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The self-sustained formation of synchronized ring vortices in hot subsonic jets is investigated by

direct numerical simulation of the axisymmetric equations of motion. The onset of global instability

and the global frequency of synchronized oscillations are examined as functions of the

ambient-to-jet temperature ratio and the initial jet shear layer thickness. The numerical results are

found to follow the predictions from nonlinear global instability theory; global instability sets in as

the unperturbed flow is absolutely unstable over a region of finite streamwise extent at the inlet, and

the global frequency near the global instability threshold corresponds to the absolute frequency of

the inlet profile. In strongly supercritical thin shear layer jets, however, the simulations display

global frequencies well above the absolute frequency, in agreement with experimental results. The

inner structure of rolled-up vortices in hot jets displays fine layers of positive and negative vorticity

that are produced and maintained by the action of the baroclinic torque. © 2007 American Institute
of Physics. �DOI: 10.1063/1.2732247�

I. INTRODUCTION

Axisymmetric jets have been experimentally observed to

sustain self-excited large-scale vortices, synchronized at a

well-defined frequency, if the jet is sufficiently heated with

respect to the ambient air �Monkewitz et al.1�. Such self-

excited oscillations are the manifestation of a global instabil-

ity of the unperturbed steady flow. Subjected to an arbitrary

perturbation, a globally unstable steady flow will bifurcate

and settle into a new organized regime of highly regular

oscillations. This new state is termed a global mode of the

underlying steady flow, and its oscillations are tuned to a

well-defined global frequency. In a large variety of open

shear flows, the occurrence of global instability has been

shown to be closely connected to the local linear instability

properties �see Huerre and Monkewitz
2

and Chomaz
3

for re-

views�. If the unperturbed flow is locally convectively un-

stable everywhere, externally induced perturbations are am-

plified, but the flow is globally stable. In the absence of

continuous forcing, it will ultimately return to a steady state.

In the presence of a locally absolutely unstable flow region,

in contrast, the flow may bifurcate to a global mode. Promi-

nent examples of flows exhibiting global instability triggered

by local absolute instability include the cylinder wake,
4–7

counterflowing shear layers,
8

swirling jets,
9

and jets with

counterflow.
10,11

In the hot jet experiments of Monkewitz et al.,1 self-

sustained synchronized oscillations were found to set in as

the ambient-to-jet temperature ratio S=T� /Tc was lowered

below a critical value of 0.73. The Strouhal number of these

oscillations is given as St�0.3, based on jet diameter and

exit velocity. At temperature ratios below 0.63, a second os-

cillating state with St�0.45 was observed to be dominant.

Both of these modes were axisymmetric. Kyle and

Sreenivasan
12 �see also Ref. 13� investigated the stability of

mixed helium/air jets in ambient air. The jet-to-ambient den-

sity ratio that served as a control parameter in these experi-

ments is equivalent, under the perfect gas assumption, to the

ambient-to-jet temperature ratio used in Ref. 1. The experi-

ments of Kyle and Sreenivasan
12

showed only one oscillating

state, also axisymmetric, with Strouhal number and density

ratio ranges in good agreement with the St�0.45 mode of

Monkewitz et al.1 More recent helium jet experiments
14,15

confirm the results of Kyle and Sreenivasan.
12

The linear spatio-temporal instability analysis of Monke-

witz and Sohn
16

revealed that hot axisymmetric jets display a

region of absolute instability as the temperature ratio falls

below a critical value. In the inviscid, zero-Mach-number

limit, this critical value is S=0.72, in striking agreement with

the first threshold value S=0.73 at which global instability

was observed experimentally.
1

Further theoretical studies by Jendoubi and Strykowski
11

demonstrated that two distinct axisymmetric spatio-temporal

instability modes exist in round jets: a shear layer mode,

similar to the Kelvin-Helmholtz instability mode in a plane

shear layer, and a jet column mode, identical to the one dis-

covered by Monkewitz and Shon,
16

with maximum pressure

perturbations on the jet axis. In jets without counterflow, the

absolute instability mode is of the jet column type. A recent

linear analysis �Lesshafft and Huerre
17� has revealed that the

transition from convective to absolute instability in variable-

density jets, even in the absence of gravity, ensues from the

action of the baroclinic torque.

Theoretical discussions of the experimental results on

global instability in variable-density jets have so far essen-
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tially been restricted to a comparison of the temperature or

density ratio threshold values for the observed onset of self-

sustained oscillations with the predicted onset of absolute

instability in inviscid, zero-Mach-number parallel flow. For

the particular value S=0.48, Kyle and Sreenivasan
12

also

compared the measured global frequencies with theoretical

values of the absolute frequency given in Ref. 16. Rather

good agreement was found as long as the jet shear layer at

the nozzle exit was not too thin. For very thin shear layers

however, as well as for lower values of S, the comparison

was much less favorable. Furthermore, the shear layer thick-

ness was determined from a measured boundary layer veloc-

ity profile at the nozzle exit in the experiments,
12

and from

an analytical free jet profile in the theoretical study of

Monkewitz and Sohn.
16

Theoretical analyses of the frequency selection process

in globally unstable semi-infinite flows, such as jets, have

been carried out by Couairon and Chomaz
18,19

on the basis of

Ginzburg-Landau model equations. Their criterion for a

semi-infinite parallel base flow states that nonlinear global

instability coincides with the onset of linear absolute insta-

bility, and that the selected global frequency at this threshold

is given by the absolute frequency of the base flow. In super-

critical flows, the absolute frequency only provides a leading

order prediction of the global frequency. However, the nu-

merical simulations by Chomaz
20

have demonstrated that, in

parallel wakes, this zero-order criterion yields highly accu-

rate predictions far into the supercritical regime. The theoret-

ical analysis has been extended to account for slow stream-

wise variations of the base flow.
5

In such cases, the global

frequency at the global instability threshold is still given by

the absolute frequency at the upstream boundary. However,

global instability is expected to set in only if the region of

absolute instability is sufficiently large to allow for a nonlin-

ear saturation of the oscillation amplitude.

The objective of the present study is to numerically ex-

plore the applicability of nonlinear global mode theory
5,18,19

to the self-sustained synchronized oscillations in hot jets. A

recent investigation
21

has established that the theoretical pre-

dictions of Couairon and Chomaz
5

accurately match numeri-

cal simulation results for a family of heated thick shear layer

jets. The present study extends the investigated parameter

range to approach the experimental settings of Monkewitz et
al.1 and Sreenivasan et al.13

The paper is organized as follows: In Sec. II, the physi-

cal flow model is presented, and the different flow param-

eters are specified. Numerical aspects such as the computa-

tional grid, boundary and initial conditions are discussed in

Sec. III. Further details on the employed flow solver can be

found in Ref. 21. Numerical results are presented in Sec. IV.

A comparison with experiments
1

is included, and the role of

acoustic feedback is discussed. Section V describes observa-

tions on the inner structure of rolled-up vortex billows in

strongly heated jets. The main results are summarized in

Sec. VI.

II. PROBLEM FORMULATION

Consider an axisymmetric subsonic jet of radius R issu-

ing into a quiescent ambient medium. The flow is assumed to

be governed by the axisymmetric compressible Navier-

Stokes equations and the equation of state for a perfect gas,

cast in cylindrical coordinates x and r. These equations are

given explicitly in Lesshafft et al.21
The system is formulated

in terms of conservative flow variables q= �� ,�u ,�v ,�E�,
where � is density, u and v are the axial and radial velocity

components, respectively, and E is the total energy.

The total quantities q are separated into a base flow

qb�x ,r� and a perturbation component q��x ,r , t�. By con-

struction, any given base flow qb is a steady state solution of

the governing equations. As in Ref. 21, the streamwise de-

velopment of the base flow is obtained as a numerical solu-

tion of the compressible boundary layer equations, starting at

x=0 from the analytical velocity profile
22

ub�r� =
1

2
+

1

2
tanh� R

4�
�1

r
− r�	 �1�

of momentum shear layer thickness �. All quantities are

made nondimensional with respect to the jet radius R, veloc-

ity Uc, density �c, and temperature Tc, where the subscript c
denotes the value on the jet centerline in the inlet plane. The

dynamic viscosity � and the thermal conductivity � are

taken as constant throughout the flow, and gravity is ne-

glected. A specific flow configuration is then defined by the

following set of parameters: the Reynolds number Re

=�cRUc /�, the Mach number Ma=Uc /cc with respect to the

speed of sound cc on the jet centerline, the Prandtl number

Pr=�cp /�, with cp the specific heat at constant pressure, the

ambient-to-jet temperature ratio S=T� /Tc, the inlet velocity

profile parameter R /�, and the ratio of specific heats �
=cp /c

v
.

The flow parameters considered in the numerical study

are chosen to closely correspond to settings of Monkewitz

et al.1 The Reynolds number is taken as Re=3750 �ReD

=7500, based on jet diameter as in Ref. 1� and the Mach

number as Ma=0.1. Values of Pr=1 and �=1.4 are retained

throughout. The occurrence of global instability is then

explored for combinations of the inlet profile parameter and

the temperature ratio over the ranges 10�R /��25 and 0.3

�S�1.

III. NUMERICAL METHOD

The numerical procedure used in the simulations is iden-

tical to that of Lesshafft et al.21
An algorithm described by

Lu and Lele
23

is used to obtain the base flow qb by numerical

integration of the boundary layer equations. The temporal

evolution of perturbations q� within this base flow is then

computed directly from the axisymmetric Navier-Stokes

equations. Spatial derivatives are evaluated from a sixth-

order accurate explicit centered finite-difference scheme, and
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the solution is advanced in time via a third-order Runge-

Kutta algorithm. Numerical stability of the finite-difference

formulation is achieved by applying a tenth-order explicit

filter scheme at each time step.
24,25

The orthogonal grid that has been used in all computa-

tions discretizes the physical domain 0�x�30 and 0�r
�30 into 500	278 grid points. In the radial direction, these

points are concentrated in the shear layer region around r
=1, with a minimum spacing 
rmin=0.01. In the axial direc-

tion, 
x is kept at 0.05 for x�15, and then is slowly in-

creased up to 
x=0.1 at x=25. Sponge regions are intro-

duced at the lateral and downstream boundaries of the

physical domain, where grid stretching is gradually increased

up to a rate of 4%. These sponge regions extend over 30

�r�112 and 30�x�125, discretized with 37 radial and

200 axial grid points. A damping term −��x ,r�q� is added to

the Navier-Stokes equations within the sponge regions. The

value of the damping coefficient ��x ,r� is smoothly ramped

up from zero at the boundary of the physical domain to 0.3 at

x=50 and r=50, according to a function given by Chomaz.
20

Convergence tests on finer grids �750	410 points� and on

larger computational domains have confirmed that the results

are grid independent and unaffected by box effects.

The theoretical model for global modes in a semi-infinite

domain studied by Couairon and Chomaz,
5

to which our nu-

merical simulation results are to be compared, assumes a

nonlinear wave front blocked at a Dirichlet-type upstream

boundary that lies within an absolutely unstable flow region.

Such a configuration precludes the implementation of an ad-

ditional sponge region at the upstream boundary of the com-

putational domain, which then would be penetrated by the

upstream-traveling wave front up to the streamwise station

where artificial damping induces a transition to convective

instability. Instead, as in Ref. 21, the characteristic boundary

conditions of Giles
26

are used at the inlet. These are designed

to provide a first order correction for oblique incidence of

upstream-traveling acoustic waves. Tests have shown that

this correction significantly reduces the coupling of acoustic

and vortical disturbances at the upstream boundary. Numeri-

cal instabilities due to these boundary conditions have been

reported by Colonius et al.,27
but they have not been encoun-

tered in the present simulations.

A different set of characteristic upstream boundary con-

ditions, without any correction for oblique incidence of

acoustic waves, was employed in an earlier study.
28

The glo-

bal dynamics observed in the simulations are quite sensitive

to the quality of the upstream boundary conditions. It must

be pointed out that the use of the term “first order” in the

context of the boundary conditions given by Giles
26

is am-

biguous in the literature. In compliance with Ref. 27, we will

henceforth denote as “first order” boundary conditions those

used in Ref. 21 as well as in the present study. The boundary

conditions used in Ref. 28, which assume acoustic wave

fronts to be parallel to the upstream boundary, will be de-

noted as being of “zero order.”

All computations start from a divergence-free initial ve-

locity perturbation in the form of a vortex ring
29

u��r,x� = − A
r0�r − r0�

rs
g�r,x� ,

v��r,x� = A
r0�x − x0�

rs
g�r,x� , �2�

g�r,x� = exp�− ln 2
�x − x0�2 + �r − r0�2

s2 	 ,

with �r0 ,x0�= �1,2�, s=0.3 and A=0.1. We have found that

the jet column mode, which alone may give rise to the

growth of a nonlinear global mode induced by absolute in-

stability, is most efficiently excited by a high-amplitude ini-

tial pulse that quickly leads to vortex roll-up. That way, a

strong exponential temporal growth of shear layer modes is

bypassed, and the jet-column mode grows to nonlinear satu-

ration within a short time interval.

In Sec. IV, the numerical results are compared to predic-

tions drawn from a linear stability analysis of the underlying

base flow. A detailed description of the numerical method

used to solve the linear instability problem is given in

Ref. 17.

IV. ONSET AND FREQUENCY OF SELF-SUSTAINED
OSCILLATIONS

A. Numerical observations and comparison
with theoretical predictions

The long-time flow behavior, after the transient wave

packet induced by the initial perturbation �2� has left the

computational domain, is radically distinct for globally

stable and globally unstable situations. For subcritical com-

binations of R /� and S, only low-level broadband fluctua-

tions persist near the inlet, followed by irregular vortex

roll-up and pairing events. At sufficiently high values of R /�
and strong heating, the flow settles into a highly periodic

oscillatory state. The jet shear layer in these cases rolls up at

a fixed streamwise station, forming a street of regularly

spaced ring vortices that are slowly attenuated as they travel

downstream. Periodic states obtained in two typical configu-

rations are visualized in Fig. 1. Note that the rolled-up vor-

tices in the thin shear layer jet �Fig. 1�b�� undergo one pair-

ing event around x=13. In the present simulations, precisely

one such stage of vortex pairing is observed in all globally

unstable cases with inlet profiles R /��10. Vortex pairing in

the asymptotic flow state shows the same high degree of

repeatability as the initial vortex roll-up.

The qualitative difference between synchronized and

nonsynchronized asymptotic states is demonstrated in the

spatio-temporal diagrams in Fig. 2. The thinnest shear layer

jet considered in this study, with temperature ratios just

above and below the critical value, is chosen as an example.

The radial perturbation velocity v��r=1,x , t� at the center of

the shear layer is presented as a function of streamwise dis-

tance and time. In order to clearly visualize all flow regions,

v� has been normalized independently at each streamwise

station x with respect to its maximum amplitude over the

displayed time interval in Fig. 2.
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The corresponding Strouhal number spectra, computed

from v��r=1,x=1, t�, are displayed in Fig. 3. As in Monke-

witz et al.,1 the Strouhal number is defined as St=2fR /Uc. In

the globally stable configuration with S=0.65 �thin line�, the

spectrum is broadband. As the base flow in this case is con-

vectively unstable throughout the entire physical domain,

persisting perturbations at long times can only arise from a

continuous, spurious excitation at the numerical inlet bound-

ary. This excitation is caused by upstream-travelling acoustic

waves that in turn are emitted from the downstream vortices.

The jet shear layer then acts as a bandpass filter, promoting

the growth of the most amplified spatial instability modes. In

contrast, the spectrum of the synchronized flow case �thick

line in Fig. 3� is marked by sharp peaks, while the back-

ground noise level is significantly lowered. As the spectra are

taken near the upstream boundary, the dominant peak corre-

sponds to the fundamental global frequency Stg of vortex

roll-up. A subharmonic peak in the spectrum of the synchro-

nized case announces the occurrence of vortex pairing fur-

ther downstream. Some peaks in the line-dominated spec-

trum in Fig. 3, e.g., at St=1.1, are accompanied by small

“side peaks” on both sides. Whether these are the result of a

sideband instability,
30

or just an effect of the FFT algorithm

FIG. 1. Snapshots of synchronized os-

cillations in two globally unstable jets.

Vorticity isosurfaces 
=1 �blue� and


=3 �red�, isocontours 1�
�3. �a�
Thick shear layer jet, no vortex pair-

ing; �b� thin shear layer jet, with vor-

tex pairing.

FIG. 2. Spatio-temporal diagrams of the radial perturbation velocity

v��r=1,x , t� in the long-time regime. �a� Globally stable case R /�=25,

S=0.65; �b� globally unstable case R /�=25, S=0.55.

FIG. 3. Spectral density of v��r=1,x=1, t� as a function of Strouhal number

for the two configurations of Fig. 2. Thin line: globally stable case R /�
=25, S=0.65; thick line: globally unstable case R /�=25, S=0.55.
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�a Hanning windowing technique has been used�, cannot be

decided at present.

The globally unstable region of the S-R /� parameter

plane is identified in Fig. 4. Flow cases exhibiting self-

sustained synchronized oscillations are marked as solid

circles, whereas open circles represent nonsynchronized

cases. The black line marks the absolute/convective instabil-

ity boundary of the inlet profile, computed for Ma=0.1 and

Re=3750. Base flows in the parameter region to the left of

this boundary display absolute instability at the inlet, and

they do so over an increasingly large streamwise interval for

stronger heating and thinner initial shear layers. Figure 4

clearly demonstrates that global instability is detected only in

base flows with an absolutely unstable inlet profile. The

boundary of global instability in the S-R /� plane closely

follows that of local absolute instability, with a slight offset

into the absolutely unstable parameter region. In full agree-

ment with the theoretical predictions of Couairon and

Chomaz
5

as well as with earlier numerical simulations,
21

the

present results confirm that global instability occurs only in

the presence of a sufficiently large pocket of local absolute

instability.

Due to the high quality of the flow synchronization, the

global frequency can be determined by measuring the oscil-

lation period � directly from the temporal signal v��r=1,

x=1, t� of the asymptotic state. The temporal development of

St=2/� is shown in Fig. 5 for the three globally unstable

cases encountered at S=0.5. The asymptotic values Stg in

these cases are converged to at least three significant digits.

Corresponding FFT frequency spectra of the v� signal, simi-

lar to the thick line in Fig. 3, are fully consistent with the

results obtained for Stg from Fig. 5, but they would require

much larger signal samples of the asymptotic regime in order

to give the same accuracy.

The model analysis of Couairon and Chomaz
5

predicts

the frequency of a global mode in a semi-infinite domain to

correspond to the absolute frequency at the upstream bound-

ary in the limit of marginal global instability. As the base

flow becomes increasingly supercritical, the global frequency

may depart from this leading-order criterion. In Fig. 6, val-

ues of the global frequency Stg, observed in the numerical

simulations, are compared to the Strouhal number St0 of the

absolute instability mode, obtained from a linear stability

analysis of the inlet base flow profile. For each R /�, values

of St0 are given over the absolutely unstable range of tem-

perature ratios. Experimental measurements from Monke-

witz et al.1 are also shown and will be discussed in Sec.

IV C.

The thickest shear layer jet with R /�=10 synchronizes

to the absolute frequency within 0.5% at its global instability

threshold S=0.4. At supercritical temperature ratios, Stg
gradually shifts to values slightly higher than St0. The same

FIG. 4. State diagram of hot jets: synchronized ��� and nonsynchronized

��� asymptotic states observed over the investigated ranges of temperature

ratio S and inlet profile parameter R /�; absolute/convective instability

boundary of inlet profile ���.

FIG. 5. Temporal development of the oscillation Strouhal number in jets at

S=0.5. Labels indicate the value of R /�.

FIG. 6. Global frequency compared to absolute frequency of the inlet pro-

file, both as functions of the temperature ratio S for various values of the

inlet profile parameter R /�. Black solid lines: global frequencies observed in

the present simulations; grey solid line: experimental values from Monke-

witz et al. �Ref. 1�; dashed lines and open symbols: corresponding absolute

frequency of the inlet profile, shown over the absolutely unstable range of S.
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general trend is observed for jets with thinner initial shear

layers, but as R /� increases, the interval of S over which the

frequency selection criterion Stg=St0�x=0� may be regarded

as valid is confined to an ever smaller vicinity of the global

instability threshold. Note that the occurrence of vortex pair-

ing, which distinguishes the configurations with R /��15

from those with R /�=10, is not associated with any sudden

change in the global flow dynamics, in particular with re-

spect to the frequency selection mechanism. The global fre-

quencies close to onset in jets with R /�=15 are also remark-

ably well predicted by the absolute frequency at the inlet. At

the highest value of S for which synchronization is observed

in an R /�=20 jet, the selected frequency still falls within 3%

of the expected value, but the frequency prediction degrades

rapidly as S is lowered. For R /�=25, only the 8% agreement

between St0 and Stg at S=0.6 closest to threshold may still be

considered satisfactory.

Tests have shown that the numerical values of Stg are

quite sensitive to the choice of upstream boundary condi-

tions. For instance, when the zero order characteristic bound-

ary conditions �see Sec. III� were used in earlier

simulations,
28

the global frequency of an R /�=20, S=0.5 jet

was measured as Stg=0.443, whereas the first order formu-

lation employed in the present study leads to Stg=0.404.

It should be noted that the only difference between the

R /�=10 cases presented in Fig. 6 and those studied in Sec. V

of Ref. 21 lies in the choice of the Reynolds number

�Re=3750 here, Re=1000 in Ref. 21�. The results are fully

consistent: in the present study, global instability sets in at a

slightly higher value of S, because the streamwise develop-

ment of the base flow scales with Re, and the absolutely

unstable region at a given temperature ratio is therefore 3.75

times as long as in the Re=1000 case.

B. Limited parameter range in the DNS

In simulations of strongly heated thin shear layer jets,

the pairing of large-scale vortices gives rise to an irregular

ejection of free vortical structures into the outer flow. These

structures visually resemble pictures of two-dimensional tur-

bulence, and their generation is not a matter of numerical

discretization, but seems to be a genuine feature of the axi-

symmetric equations of motion. Unsteady flow visualizations

suggest that the formation of these structures results from a

secondary instability due to the finely spun layer structure of

rolled-up vortices in strongly stratified shear layers, which is

documented in Sec. V below.

The pairing of two such layered vortices generates vio-

lent accelerations that may lead to folding and ejection of the

outer vorticity layers. These folded layers then tend to form

vorticity dipoles that are propelled into the outer flow

through their self-induced motion. The dipoles are only

slowly dissipated by viscosity and therefore may accumulate

in the vicinity of the vortex pairing location. Such structures

certainly would be highly unstable in a three-dimensional

geometry, and their long-time dynamics observed in the axi-

symmetric simulations therefore should not be regarded as

physical.

If the pairing takes place several jet diameters down-

stream of the inlet, the eventual ejection of free vorticity

dipoles into the outer flow has no impact on the global flow

dynamics. In cases of strong heating and thin initial shear

layers, however, the location of vortex pairing moves further

upstream. The free vorticity dipoles may then contaminate

the upstream boundary region and induce high-amplitude

perturbations that disrupt the global flow synchronization.

This behavior has been observed in three base flow configu-

rations �R /�=20, S=0.3�, �R /�=25, S=0.3�, and �R /�=25,

S=0.35�, and these cases therefore have been excluded from

the presentation of results in Sec. IV A. Throughout the

present study, only cases have been considered where the

upstream region down to at least x=4 is free of spurious

vorticity structures in the outer flow. The accessible ranges of

the inlet velocity profile parameter R /� and temperature ratio

S in the numerical simulation are limited due to this restric-

tion.

C. Comparison with experiments

In Fig. 6, experimental values given by Monkewitz et
al.1 for the global frequency are included as grey symbols

together with present numerical results. Only the “mode II”

�Ref. 1� oscillating state is considered. According to a rela-

tion given in Ref. 1, at a Reynolds number Re=3750 based

on the jet radius, the inlet conditions for these measurements

should correspond to R /��35. The dimensional frequencies

reported by Monkewitz et al.1 are scaled in Fig. 6 with re-

spect to jet exit velocities that had to be deduced from the

Reynolds number. The Mach number in these experiments

varies within the interval 0.025�Ma�0.05.

Numerical simulations at R /�=35 were too contami-

nated with free vortices in the outer flow to be presented

here. However, the experimentally measured Strouhal num-

bers align very well with the extrapolated trend of the nu-

merical values as R /� increases. A comparison with the lin-

ear instability properties of the base flow displays the same

behavior that has been found in the simulations. Global in-

stability almost coincides with the onset of absolute instabil-

ity at the nozzle. At threshold, the global frequency Stg sets

in 9% above the absolute frequency St0 �grey dashed line in

Fig. 6�, but while St0 decreases with stronger heating, Stg
remains nearly constant over the covered range of tempera-

ture ratio S.

D. Influence of acoustic feedback

In several convectively unstable flow configurations,

such as flow over cavities
31

or jets impinging on an

obstacle,
32

self-sustained oscillations are known to arise from

the synchronization of a feedback loop consisting of a

downstream-travelling vortical branch and an upstream-

travelling acoustic branch. In numerical simulations of com-

pressible free jets, such a feedback loop may involve acous-

tic waves that are emitted from nonlinear vortex roll-up and

pairing events,
33,34

but also spurious acoustic noise generated

at the numerical outflow has been reported to potentially give

rise to unphysical self-excitation in numerical simulations of

mixing layers.
35

Grinstein et al.36
observed self-sustained os-
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cillations due to acoustic feedback from vortex pairing in

their simulation of a convectively unstable jet.

In the present simulations, in the absence of a hard

nozzle, such acoustic feedback may only arise from spurious

coupling between outgoing acoustic and incoming vortical

waves at the numerical upstream boundary. Certainly the ir-

regular perturbations that are observed to persist in simula-

tions of entirely convectively unstable base flows must be the

result of such spurious acoustic forcing, and these configu-

rations therefore can be used to characterize the quality of

the numerical upstream boundary conditions. Measures of

typical conversion rates from outgoing acoustic to incoming

vortical waves in these globally stable cases may then serve

as a criterion to examine whether or not the synchronized

oscillations observed in the globally unstable regime, consid-

ering their amplitude levels near the inlet, are likely to be

influenced by spurious acoustic forcing.

Pressure fluctuations p� outside the jet at the upstream

boundary x=0 are purely acoustic in nature, whereas v� fluc-

tuations inside the shear layer are strongly dominated by

vortical instability waves. An ad hoc measure of the

acoustic-vorticity conversion at the inlet in a convectively

unstable flow may be defined as the ratio

Cav =
vrms� �r = 1,x = 1�

prms� �r = 2,x = 0�
, �3�

evaluated in the asymptotic regime. Values of Cav for all flow

cases are given in Fig. 7. In all globally stable configurations

�open symbols in Fig. 7, compare to Fig. 4�, Cav varies be-

tween 10−2 and 10−1. This order of magnitude seems to be

characteristic of situations where instabilities are driven by

acoustic forcing at the inlet. Such forcing naturally is more

efficient in thin shear layer jets, but for constant values of

R /� it is found to vary only slowly with S in the globally

stable regime. In contrast, Cav takes on significantly higher

values in most configurations exhibiting synchronized oscil-

lations. The v� fluctuations in these cases are too strong to be

the result of acoustic forcing, and the noise-driven oscilla-

tions therefore appear to have been replaced by a global

mode induced by absolute instability.

According to Fig. 7, one might wonder whether the

cases �R /�=10, S=0.4� and �R /�=15, S=0.55� are likely to

be dominated by acoustic feedback. We feel that these two

marginal cases quite accurately mark the onset of a super-

critical bifurcation. The configuration �R /�=15, S=0.6� is

atypical: although it marks the onset of self-sustained oscil-

lations, this threshold does not coincide with a significant

increase of Cav. This observation suggests that acoustic feed-

back is indeed involved in the self-excited behavior. How-

ever, the inlet profile in this case is already absolutely un-

stable, and the global frequency has been found to very

accurately obey the selection criterion for a global mode �see

Fig. 6�. We therefore believe this flow configuration to ex-

hibit the behavior of a slightly damped oscillator, in the

sense of Huerre and Monkewitz;
2

in the absence of any up-

stream forcing, such a flow would be globally stable, but

very close to threshold. The low-level acoustic forcing intro-

duced by the numerical boundary conditions seems to be

sufficient to destabilize the otherwise slightly damped global

mode. Note that the “mode 2” oscillatory states reported in

Ref. 21 bear the same characteristic features as the one ob-

served here in the �R /�=15, S=0.6� base flow. It may be

surmised that the occurrence of these “mode 2” states
21

are

also the manifestation of a slightly damped global mode de-

stabilized by low-level acoustic feedback.

V. INNER STRUCTURE OF ROLLED-UP STRATIFIED
VORTICES

In an isothermal jet, vortex roll-up is a process involving

only the redistribution and viscous dissipation of the vortic-

ity initially contained in the unperturbed shear layer. Figure

8�a� shows a vortex rolling up in a perturbed isothermal jet

with R /�=10. The action of viscosity leads to a smooth vor-

ticity distribution inside the vortex core, and to a preferred

dissipation in the thin braids that connect neighboring vorti-

ces. No negative vorticity is produced. In contrast, in the

regime of low S, where global instability is observed, the

simulations display a more complex inner structure of the

rolled-up vortex billows, as demonstrated in Fig. 8�b� for a

typical newly formed vortex in a jet with R /�=10 and S
=0.4. Isocontours of the total vorticity 
=
b+
� are

shown. The rolled-up sheets of positive vorticity from the

initial shear layer are interlaced with regions of negative vor-

ticity, and their absorption into the compact vortex core takes

place on a slower time scale than in the isothermal jet.

In the context of nonisothermal planar shear layers,

Klaassen and Peltier
37,38

conclude that baroclinic production

of vorticity in the vortex braids may dominate over viscous

dissipation if the temperature gradient is sufficiently strong.

Thin layers of high vorticity from the braids are then succes-

sively wrapped around the vortex core, forming a more pro-

nounced spiral sheet structure than is found in isothermal

shear layers. In Refs. 37 and 38, the braid regions are iden-

tified as the prevalent site of baroclinic vorticity production.

A closer investigation of the vortex roll-up process in the

heated jet confirms that the baroclinic torque is responsible

FIG. 7. Values of the conversion ratio Cav, as defined in �3�, as a function of

S for different values of R /�. Symbols as in Fig. 6: �, � R /�=10; �, �

R /�=15; �, � R /�=20; �, � R /�=25. Solid symbols denote synchro-

nized cases, open symbols denote unsynchronized cases.
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for the formation of the layered vorticity structure. Figure

9�a� displays the total density distribution corresponding to

Fig. 8�b�. The vortex billow is composed of two entwined

spiraling fingers of high and low density fluid. Mixing be-

tween these two densities only occurs in the very core of the

vortex. The vorticity layers displayed in Fig. 8�b� are located

on the interfaces between regions of high and low density.

The density and pressure gradients are misaligned, and there-

fore exert a baroclinic torque ���	�p� /�2, mapped in Fig.

9�b�. A fluid particle on an anticlockwise trajectory around

the center of the vortex successively passes through alternat-

ing regions of positive and negative baroclinic torque. Such

alternating regions in Fig. 9�b� are perfectly aligned with the

outer vorticity layers displayed in Fig. 9�a�. Written in total

flow quantities, the vorticity equation reads

Dt
 = − 
��xu + �rv� +
�� 	 �p

�2
+ curl�div �

�
� . �4�

The distribution of the viscous dissipation term is displayed

in Fig. 9�c�. Dissipation is concentrated in layers that align

with those of Fig. 8�b�. The material derivative Dt
=�t


+�
 ·u is presented in Fig. 9�d�. Comparison with Fig. 9�b�
clearly demonstrates that the dominant contribution to Dt


in the outer layers of the vortex is provided by the baroclinic

torque. However, in contrast to the study of Klaassen and

Peltier,
37,38

the vorticity production does not take place in the

braids between neighboring vortices, but inside the vortex

billow.

VI. CONCLUSION

The global stability of hot round jets has been examined

via direct numerical simulation of the axisymmetric equa-

tions of motion. The shear layer thickness of the inlet profile

and the ambient-to-jet temperature ratio have been system-

atically varied over the ranges 10�R /��25 and 0.3�S
�1. Globally unstable situations are characterized by the

onset of self-sustained synchronized oscillations that give

rise to highly regular ring vortices.

FIG. 8. Vortex roll-up in jets with parameters �a� R /�=10, S=1 �isother-

mal�; �b� R /�=10, S=0.5 �heated�. Vorticity isocontours: Light shading and

black lines are positive, dark shading and white lines are negative.

FIG. 9. �a� Total density: black is light fluid, white is heavy fluid. �b�
Baroclinic torque; �c� viscous vorticity dissipation; �d� total vorticity pro-

duction Dt
. Grey scale values are identical in �b�–�d�: light is positive,

dark is negative. All snapshots are taken at the same time as in Fig. 8�b�.
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The numerical results have clearly demonstrated that

global instability, over the investigated parameter range, is

associated with the presence of a finite region of local abso-

lute instability. No synchronized oscillations have been

found to persist in flow configurations that are convectively

unstable everywhere. At any fixed value of R /�, global in-

stability has been observed to set in at a temperature ratio

just slightly below the critical value at which local absolute

instability starts to develop at the upstream boundary of the

flow domain. As S is lowered further beyond the global in-

stability threshold, and the streamwise extent of the abso-

lutely unstable flow region consequently grows larger, the

flow never returns to a globally stable behavior. These nu-

merical observations are in excellent agreement with the the-

oretical model of nonlinear global modes in a semi-infinite

domain described by Couairon and Chomaz.
5

Spurious exci-

tation from upstream-travelling acoustic waves does not

qualify as the driving mechanism of the flow synchroniza-

tion. Its influence seems to be limited to a possible slight

destabilization of flows on the brink of global instability.

It has further been shown that the frequencies of globally

unstable jets obey the theoretical predictions:
5

at threshold,

the global frequency of the thickest shear layer jet �R /�
=10� matches the absolute frequency at the inlet within 0.5%

accuracy. An agreement of 8% is found in the thinnest shear

layer jet considered �R /�=25�. The conclusions drawn in

Ref. 21 from the investigation of jets with R /�=10 and over

a range of temperature ratios 0.1�S�1 are found to hold

true also in jets with thinner initial shear layers. However,

the numerical results indicate that in thin shear layer jets the

validity of the theoretical frequency selection criterion
5

is

restricted to the immediate vicinity of the global instability

threshold.

The numerical observations pertaining to the onset of

global instability and the selection of the global frequency

seem to be consistent with the “mode II” oscillations re-

ported in the experiments of Monkewitz et al.1 In agreement

with Kyle and Sreenivasan,
12

no oscillating states have been

detected that would correspond to “mode I” of Ref. 1. The

comparison remains qualitative, because the experimentally

investigated range R /��35 �Refs. 1 and 12� could not be

attained in the present study. Above the upper limit R /�
=25, free vortical structures in the outer flow quickly con-

taminate the numerical inflow region.

The inner structure of the rolled-up ring vortices in hot

jets has been documented. It is characterized by thin vorticity

layers of alternating sign, wrapped around a compact core.

This layer structure has been shown to arise from vorticity

production due to the baroclinic torque.

It may be concluded that the nonlinear global mode

model of Ref. 5 accurately describes the physical mechanism

that causes the onset of global instability in hot jets: a non-

linear wave front moves upstream in an absolutely unstable

environment, until it is blocked at the upstream boundary. In

the asymptotic state, the front then imparts its linearly se-

lected frequency to the entire flow. In supercritical flow situ-

ations, the model
5

foresees a departure of the global fre-

quency from the absolute frequency, as the spatial envelope

of the oscillations must satisfy a matching condition between

a region of exponential growth and the upstream boundary

conditions. Whether this mechanism alone accounts for the

numerically observed discrepancy between absolute and glo-

bal frequencies in highly supercritical thin shear layer jets

remains to be clarified.
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