
HAL Id: hal-01023087
https://polytechnique.hal.science/hal-01023087

Submitted on 20 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling of plane Couette flow. I. Large scale flow
around turbulent spots
Maher Lagha, Paul Manneville

To cite this version:
Maher Lagha, Paul Manneville. Modeling of plane Couette flow. I. Large scale flow around turbulent
spots. Physics of Fluids, 2007, 19 (9), pp.094105. �10.1063/1.2768946�. �hal-01023087�

https://polytechnique.hal.science/hal-01023087
https://hal.archives-ouvertes.fr


Modeling of plane Couette flow. I. Large scale flow around turbulent spots

Maher Laghaa� and Paul Mannevilleb�

Laboratoire d’Hydrodynamique (LadHyX) École Polytechnique, F-91128 Palaiseau, France

�Received 23 March 2007; accepted 26 June 2007; published online 7 September 2007�

Numerical simulations of a model of plane Couette flow focusing on its in-plane spatio-temporal

properties are used to study the dynamics of turbulent spots. While the core of a spot is filled with

small-scale velocity fluctuations, a large-scale flow extending far away and occupying the full gap

between the driving plates is revealed upon filtering out small scales. It is characterized by

streamwise inflow towards the spot and spanwise outflow from the spot, giving it a quadrupolar

shape. A correction to the base flow is present within the spot in the form of a spanwise vortex with

vorticity opposite in sign to that of the base flow. The Reynolds stresses are shown to be at the origin

of this recirculation, whereas the quadrupolar shape of the in-plane flow results from the transport

of this recirculation by the base flow that pumps it towards the spot in the streamwise direction and

flushes it in the spanwise direction to insure mass conservation. These results shed light on earlier

observations in plane Couette flow or other wall flows experiencing a direct transition to turbulence

by spot nucleation. © 2007 American Institute of Physics. �DOI: 10.1063/1.2768946�

I. INTRODUCTION

Being stable against infinitesimal perturbations for all

Reynolds numbers, plane Couette flow �pCf�, the shear flow

between two parallel plates moving in opposite directions

with velocity ±Up, is the prototype of flows that require lo-

calized finite amplitude disturbances to be pushed towards a

turbulent regime. The transition is thus characterized by the

nucleation and nonlinear growth of domains of turbulent

flow, separated from laminar flow by sharp fronts and called

turbulent spots �e.g., Refs. 1–5�. This kind of transition is not

restricted to pCf but is also present in plane Blasius �bound-

ary layer� flow
6,7

or plane Poiseuille flow.
8

A review of some

relevant laboratory experiments is given by Henningson et
al.9 and of their numerical counterpart given by Mathew and

Das.
10

In practice, direct transition to turbulence via spots

can be expected whenever no low-Reynolds-number instabil-

ity of inertial origin exists, whereas turbulent solutions to the

Navier-Stokes equations may exist and compete with the

laminar base flow at moderate Reynolds number �Ref. 11,

Chap. 6, Sec. 6.3�.
Growing turbulent spots in pCf have been studied both

experimentally
1–5

and numerically.
12–14

In their pioneering

direct simulations of Navier-Stokes equations with realistic

no-slip boundary conditions, Lundbladh and Johansson
12

pointed out that �i� the wall-normal velocity component—

typical of internal irregular small-scale structures—faded

away outside the spot, but �ii� slowly varying in-plane veloc-

ity components extended far outside with an inwards stream-

wise motion towards the spot at the streamwise edges and an

outward spanwise motion at its spanwise edges. These obser-

vations were made by low-pass Gaussian filtering the small

scales of the velocity field at mid-gap. Tillmark
5

confirmed

them experimentally by detecting the outwards spanwise

component that developed over the full gap between the

plates.

More recently, Schumacher and Eckhardt
14

re-

investigated the growth of turbulent spots by means of direct

numerical simulations but using unrealistic free-slip bound-

ary conditions at the plates. By averaging the flow field be-

tween the two plates, they also observed that the turbulent

spot was accompanied by an overall spanwise outflow and

streamwise inflow, which they termed quadrupolar.

Spots seem to behave as obstacles in the base flow.
3,7,15

Accordingly, they introduce additional pressure fields in-

duced by the distribution of Reynolds stresses associated

with the small-scale fluctuations inside the spot and generat-

ing the large-scale flows. A similar interpretation was put

forward by Hayot and Pomeau,
16

who introduced a back-flow
to explain the organization of spiral turbulence in cylindrical

Couette flow,
17

with possible application to the banded tur-

bulent regime discovered more recently in pCf
18

and numeri-

cally studied by Barkley and Tuckerman.
19

Previous experimental studies by Bottin et al.20
have

shown that, in the lowest part of the transitional Reynolds

number range, flow patterns of interest extend over the full

gap. We take advantage of this observation to study the dy-

namics of spots using numerical simulations of a model of

pCf shown to display sufficiently good properties for this

purpose. The model is sketched in Sec. II and completed in

the Appendix. Typical results of simulations are presented in

Sec. III emphasizing the output of the filtering procedure: �i�
the in-plane quadrupolar flow outside the spot and �ii� a

spanwise recirculation cell inside. These observations are

then interpreted in Sec. IV, where the generation of these two

large-scale flow components is explained in terms of Rey-

nolds stresses averaged over the surface of the spot. In the

concluding section, we summarize our results and point to

their relevance to the interpretation of previous observations

in other wall flows of less academic interest, such as plane

Poiseuille
21

or Blasius flows.
22
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II. THE MODEL

The model used here is an extension to realistic no-slip
boundary conditions of an earlier model proposed by one of

us
23

for unrealistic free-slip boundary conditions. It is de-

rived from the Navier-Stokes equations through a systematic

Galerkin method involving expansions in terms of polynomi-

als, functions of the cross-stream coordinate y multiplied by

amplitudes describing the in-plane �x ,z� space dependence

of the full velocity field. The equations are written for the

perturbation �u� ,v� ,w� , p�� to the laminar basic flow Ubx̂,

where x̂ denotes the streamwise direction, i.e., u=Ub�y�+u�;

v� and w� denote the perturbations in the cross-stream and

spanwise directions, respectively, p� being the pressure per-

turbation. Lengths are scaled by the half-gap between the

plates h, and velocities by Up, so that the time scale is h /Up.

The control parameter is the Reynolds number defined as

R=Uph /�, where � is the fluid’s kinematic viscosity, and

the dimensionless base flow profile reads Ub�y�=y for

y� �−1,1�.
In accordance with experimental observations,

20
trunca-

tion of the Galerkin expansion at lowest consistent order is

performed, reducing the set of basis functions to

u��x,z,t,y� = U0�x,z,t�B�1 − y2� + U1�x,z,t�Cy�1 − y2� ,

�1�

v��x,z,t,y� = V1�x,z,t�A�1 − y2�2, �2�

w��x,z,t,y� = W0�x,z,t�B�1 − y2� + W1�x,z,t�Cy�1 − y2� ,

�3�

where A, B, and C are normalization constants. These ex-

pressions are inserted in the continuity and Navier-Stokes

equations, and projections of the results on the same

basis functions using the canonical scalar product

�f ,g�=�−1
+1f�y�g�y�dy, are performed, which yields a set of

coupled partial differential equations. For example, the pro-

jection of the continuity equation reads

�xU0 + �zW0 = 0, �xU1 + �zW1 = �V1, �4�

with �=�3. The complete model is given in the Appendix.

Here we only display the equation for the amplitude U0 of

the streamwise velocity component that is even in y:

�tU0 + NU0
= − �xP0 − a1�xU1 − a2V1 + R−1�� − �0�U0,

�5�

where �=�xx+�zz, and with

NU0
= �1�U0�xU0 + W0�zU0�

+
1

2�2�U1�xU1 + V1��U1 + W1�zW1� , �6�

just to show that each equation has the form expected for a

hydrodynamic problem. In particular, nonlinearities have the

same structure as the classical advection term v ·�v. In the

same way, the last term in Eq. �5�, with the factor R−1, ac-

counts for the viscous dissipation associated with the cross-

stream parabolic ��0� and in-plane dependencies of U0. This

flow component can straightforwardly be identified as the

streamwise streak amplitude, so that the source term −a2V1

on the right-hand side of Eq. �5� accounts for the lift-up
mechanism since V1 is the cross-stream velocity fluctuation.

The physical role of the linear term −a1�xU1 will be consid-

ered later.

On general grounds, the Reynolds-Orr equation governs

the perturbation energy E�t�=
1

2
�V�u�

2+v�
2+w�

2�dV, where

V is the volume of the domain. It can be written symbolically

as �d/dt�E= P−D, where P is the energy production issued

from the interaction of the perturbation with the base flow

Ub�y�	y, P=−�Vu�v��d/dy�UbdV, and D is the dissipation

due to viscous effects. In our model, one readily gets

P=−�S�U0V1dS, where S is the surface of the domain and �

is a positive constant. Since V1 generates U0 through the

lift-up mechanism, regions where the Reynolds stress −U0V1

is positive, thus destabilizing the base flow and contributing

to the turbulence production, are those with U0�0 and

V1�0 or the reverse, which obviously correspond to Q2

and Q4 events identified in the literature �see, for example,

Ref. 24�.
The main limitation of the model comes from its low-

order truncation: expressions �1�–�3� are only the first terms

of series expansions. Although that the derivation of models

truncated at higher orders is possible, this low dimensionality

can be supported by some features of the pCf. On one hand,

the Reynolds number range we are interested in corresponds

to the lower part of the pCf’s transitional regime, where the

involved turbulent structures occupy the full gap.
20

On the

other hand, the velocity component U1Cy�1−y2� already

contains the lowest-order nontrivial correction to the base

flow, thought to be important in the discussion of the

laminar-turbulent coexistence.
16

Accordingly we believe that

the lowest-order model is sufficient to account for the large-

scale features present in the experiment at least at a qualita-

tive level, the alternative being to turn to direct numerical

simulations. The discussion in Sec. IV supports the validity

of our approach a posteriori.

III. NUMERICAL SIMULATIONS
OF TURBULENT SPOTS

Our model was integrated on a rectangular �x ,z� domain

with periodic boundary conditions, while being written for

stream-functions 	0, 	1 and velocity potential 
1 related to

the velocity amplitudes through

U0 = Ũ0 − �z	0, W0 = W̃0 + �x	0, �7�

U1 = Ũ1 + �x
1 − �z	1, W1 = W̃1 + �z
1 + �x	1,

�8�
V1 = �
1/� .

A standard, Fourier based, pseudo-spectral code was imple-

mented with nonlinear terms and linear nondiagonal terms

�e.g., −a1�xU1−a2V1 in Eq. �5�� evaluated in physical space

and integrated in time using a second-order Adams-

Bashforth scheme. The necessary introduction of Ũ0 , . . . is

commented upon in the Appendix. Simulations were per-

formed in a domain of size �Lx�Lz�= �128�128� with ef-
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fective space steps �x=�z=0.25 and �t=0.01. These values

were retained as a good compromise between accuracy and

the possibility to let sufficiently wide systems evolve over

sufficiently large periods of time. Concerning the accuracy

problem, it should be noted that small-scale in-plane struc-

tures are pieces of streaks and streamwise vortices with typi-

cal size larger than 3, which makes more than ten collocation

points per structure. Smaller time steps did not produce re-

sults different from those shown here during comparable

time lengths.

As an initial condition, we took localized expressions for

	0, 	1, and 
1:

	0�x,z,t = 0� = 	1�x,z,t = 0� = 
1�x,z,t = 0�

= A exp−�x2+z2�/S,

where A is an amplitude and S is the size of the germ. Pa-

rameters A=5 and S=2 were found efficient in generating

turbulent spots for R=250, well beyond Rg
173, above

which sustained turbulence is expected in our model. In

practice, due to the highly unstable characteristics of the flow

at such values of R, the apparent simplicity of the initial

condition played no role after a few time units.

Spots are best illustrated by their most spectacular fea-

ture; namely, their streamwise streaky structure.
1,2,7,8

In turn,

the latter is best visualized from the amplitude U0 since

streamwise streaks are easily identified as regions where

�W0�
 �U0� alternating in the spanwise direction, and since

U0 is associated to velocity perturbations that are maximum

in the mid-gap plane y=0. Figure 1 displays gray-level snap-

shots of U0 at different times after launching. Denoting by

�xC ,zC� the in-plane coordinates of the center of the spot we

see that, contrasting with the cases of plane Poiseuille or

boundary layer flows, the spot does not drift due to the ab-

sence of mean advection. One can also notice its overall

ovoid shape with dominant negative values �dark gray� for

x�xC and positive values �light gray� for x�xC. Regions

where U0 is positive correspond to high and low speed

streaks for y�0 and y�0, respectively, which compares

well with the experimental observations in Ref. 20.

In the sequel, we study the state at t=150, but results and

FIG. 1. Growth of a turbulent spot at R=250 in a wide domain �Lx�Lz=128�128�. Field of amplitude U0�x ,z , t� in gray levels at t=50, 150, 250, and 350

�from left to right and top to bottom�. The whole domain becomes uniformly turbulent at t�700.
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conclusions are identical at different times. The complete

field �U0 ,W0� corresponding to this reference state is dis-

played in Fig. 2. Except in the very center of the spot that

looks rather messy, streamwise structures are easily recog-

nized, but the trace of the large-scale quadrupolar flow, of

main concern in the present paper, is already visible.

As done by Lundbladh and Johansson,
12

we now pro-

ceed to the elimination of small scales using a Gaussian filter

in spectral space:

Z̄
ˆ
�kx,kz� = Ẑ�kx,kz�exp�− �kx

2 + kz
2�/�2��2� , �9�

where the hat denotes the Fourier transform of any quantity

Z=U0 , . . .. In physical space, this corresponds to a convolu-

tion with a kernel � exp�−���x
2+�z

2� where � is the param-

eter controlling the width of the domain over which the small

scales are smoothed out by the operation. Small scales, indi-

cated by superscript “s,” are recovered afterwards from the

relation Zs=Z− Z̄.

The diameter of the Gaussian averaging window has to

be chosen in accordance with the size of the modulations to

be eliminated, here the small-scale streaks with spanwise

wavelengths of the order 3–6, as can be guessed from Fig. 2.

We used �=� /11, but the results were found to be rather

insensitive to this choice provided that � is sufficiently

small.

As seen in Fig. 3, this filtering procedure yields a clear

picture of the flow outside the spot: the overall pattern

formed by the in-plane components Ū0 and W̄0 has a quadru-

polar aspect that could already be guessed from the consid-

eration of the unfiltered stream-function 	0, whose Laplac-

ian is related to its vortical contents. In what follows, we

term drift flow the large-scale velocity field �Ū0 ,W̄0� with

Poiseuille-like cross-stream profile by analogy with the case

of Rayleigh-Bénard convection, where a flow with the same

global features was introduced by Siggia and Zippelius.
25

Figure 4 displays the velocity components associated

with the fields 	1, 
1. The distribution of the amplitude of

V̄1, displayed in the left panel, represents an average wall-

normal motion, which is maximum in the mid-plane y=0,

positive on the right of the spot’s center x�xC and negative

on its left. In turn, the flow �Ū1 ,W̄1� shown in the right

panel consists in a region centered around the spot where

�Ū1�� �W̄1� and Ū1�0. This structure is easily interpreted as

a wide spanwise recirculation cell with vorticity opposite in

sign to that of the base flow. It is further reminiscent of

what can be deduced from direct numerical simulations of

Lundbladh and Johansson,
12

as displayed in seen their Fig. 9.

In Fig. 5�a� we display the profiles of Ū0 and Ū1 along a

streamwise line going through the center of the spot. The

dashed line corresponds to Ū0 and clearly points out the in-

wards character of the drift flow. In contrast, Ū1 �solid line�
presents a deep trough at the location of the spot. At the

spot’s center where Ū0
0, the superposition of the pertur-

bation u�= Ū1Cy�1−y2� and the base flow Ub�y�	y, shown

in Fig. 5�b�, displays the characteristic S shape of the turbu-

lent velocity profile expected for pCf. The presence of the

spot thus locally increases the wall friction. At different po-

sitions inside the spot, where Ū0�0 �and W̄0�0�, the full

superposition Ū�y�=y�1+ Ū1C�1−y2��+ Ū0B�1−y2� leads to

asymmetric mean velocity profiles �Fig. 5�c� for point xL and

Fig. 5�d� for point xR�, which are reminiscent of the averaged

profiles obtained by Barkley and Tuckerman in their simula-

tions of the banded regime of turbulent pCf.
19

IV. GENERATION OF LARGE SCALES
FROM SMALL SCALES

The mechanism driving the quadrupolar drift flow is dis-

cussed in terms of equations obtained by filtering from the

model’s equations, as described in the Appendix. We focus

on the slowly varying quantities A0=�	̄0, A1=�	̄1, and

A2=�
̄1, driven by B1=−�U0
sV1

s , where �=�2��+����0

and B2=�1�U0
s�2− �W0

s�2+�2�U1
s�2− �W1

s�2. The latter quanti-

ties represent the components of the Reynolds stress tensor,
26

which do not average to zero over the surface of the spot �B1

corresponds to the energy extracted from the laminar flow

and B2 mostly to the energy contained in the streamwise

streaks�.
Introducing slow variables X and Z whose rate of change

is inversely proportional to the width of the window that is

dragged over the data upon averaging through Eq. �9�, one

can observe that, in the equations, the quantity B1 appears

with one derivative in X or Z less than B2, due to the fact that

B1 substitutes one in-plane differentiation by a cross-stream

O�1� differentiation. Further assuming that the spot is in a

quasi-steady state ��t�0� and that space derivatives are neg-

ligible when compared to O�1� constants when operating on

the same quantities, at lowest significant order one can sim-

plify Eqs. �A1�–�A3� to read

R−1�0A0 = a1� 3

2�ZA2 − �XA1� , �10�

R−1�1A1 = �ZB1 − a1�XA0, �11�

FIG. 2. Streak flow field �U0 ,W0� at t=150.
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FIG. 3. Top: level lines of averaged velocity components Ū0 �left� and W̄0 �right�, illustrating large-scale streamwise inflow and spanwise outflow around the

spot. Bottom, left: representation of this flow as vectors. Bottom, right: level lines of the unfiltered stream function 	0.

FIG. 4. Velocity amplitudes V̄1 �left� and �Ū1 ,W̄1� �right�.
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R−1�1A2 = − �XB1. �12�

The structure of this system invites one to examine the shape

of the dominant Reynolds stress contribution B1 as a function

of the slow variables. Figure 6 displays the averaged Rey-

nolds stress field associated with the small scales −U0
sV1

s . As

could be anticipated, the latter is positive under the spot and

one can furthermore observe its single-humped shape that,

following Li and Widnall,
15

who developed a similar ap-

proach for spots in plane Poiseuille flow, can be modeled as

a Gaussian function of the form exp�−�X2+Z2� /2�. This as-

sumption will help us to make an educated guess about the

mechanisms at work.

Considering first Eq. �12�, from the third equation in Eq.

�8�, i.e., V1=�
1 /�, we obtain that the contribution to V̄1

generated by B1 is 
X exp�−�X2+Z2� /2�; i.e., a pattern with

a positive hump for X�0 and a negative one for X�0, re-

sembling that in Fig. 4 �left�. This velocity component forms

with Ū1 a large-scale recirculation loop. As seen from the

first equation in Eq. �8�, Ū1 contains two contributions of

potential and rotational origins, respectively. In the neighbor-

hood of the X axis, the variation of �XB1 is dominated by its

X dependence so that A2= ��XX+�ZZ�
̄1��XX
̄1=−�XB1 and,

accordingly, �X
̄1
−B1
−exp�−�X2+Z2� /2�. As to the ro-

tational contribution −�Z	̄1, from Eq. �11� and forgetting the

coupling with A0 �which is of higher order due to the way it

is generated from A1 and A2�, we have similarly A1= ��XX

+�ZZ�	̄1��ZZ	̄1
�ZB1; hence, −�Z	̄1
−B1, so that it adds

constructively to the potential part. The resulting Ū1 closes

the recirculation loop as inferred from Fig. 4 �right�.
Inserting A1
�ZB1 and A2
−�XB1 in Eq. �10�, we ob-

tain a right-hand side in the form −XZ exp�−�X2+Z2� /2� for

�	̄0, which is the vorticity contained in the �U0 ,W0� veloc-

ity field. This field displays four lobes with alternating signs.

An approximation to the large-scale drift flow along the axes

can easily be obtained. Indeed, Ū0 can be obtained from

Ū0=−�Z	̄0 by integrating A0= ��XX+�ZZ�	0 over Z and ne-

glecting �XX	0 since 	0 varies much less with X than with Z

along the X axis. We obtain Ū0
−X exp�−�X2+Z2� /2�,
which accounts for the observed inward flow along the

FIG. 5. �Color online� �a� Ū1 �solid� and Ū0 �dashed� as functions of coordinate x along the streamwise center-line. ��b�–�d�� Full average streamwise velocity

profiles Ū�y� at x=xC �b�, x=xL �c�, and x=xR �d�; the laminar profile Ub�y�	y is indicated by a dashed-dotted line.

094105-6 M. Lagha and P. Manneville Phys. Fluids 19, 094105 �2007�



streamwise center-line of the spot. The same argument can

be transposed for the spanwise direction �now 	0 varies

most rapidly in the X direction, which makes �ZZ	0 negli-

gible and eases the integration over X�, yielding

W̄0
Z exp�−�X2+Z2� /2�, which similarly accounts for the

outward flow along the spanwise center-line. Notice, how-

ever, that this solution is too approximate to fulfil the conti-

nuity condition accurately since computing �XŪ0+�ZW̄0

leaves a residual of the form �X2−Z2�exp�−�X2+Z2� /2�,
though the main contribution in exp�−�X2+Z2� /2� is nicely

compensated near the origin, where the Gaussian is at its

maximum. At any rate, the chosen shape is only a simplify-

ing assumption.

Physically, the spot is thus characterized by a mean cor-

rection to the base flow �represented in the model by

Ū1�0�, itself generated by a wall normal velocity compo-

nent �here, V̄1� and forming a large recirculation loop.

In turn, the transport of that mean correction �here, Ū1Cy�1
−y2�� by the base flow appears to be a source term for the

large-scale drift flow �here, �Ū0 ,W̄0�� whose pattern is en-

slaved to its streamwise gradient, balancing viscous forces

and inertia �according to R−1�0Ū0+a1�xŪ1�0� and express-

ing flow continuity ��xU0+�zW0=0�.

V. CONCLUSION

In this paper, we have studied the large-scale structure of

the flow inside and around a turbulent spot in a transitional

pCf model focusing on the in-plane dependence of a small

number of velocity amplitudes. The approach is supported by

the qualitative consistency between previous experimental

results in the transitional regime
20

and our own numerical

simulations of the model.

Inside the spot, we find a wide spanwise recirculation

loop with vorticity opposite in sign to that of the base flow.

In particular, a patch of streamwise correction counteracting

the base flow is observed, giving an S shape typical of tur-

bulent flows to the velocity profile inside the spot. A reduced

model �Eqs. �11� and �12�� links this recirculation to Rey-

nolds stresses −U0
sV1

s generated by the small-scale fluctua-

tions. Outside the spot, the existence of an inward-

streamwise outward-spanwise quadrupolar drift flow has

been pointed out, the origin of which is attributed to a linear

coupling with this recirculation and linked to linear momen-

tum conservation through Eq. �10�. By simply assuming that

the region where the Reynolds stresses contribute to the tur-

bulent energy production �i.e. −�U0
sV1

s �0� is one-humped

with localized support, the main features of the large-scale

flow extracted from numerical simulations by filtering are

recovered. In this approach, we only focused on the genera-

tion of large scales by small scales, but considered neither �i�
the interactions between small scales themselves nor �ii� the

feedback of large scales on small scales. Closure assump-

tions are clearly needed in order to have a self-consistent

theory, and especially to explain the sustainment of turbu-

lence within a spot, i.e., problem �i�, and its spreading as

time proceeds, i.e., problem �ii�.
Owing to the general character of the argument leading

to their existence, one might also expect to find these large-

scale corrections in and around spots developing in transi-

tional shear flows other than pCf, which have already been

accounted for.
5,12,14

Evidence of their presence can indeed be

obtained from the numerical work of Henningson and Kim
21

on plane Poiseuille flow and from Figs. 6 and 9 describing

the result of ensemble averaging of turbulent spots in bound-

ary layer flow with slightly adverse pressure gradient in the

laboratory experiments of Schröder and Kompenhans.
22

De-

spite its limited cross-stream resolution, our modeling of

transitional plane Couette flow has thus been shown to pro-

vide valuable explanations to previous observations, which

might call for new laboratory experiments since, besides the

theoretical challenge of understanding laminar-turbulent co-

existence in detail, the problem of the transition to turbu-

lence in wall flows has a great technical importance.

FIG. 6. Distribution of the averaged Reynolds stress field −U0
sV1

s �left� and its variations along streamwise �solid line� and spanwise �dashed line� cuts through

the maximum of the distribution taken as the center of the spot at xC=64, zC=60 �right�.
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APPENDIX: MODEL’S EQUATIONS AND DERIVATION
OF EQS. „10…–„12…

As explained in the main text, the model is obtained by

projecting the Navier-Stokes equations on the chosen basis

�Eqs. �1�–�3�� with velocity perturbations expanded on the

same basis. The set completing Eqs. �4�–�6� reads

�tW0 + NW0
= − �zP0 − a1�xW1 + R−1�� − �0�W0,

NW0
= �1�U0�xW0 + W0�zW0�

+ �2�U1�xW1 + W1�zW1 + ��V1W1� ,

�tU1 + NU1
= − �xP1 − a1�xU0 + R−1�� − �1�U1,

NU1
= �2�U0�xU1 + U1�xU0 + W0�zU1 + W1�zU0

− ��V1U0� ,

�tW1 + NW1
= − �zP1 − a1�xW0 + R−1�� − �1�W1,

NW1
= �2�U0�xW1 + U1�xW0 + W0�zW1 + W1�zW0

− ��V1W0� ,

�tV1 + NV1
= − �P1 + R−1�� − �1��V1,

NV1
= �3�U0�xV1 + W0�zV1� ,

where � denotes the two-dimensional Laplacian �xx+�zz. Co-

efficients all derive from integrals of the form

Jn,m = �
0

1

yn�1 − y2�mdy = �k=0

m � k

m
� �− 1�k

2k + n + 1
.

We have: a1=1/�7, a2=�27/28, �1=3�15/14, �2=�15/6,

�3=5�15/22, �0=5/2, �1=21/2, �1�=�2, ��=
3

2
�, ��=

1

2
�,

and �=�3.

The equations governing fields 	0, 	1, 
1, from which

the velocity components derive through Eqs. �7� and �8�, are

obtained in the usual way by differentiating and cross-

subtracting or adding the previous equations. They read

��t − R−1�� − �0���	0 = ��zNU0
− �xNW0

�

+ a1� 3

2�z�
1 − �x�	1� , �A1�

��t − R−1�� − �1���	1 = ��zNU1
− �xNW1

� − a1�x�	0,

�A2�

��t�� − �2� − R−1��2 − 2�2� + �1�2���
1

= �2��xNU1
+ �zNW1

� − ��NV1
. �A3�

The introduction of averaged quantities Ũ0, W̃0, Ũ1, and

W̃1 in Eqs. �7� and �8� is forced by our choice of periodic

boundary conditions, otherwise the possibility of a uniform

velocity correction corresponding to linearly increasing

potential/stream functions would be overlooked. They are

governed by

d

dt
Ũ1 = �2�� + ���U0V1

˜− �1R−1Ũ1,

d

dt
W̃1 = �2�� + ���W0V1

˜− �1R−1W̃1

d

dt
Ũ0 = �2�� − ���U1V1

˜− �0R−1Ũ0,

d

dt
W̃0 = �2�� − ���W1V1

˜− �0R−1W̃0,

where the wide tildes mean averaging over the whole do-

main. Among this set of equations, the first one is the most

relevant since it precisely corresponds to the expected mean

flow correction. Quantity �2��+��� was denoted � in the

text.

It was observed in Fig. 1 that the flow within the turbu-

lent spot resembles developed turbulent flow �see also Refs.

9 and 15�. Accordingly, one obtains that the only contribu-

tions to the averaged equations come from the terms that

keep a constant sign over the surface of the spot, namely, the

main Reynolds stress term −U0V1 associated with energy

extraction from the mean flow and the other terms U0
2, W0

2,

U1
2, and W1

2. Equations �A1�–�A3� then reduce to

��t − R−1�� − �0���	̄0 =
1

2�xz��1U0
2 − W0

2 + �2U1
2 − W1

2�

+ a1� 3

2�z�
̄1 − �x�	̄1� , �A4�

��t − R−1�� − �1���	̄1 = �z�− �U0V1� − a1�x�	̄0, �A5�

��t�� − �2� − R−1��2 − 2�2� + �1�2���
̄1

= �2�x�− �U0V1� , �A6�

with �=�2��+���. Following Li and Widnall, we then split

the velocity components into small and large scales, i.e.,

U0� Ū0+U0
s , etc., and only keep the contribution to the

Reynolds stresses coming from the small scales. This leads

to the same set of equations as above except that U0, U1 , . . .

are replaced by their small-scale parts U0
s , U1

s , . . ..
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