Global stability analysis of compressible flow around swept wings
Abstract
The global linear stability of compressible flow in the leading-edge region of a swept wing is studied using an iterative eigenvalue method. This method was implemented via a Jacobian-free framework where direct numerical simulations provide computed flow fields as the required input. It has been found that the investigated leading-edge flow is, over a selected range of flow parameters, most unstable to instabilities of the crossflow type. Our results further confirm that convex leading-edge curvature has a stabilizing influence on this flow. © 2010 Springer-Verlag Berlin Heidelberg.