and M, have the same vertex densities but differ in the location of
the outlet boundary. In the same way, M; and M; differ in the location of the inlet boundary,
while My and My differ in the location of the lateral boundary and M; and Ms differ in the size
of the sponge zone. M; and M, have the same spatial extent but Mg is built with lower vertex
densities. M; and M7 are identical but we use a different damping function in the sponge zone,
defined by (2.7) along with o =3.

o) 03 wy
M, 7.0 x 107° 1.0x 1073 0.3936
M, —7.7%x 107 —1.4x107* 0.3931
M; —1.1x10™* —1.9x107* 0.3930
M, —3.9x107° —1.4x107* 0.3931
M —6.2x 107 —1.0x107* 0.3931
Ms 4.6 x 1073 2.8x107° 0.3935
M; 7.0 x 1073 1.0x 1073 0.3936

TaBLE 4. Dependence of the eigenvalues on the different meshes characterized in table A.
The eigenvalue o, corresponding to the stationary mode 1 is computed at the first instability
threshold (Re, =212.6 —M =0.1), and the eigenvalue o, +iw, corresponding to the oscillating
mode 2 is computed at the second instability threshold (Re, =280.6 — M =0.1).

Appendix B. Validation of the adjoint-based gradients

This appendix aims to assess the accuracy of the adjoint method presented in
this study. We recall that the variation of a given eigenvalue 54 is expressed as
84=28¢4 + 8y 4 where 8,4 and §),4 are respectively the variation arising from the
modification of the base flow (the Mach number in the perturbation equations being
kept constant) and that arising from the modification of the Mach number in the
perturbation equations (the base flow being kept constant).

Only the afterbody configuration is considered here. Since the sensitivity analysis
is linear in essence, the variation of the eigenvalue computed using the adjoint-
based gradients should agree with direct eigenvalue calculation carried out in the
limit M — 0. Considering the oscillating global mode 2 at the threshold of the
second instability, i.e. Re, =998.5 and M =0.5, we compute the linear estimation
of the growth rate for different values of §M, thanks to expressions (4.4)—(4.8).
These variations are then computed exactly by carrying out the following eigenvalue
calculations: assume Q; is the base flow solution at the Mach number M. For each
value of §M, we compute first the base flow @, solution of the nonlinear equations
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FIGURE 13. Oscillating mode 2 at the threshold of instability, Re, =998.5 — M =0.5: variation
of the growth rate as a function of the modification of the Mach number §M. The solid,
dashed and dash-dotted lines stand for the variations 8o, §y0 and §,0 obtained from the
sensitivity analysis. The dark grey, light grey and white circle symbols stand for the nonlinear
results obtained from direct stability calculations.

(3.1) for the Mach number M + M. We solve then numerically the stability problems

8/ —> (A +81)B(Q2)§ + o, (Q2, M +5M)§ =0, (B 1a)
8gh—> (A+38o)A(Q2)4 + ,(Q2. M)§ =0, (B1b)
Syh—> (A+8,1)B(01)§ + /,(Q1, M +5M)§ =0, (B 1c¢)

the associated growth rate variations being obtained simply by retaining the real parts.

Figure 13(a) depicts the growth rate variations computed as functions of the
amplitude § M. The dark grey symbols (resp. light grey and white circle symbols) stand
for the exact nonlinear variation éo (resp. §po and §y0) obtained by direct stability
calculations. The corresponding linear estimations arising from the sensitivity analysis
are presented as the solid, dashed and dash-dotted curves, respectively. For small
amplitudes §M < 1073, the relative difference is not measurable and results are
superposed, indicating that the base flow modification owing to the increase in
M is linear in this range. These results validate the sensitivity analysis and in
particular the accuracy of the sensitivity functions computed in this study. For
larger amplitudes, we observe small discrepancies, as the decrease in the growth
rate is slightly larger if computed by stability calculations. This means that the true
nonlinear stabilizing effect of the Mach number is slightly larger than that estimated
by the sensitivity analysis. Still, the variations obtained up to §M =0.05 are very
well approximated by the linear estimation, as the maximum relative difference is
about 6 %.

Appendix C. Derivation of the sensitivity functions to base flow modifications

The eigenvalue variation 5,4, simply noted §4 here to ease the notation, is
investigated with respect to the base flow modification § Q, the Mach number being
kept constant. The variations are such that

8 =380 +i8w = (Vyi, 8Q), (C1)

where we use from now on (@, b) = / a-brds for compact notation.
2
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In the present formalism, the base flow @ is the control variable, the eigenpair {g, 1}
is the state variable and eigenproblem (3.3) is the state equation, i.e. the constraint
to be satisfied. We introduce a Lagrange multiplier ¢4 (also known as ‘adjoint’ or
‘co-state’ variable) for the state variable, now referred to as the adjoint perturbation,
and define the functional

2(0.4,4.2)=2—G", 2 B(Q)q + +,(Q)q). (C2)
The gradient, with respect to any variable s, is defined as
%85=lin(l) f(s+68s)—$(s)‘ (C3)
s e~ €

We assume that the state equation is satisfied for any arbitrary base flow modification,
so that the gradient of the functional with respect to the adjoint variable is zero. It
can be checked that the gradient with respect to the state variable is zero, provided
we define §' as the solution of the adjoint eigenvalue problem

2B §" + (0§ =0, (C4)

along with the normalization condition (4.2). In (C4), #" and .«/! are the adjoint
of operators # and .«Z,,, obtained by integrating by parts the disturbance equations
(Schmid & Hennlngson 2001). We obtain simply %' =% since # is a diagonal
operator, whereas the complete expression of operator .o/ can be found in
Appendix D. The boundary conditions to be fulfilled by the adjoint perturbations
are such that all boundary terms arising during the integration by part vanish, which
imposes conditions identical to that of the global modes. Eigenproblem (C4) is
solved via the Arnoldi method, and adjoint global modes are then normalized with
respect to the direct global modes, according to (4.2). Since this adjoint problem is
formulated for continuous operators, the spatial discretization of operators .«7,, and
</} leads to discrete operators that are not Hermitian conjugates. Consequently, we
check a posteriori that the adjoint eigenvalues are complex conjugate with the direct
eigenvalues and that a bi-orthogonality relation is satisfied for the 10 leading global
modes (i.e. that the scalar product of one of the 10 leading adjoint modes with any
of the 10 leading direct global modes is less than 107, except when the direct and
adjoint modes correspond to complex conjugate eigenvalues), and conclude that our
numerical procedure accurately estimates the direct and adjoint global modes of the
compressible problem.
The eigenvalue variation now reads

_ 0 CS5
20°¢ (€3)

The gradient of the functional with respect to the base flow can be expressed as

G980 = (- Sy + v 0s0)

_ <{Q<w(g)q+w (Q)q)} i 8Q> (C6)

so that the sensitivity function V44 is given by

-

ngu=—{aQ(i%’(Q) +&/,,1(Q)c7)} q' (C7)
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Because we use non-conservative variables in the numerics, expression (C7)
corresponds to the sensitivity function V,4i=(V 4, Vi, V2, V)T, where v,
Vy4, V44 and V4 define the sensitivity of the eigenvalue to a small modification of
the base flow density, velocity, temperature and pressure, such that

M:/ (V,0+8p + V2 8U) +Vy 8T + Vi 8P) r ds2. (C8)
2

To derive the sensitivity functions in term of the conservative variables, as defined by
(4.9), we simply substitute § Q by its conservative counterpart 8 Q into (C 6), since
both relations (4.7) and (C8) are to be simultaneously satisfied.

In closing this section, it should be noted that such an approach is very similar
to that used in optimization problems, where one enforces the stationarity of a
Lagrangian as a means to minimize a given functional under specific constraint. We
would like to insist that no such stationarity is enforced here, and that the functional
is only used as a means to compute the different gradients of interest.

Appendix D. Detailed expression of the differential operators

All operators given here pertain to the complete state vector ¢ =(p, u, T, p)’. The
reduced form of these operators, i.e. that pertaining to the state vector g = (p, u, T)"
used in the numerics, can be straightforwardly obtained by replacing the pressure
terms by their expressions arising from the perfect gas state equation. The solid
symbols e are used to clarify the action of a selected number of differential operators.
4 being the identity operator, the non-zero terms of operators %, .«/, and €,
describing the evolution of the global modes are

P =1,
By = pS,
B33 = p,

ol =U-V+V-U,
A iy = Vo + PV,

o, =VU-U,
1
Ay = pV[e]- U+ pVU-[e] — EV'T[']’
1
'Q/m24 - ysz’
Aty =U-VT,

2
A 3y =pVT +(y —=1)PV- —y(y — 1)%(1(U) :d[e]+z[e]:d(V)),

Ay = pUV — = R —V?
42{;7134 (y—1v-U,

A gy =—T,

A g3 = —0,

&fm44 =1,
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Cn =U-V+V-U,

Cny =VU-U,
Cpy = pV[e]- U,
€y =U-VT,
C 3z =pU V.
Similarly, the non-zero terms of the adjoint operators ./ and %7 are
Ay =—U-V,
42/;112 = (VU Uy,
oA}, =U-VT,
Ay =T,
Ao =—pV.

1
oAl =—pV[e] U +,0VUT-—EV-1[0],

2
Al = PVT = (y = DV(PLo1) + 27y = D)3V ([]2(U)),

A= —pU V= =LV

PrRe

&{;34 =—p,

1

oo
tjfm42 - _)/sz ’
A=y —1V-U,
ﬁf;jm =1,
Chiy=-U"V.
(52112 =(VU-U),
%', =U-VT,
%;22 = —pV[e]- U,
%! =—pU-V.
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