Spatial optimal disturbances in swept attachment-line boundary layers
Abstract
A formulation based on direct and adjoint parabolized equations is developed to account for the spatial evolution of perturbations in swept attachment-line boundary layers. For sweep Reynolds numbers larger than Re = 100 the dynamics is dominated by a lift-up mechanism which is responsible for large energy amplification by transforming spanwise vortices into spanwise streaks. This mechanism favours steady perturbations with a chordwise scale that quantitatively matches its counterpart for classical Blasius boundary layers. © 2008 Cambridge University Press.
Origin : Publisher files allowed on an open archive
Loading...