
�>���G �A�/�, �?���H�@�y�R�y�k�j�y�3�N

�?�i�i�T�b�,�f�f�?���H�@�T�Q�H�v�i�2�+�?�M�B�[�m�2�X���`�+�?�B�p�2�b�@�Q�m�p�2�`�i�2�b�X�7�`�f�?���H�@�y�R�y�k�j�y�3�N

�a�m�#�K�B�i�i�2�/ �Q�M �k�R �C�m�H �k�y�R�9

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�J�Q�/�2�H�B�M�; �Q�7 �T�H���M�2 �*�Q�m�2�i�i�2 �~�Q�r�X �A�A�X �P�M �i�?�2 �b�T�`�2���/�B�M�; �Q�7
�� �i�m�`�#�m�H�2�M�i �b�T�Q�i

�J���?�2�` �G���;�?��

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

�J���?�2�` �G���;�?���X �J�Q�/�2�H�B�M�; �Q�7 �T�H���M�2 �*�Q�m�2�i�i�2 �~�Q�r�X �A�A�X �P�M �i�?�2 �b�T�`�2���/�B�M�; �Q�7 �� �i�m�`�#�m�H�2�M�i �b�T�Q�i�X �S�?�v�b�B�+�b
�Q�7 �6�H�m�B�/�b�- ���K�2�`�B�+���M �A�M�b�i�B�i�m�i�2 �Q�7 �S�?�v�b�B�+�b�- �k�y�y�d�- �R�N �U�R�y�V�- �T�T�X�R�y�9�R�y�3�X �I�R�y�X�R�y�e�j�f�R�X�k�d�N�j�R�9�j�=�X �I�?���H�@
�y�R�y�k�j�y�3�N�=

https://hal-polytechnique.archives-ouvertes.fr/hal-01023089
https://hal.archives-ouvertes.fr


Modeling of plane Couette flow. II. On the spreading of a turbulent spot
Maher Lagha 

 
Citation: Physics of Fluids (1994-present) 19, 104108 (2007); doi: 10.1063/1.2793143 
View online: http://dx.doi.org/10.1063/1.2793143 
View Table of Contents: http://scitation.aip.org/content/aip/journal/pof2/19/10?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in  
Numerical simulation of bubble dispersion in turbulent Taylor-Couette flow 
Phys. Fluids 26, 043304 (2014); 10.1063/1.4871728 
 
Bi-stability in turbulent, rotating spherical Couette flow 
Phys. Fluids 23, 065104 (2011); 10.1063/1.3593465 
 
Transient growth and minimal defects: Two possible initial paths of transition to turbulence in plane shear flows 
Phys. Fluids 16, 3515 (2004); 10.1063/1.1775194 
 
Interaction between Ekman pumping and the centrifugal instability in Taylor–Couette flow 
Phys. Fluids 15, 467 (2003); 10.1063/1.1534108 
 
On a self-sustaining process in shear flows 
Phys. Fluids 9, 883 (1997); 10.1063/1.869185 

 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.104.29.2 On: Mon, 21 Jul 2014 10:00:30

http://scitation.aip.org/content/aip/journal/pof2?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/test.int.aip.org/adtest/L23/1691523420/x01/AIP/JAP_HA_JAPCovAd_1640banner_07_01_2014/AIP-2161_JAP_Editor_1640x440r2.jpg/4f6b43656e314e392f6534414369774f?x
http://scitation.aip.org/search?value1=Maher+Lagha&option1=author
http://scitation.aip.org/content/aip/journal/pof2?ver=pdfcov
http://dx.doi.org/10.1063/1.2793143
http://scitation.aip.org/content/aip/journal/pof2/19/10?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/26/4/10.1063/1.4871728?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/23/6/10.1063/1.3593465?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/16/10/10.1063/1.1775194?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/15/2/10.1063/1.1534108?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/9/4/10.1063/1.869185?ver=pdfcov


Modeling of plane Couette ßow. II. On the spreading of a turbulent spot
Maher Laghaa�
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In this paper, we study the spreading mechanism of turbulent spots in plane Couette ßow, where
ßuid is sheared between two parallel plates moving in opposite directions. The analysis of the
coherent structures on the border between the laminar and turbulent regions reveals the existence of
many vortices with wall-normal axes occupying the full gap between the plates. The streamwise
component of the velocity Þeld of these vortices is the streaks. Due to their self-advection, these
vortices move parallel to the plates. During their motions, they carry the other perturbation
components such as the streamwise and spanwise vortices. ©2007 American Institute of Physics.
�DOI: 10.1063/1.2793143�

I. INTRODUCTION

Plane Couette ßow�PCF�, shear ßow between two par-
allel plates moving in opposite directions with velocities
±Up, experiences a transition to turbulence marked by the
nucleation and growth ofturbulent spots, i.e., patches of tur-
bulent ßow scattered amid laminar ßow and separated from
it by well-deÞned fronts�e.g., Ref.1�.

This transition is not restricted to the PCF case but also
occurs in other shear ßows with great practical interest, such
as plane Poiseuille2 and boundary layer ßows.3 Despite a
large body of numerical4Ð6 and laboratory7Ð10 experiments,
many questions regarding such transition remain unan-
swered, such as the mechanisms involved in the growth of
turbulent spots.11,12

Based on experiments in boundary layer ßow, Gad-El-
Hak et al.3 proposed a mechanism called growth by destabi-
lization. The spot was observed to travel with a lower veloc-
ity than the surrounding ßow. Hence it acts as a blockage,
and the laminar ßow Þeld on the outskirts of this spot is
accelerated. The base ßow as well as its linear stability prop-
erty are modiÞed and the growth of inÞnitesimal perturba-
tions occurs.

Dauchot and Daviaud1 discussed this mechanism in an
experimental study of the PCF. Externally applied perturba-
tions that trigger turbulent spots were made by injecting tur-
bulent jets into the laminar ßow. They found velocity proÞles
indicating that the ßow is accelerated outside the spot, sup-
porting the mechanism of Ref.3. But a direct demonstration
of this mechanism has not yet appeared.

Tillmark8 experimentally analyzed the ßow Þeld in the
vicinity of the spot in the PCF. He found that, in the span-
wise direction, the spot forces the ßuid outwards, giving rise
to a spanwise outßow Þlling all of the gap between the two
plates. The ßow outside the spot is hence modiÞed and he
suggested that the spanwise growth of turbulent spots can be
due to the destabilization mechanism of Gad-El-Haket al.3

In the numerical study of Schumacher and Eckhardt,5 a more
complete picture of the ßow on the outskirts of the spot was

given. In addition to the spanwise outßow observed in Ref.
8, they found a streamwise inßow toward the spot. They
argued that the ßow outside the spot plays an important role
in the spreading of the spot. They stressed the fact, however,
that this spreading is driven by a nonlinear mechanism.

In their experimental investigations of the dynamics of
spots in the plane Poiseuille ßow, Carlsonet al.2 noted that
the spots were accompanied by oblique waves at their lead-
ing edge�wing tips�. It was difÞcult, however, to Þnd out
whether the waves broke down and formed the new turbu-
lence on the wing tips, or whether they are overtaken by the
existing turbulence.

The nature of these waves and their role in the spreading
of the spot were studied, using numerical simulations, by
Henningsonet al.13 Due to the modiÞcation of its stability
properties by the presence of the spot, the surrounding ßow
is susceptible to unstable oblique TollmienÐSchlichting
waves, which may grow and then break down into turbu-
lence. However, the linear growth rate of these waves calcu-
lated by Henningson14 is too small compared to the observed
one. Therefore, he suggested that the waves attain their large
growth rate by some additional mechanisms.

Furthermore, Alavyoonet al.15 compared spots in plane
Poiseuille and boundary layer ßows and pointed out the ab-
sence of waves at the wing tips of spots in the latter case.
According to these authors, this indicates that if the same
spreading mechanism is at work in both cases, then the
waves are of no importance for the spreading itself, whereas
if these waves play an important role in the spreading of
spots in plane Poiseuille ßow, then the spreading mecha-
nisms are different and depend on the ßow conÞgurations.
Hence, the role of the waves in the breakdown process and in
the spreading mechanism of the turbulent domain remains
unclear and needs further study, as noted by Henningson.

Therefore, the question of which mechanism is involved
in the spreading of spots in shear ßows is to a large extent
open, and despite a large body of experiments, a simple in-
tuitive physical picture has been lacking.

An attempt to tackle such a question led us to derive a
model for PCF, presented in Ref.16. The outline of this
paper is as follows. In Sec. II, the model is introduced anda�Electronic mail: maher@ladhyx.polytechnique.fr
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some numerical results on the dynamics of turbulent spots
are described. Then the structure of the ßow at the boundary
between laminar and turbulent domains is analyzed and the
spreading mechanism is elucidated in Sec. III. This mecha-
nism is further illustrated using a simple one-dimensional
model. The main results of this paper are assessed in Sec. IV.

II. GROWTH OF A TURBULENT SPOT

A. The model

In Part I �Ref. 16�, a model for the transitional plane
Couette ßow has been derived from the NavierÐStokes equa-
tions using the Galerkin method. First, lengths were scaled
by the half-gap between the platesh, and velocities byUp.
Second, the streamwise�x� , wall-normal �y� , and spanwise
�z� velocity components were expanded, respectively, as

u�x,z,t,y� = U�y� + U0�x,z,t�R0� y� + U1�x,z,t�R1� y� , �1�

v�x,z,t,y� = V1�x,z,t�S1� y� , �2�

w�x,z,t,y� = W0�x,z,t�R0� y� + W1�x,z,t�R1� y� , �3�

where U�y� =Uby for y� � •1 ,1� is the dimensionless base
ßow �Ub=1� and the perturbation components areU0, W0,
U1, W1, andV1. They-dependent functions satisfy the no-slip
boundary conditions on the platesy= ±1 and are polynomi-
als, R0� y� =B�1• y2� , R1� y� =Cy�1• y2� , and S1� y� =A�1
• y2�2, whereA, B, andC are constants. The model consists
of a set of three partial differential equations governing the
stream functions� 0 and� 1 and the velocity potential� 1 of
the velocity componentsU0, W0, U1, V1, W1, and are given in
the Appendix. The control parameter is the Reynolds number
R=Uph/ � , where� is the kinematic viscosity.

The derivation of models truncated at higher orders is
possible, however we will have to settle with the present
model. In fact, the use of such a low-dimensional model can
be justiÞed by some features of the PCF. First, the considered
Reynolds numbers are close to the stability thresholdRg
� 175 �Ref. 16�. For such numbers, the turbulent structures
are observed to Þll the entire gap between the plates�see,
e.g., Ref.10�. Second, the correction to the laminar proÞle is
already contained in the model and is represented by the
streamwise velocity componentU1R1. This component was
shown to be important in the generation of the quadrupolar
large-scale ßow.16

Some prerequisites in relation to the previous part�Ref.
16� are now introduced. The wall-normal velocity associated
with the streamwise vortices is represented byV1. This ve-
locity induces the streaksU0 through the lift-up mechanism.
In the half-spacey� 0, regions whereU0 is positive�nega-
tive� correspond to high�low� speed streaks. In the other
half-space y� 0, the situation is reversed. Then, to an
x-dependent streak,U0 corresponds to a spanwise velocity
componentW0 so that the two-dimensional ßow�U0,W0�
satisÞes the continuity equation� xU0+ � zW0=0. Since this
ßow has a Poiseuille-like cross-stream proÞleR0� y� , it is
termed drift-ßow herein.

B. Coherent structures on the front

A standard Fourier pseudospectral method with periodic
boundary conditions in the streamwise and spanwise direc-
tions has been implemented for the integration of the equa-
tions of the model�A4�Ð�A6�. A second-order AdamsÐ
Bashforth scheme is used for the advancement in time.
Simulations were performed in a domain of size�Lx� Lz�
=�32� 32� with space steps� x= � z=0.125 and� t=0.001.
With this resolution, small-scale in-plane structures such as
streaks and streamwise vortices with a streamwise length
about 4h and a spanwise extent about 2h are resolved with
16 collocation points in the spanwise direction and 32 in the
streamwise direction. Regarding the time increment, smaller
time steps did not produce results different from those shown
here during comparable time lengths.

As an initial condition, we take localized functions� 0,
� 1, and� 1,

� 0�x,z,t = 0� = � 1�x,z,t = 0�

= � 1�x,z,t = 0�

= A exp• �x2+z2� /� ,

whereA is an amplitude and� is related to the size of the
initial turbulent domain.16

Tracking the growth of a turbulent spot can be done by
using one component of the velocity or vorticity Þelds at a
given y plane. Of particular beneÞt for our present study is
the wall-normal vorticity associated to the drift ßow
�U0,W0� . Figure 1 displays gray-level snapshots of	 2� 0
= � xW0• � zU0, where	 2= � xx+ � zz, at different times after ini-
tiation. The spot grows and contaminates the laminar domain
at t � 210.

Flow structures at the boundaries between the laminar
and turbulent domains are the elements needed for under-
standing the spreading mechanism of the spots. Arrows in
Fig. 1 �at t=156� show two adjacent patches with opposite
signed vorticity	 2� 0 lying on the front propagating to the
right. As shown in Fig.2, these patches correspond to two
counter-rotating vortices�U0,W0� . First, streamwise streaks
U0 are easily identiÞed as regions where�U0� 
 �W0�. The
sign of U0 is alternating in the spanwise direction between
positive and negative values, so that when the centers of the
vortices are aligned along thez direction, the distance be-
tween the centers corresponds roughly to the width of the
streak. This distance varies from 1h to 3h, as can be seen
from Fig. 2. Second, as may be inferred from the sense of
rotation of both vortices, this dipole is propagating to the
right. Before studying the origin and the consequence of this
motion, it is instructive to track the expansion of the turbu-
lent spot with the remaining ßow velocity components.

Figure 3 displays the spatial distribution of the wall-
normal velocityV1 and the ßow Þeld�U1,W1� , correspond-
ing to the region in Fig.2. The reconstruction of the total
ßow Þeld(�U1,W1�R1� y� ,V1S1� y� ) in this region reveals a
crescent vortex. Its legs are two streamwise vortices that re-
generate the streaksU0 through the lift-up effect. There are
two kinds of crescent vortices. During the spreading of the
spot, both kinds are present inside the turbulent domain, but
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more interestingly, the crescent vortices present in the front
propagating to the right� in the streamwise direction or
roughly in the oblique direction� are of the Þrst kind, as is the
one shown in Fig.3, while the other kind populates the front
propagating to the left. This observation is explained later
on. The generation mechanism of these vortices is the subject
of a forthcoming paper.

III. THE SPREADING OF THE TURBULENT SPOT

The numerical simulations of the model have been used
to identify elementary processes involved in the spreading
mechanism. The dipoles�U0,W0� carry, during their propa-
gation, the perturbation components�U1,V1,W1, . . .� in the
�x,z� plane. This spreading mechanism has two points to be
examined. The Þrst concerns the origin of the motion of the
dipoles while the second deals with the consequence of such
motion.

Elements of proof for both points can be given by study-
ing the contribution of the advective termU0� xf +W0� zf in
the governing equation off, where the quantityf can be the
wall-normal vorticities	 2� 0, 	 2� 1, or the velocityV1, or
the streamwise vorticity, etc. However, since this method
produces data sets requiring a lot of posttreatment, it will be
used only in Sec. III A to study the origin of the motion of
the dipoles�U0,W0� � Þrst point�. The entrainment of the per-

turbation components by these dipoles�second point� is in-
vestigated using a model in Sec. III B.

A. Origin of the dipole motion ŒU0 ,W0ƒ

Let us consider the governing equation for the stream-
function � 0 of the drift ßow �U0,W0� , given in the Appen-
dix, which can be rewritten as

� � t • R•1 � 	 2 • � 0�� 	 2� 0 = J0 + J1 + J2 + J3 + J4 + J5, �4�

where the wall-normal vorticity of the ßow�U0,W0� is
� xW0• � zU0=	 2� 0. On the right hand side�rhs� we have

J0 = • � 1�U0� x	 2� 0 + W0� z	 2� 0� ,

J1 = • a1�Ub +
� 2

a1
U1�� x	 2� 1,

J2 = • � 2�  � +  �V1	 2� 1,

J3 = � 2
3
2�U1� z	 2� 1 • W1� x	 2� 1� ,

J4 = • � 2W1� z	 2� 1,

J5 = a1
3
2Ub� z	 2� 1.

FIG. 1. Growth of a turbulent spot withR=200 in a domain withLx� Lz=32� 32. Wall-normal vorticity	 2� 0 in gray levels. From left to right and top to
bottom:t=20,70,156,210.
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The vorticity 	 2� 0 results from the projection overR0� y� of
the three-dimensional wall-normal vorticity� xw• � zu. In the
same way, both termsJ0 and J1 come from the projection
overR0� y� of the termu� x� � xw• � zu� in the equation govern-
ing the vorticity � xw• � zu. The projection overR1� y� of � xw
• � zu gives the vorticity	 2� 1= � xW1• � zU1.

Note that by setting the ßow componentsV1, W1, andU1
to zero, all the terms in the rhs of Eq.�4� vanish exceptJ0.

Hence, the equation governing the drift ßow reduces to the
two-dimensional NavierÐStokes equation, with an additional
viscous dampingR•1 � 0 induced by the friction of this ßow
on the plates. The termJ0 represents the advection of the
two-dimensional ßow�U0,W0�R0 for its own vorticity
	 2� 0R0.

The second termJ1 accounts for the generation of
	 2� 0R0 through the shearing of the vorticity	 2� 1R1 by the

FIG. 2. The ßow�U0,W0� represented by arrows. From
left to right and top to bottom:t=154, 156, 160, and
162.

FIG. 3. The isocontours ofV1 � left�
and the ßow Þeld�U1,W1� � right� at
t=156. This ßow distribution repre-
sents a crescent vortex.
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velocity componentu� =U�y� +U1R1� y� . In regions whereU1
is negative,U1R1 represents a correction to the base ßow so
that thisu� has locally anS shape, similar to the mean proÞle
of the turbulent plane Couette ßow.16 In the following, the
scalarUb

˜ =Ub+ � 2/a1U1 as well asu� are termed the cor-
rected base ßow. Note Þnally that the lift-up effect is repre-
sented by the termJ5. Further interpretations of the terms in
the rhs will be introduced on demand to analyze their differ-
ent roles.

Consider now the dipole depicted at successive times in
Fig. 2. Its wall-normal vorticity	 2� 0 consists of two adja-
cent patches with opposite signs as shown in Fig.4 �left�. In
front of each one, there is a same-signed patch ofJ0, given in
the right panel of this Þgure. This distribution ofJ0 is remi-
niscent of the distribution of the nonlinear term, in the two-
dimensional NavierÐStokes equation, in front of a propagat-
ing dipole. Hence, the origin of the motion of the considered
dipole would be the self-advection of the ßow�U0,W0� if J0
is preponderant over the other terms in the rhs of Eq.�4�.

This is indeed the case as attested to by Fig.5, where we
plotted 	 2� 0 between two successive instants as a function
of x along the streamwise the red�dashÐdotted� line �for z
� 9� and the green�dashed� line �for z� 10� in Fig. 4 to-
gether with the whole rhs of Eq.�4�. The termJ0 represents
the largest contribution to this rhs, which is negative�posi-
tive� in front of the negative�positive� patch of	 2� 0 so that
this vorticity propagates to the right. From a physical point
of view, this propagation can be explained as the effect of the
induced velocity of one vortex on the other in accordance to
the BiotÐSavart law.

In the following, we study the contributions, albeit
weaker, of the other terms. Such study will give a clear pic-
ture of the roles of these terms.

First, the termJ1 acts against the propagation of the
dipole by damping the vorticity	 2� 0. Indeed, this term is
positive �negative� where 	 2� 0 is negative�positive�, as
shown in Fig.5. The origin of such behavior is as follows.
Once the streaksU0 are regenerated by the streamwise vor-

FIG. 4. �Color online� Left: Distribu-
tion of the wall-normal vorticity	 2� 0
at t=156. The two patches of	 2� 0
with positive and negative values cor-
respond to the dipole depicted in Fig.
2. Right: The spatial distribution ofJ0
presents two patches of positive and
negative values in front of	 2� 0.

FIG. 5. �Color online� Different quantities as functions of coordinatex along the dash-dotted red line�left panel� and dashed green line�right panel� in Fig.
4. The values of	 2� 0 at t=156�in black dashed-line� and att=162�in solid red line�. The total rhs of Eq.�4� in dashed magenta.J0 in dash-dotted blue line
andJ1 in solid green line. The arrows indicate the sense of propagation.
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tices, they are sheared by the base ßow�linear transport� and
induce the velocity componentU1 according to � tU1
� • a1Ub� xU0.

Within the formulation of the equations in terms of
stream functions, this generation mechanism is represented
by the linear term •a1Ub� x	 2� 0 in the equation governing
	 2� 1 � �A5��. Hence, the distribution of the induced vorticity
	 2� 1 through the shearing of the vorticity	 2� 0 by the base
ßow is roughly given by	 2� 1� • a1Ub� x	 2� 0 �with Ub=1�.
It follows that

J1 = • a1Ũb� x	 2� 1 � Ũb� xx	 2� 0,

showing thatJ1 behaves like a dissipative term�with Ub
˜

� 0�.
Consider then the termJ2, which involves the quantities

V1 and 	 2� 1. On the right of both patches of positive and
negative values of	 2� 0, the velocityV1 remains positive
�crescent contour� whereas	 2� 1 �� • Ub� x	 2� 0� changes its
sign. It follows that in front of the dipole,J2 and J0 have
opposite-signed distributions, thus the former term acts
against the progression of the dipole.

The remaining termsJ3, J4, andJ5 are now considered.
The head of the crescent vortex is a spanwise vortex, where
the ßow �U1,W1� is dominated by�U1� 
 �W1� and U1� 0
�althoughU1� 0 in the present case�. Hence, lumping the
three terms and neglecting the contribution ofW1 yields

J3 + J4 + J5 	 a1
3

2
�Ub +

� 2

a1
U1�� z	 2� 1,

which accounts for the lift-up effect, i.e., the extraction of the
energy from the corrected base ßow�Ub+ � 2/a1U1� by the
wall-normal velocityV1. Therefore, the quantityJ3+J4+J5 is
a source term for the streaks and thus for their wall-normal
vorticity 	 2� 0.

As a conclusion, by analyzing the different terms on the
rhs of Eq.�4�, this short study shows that� i� the dominant
term isJ0 and�ii � the distributions of the different remaining
terms can be determined since the involved quantities
�U1,U0,V1, . . .� are correlated through the cycle of self-
sustained mechanisms for wall-bounded turbulence.

The propagation of the vortices�U0,W0� is hence due to
their self-advection�the termJ0� . While some of these terms
enhance the propagation, such asJ3+J4+J5, which intensi-
Þes the vorticity of the dipole, other terms act against this
propagation by either weakening this vorticity, such asJ1, or
by damping the contribution ofJ0, such asJ2.

Note, however, that the preponderance of one term over
the others is not permanent. For example, it is clear that
during the linear growth of the vorticity	 2� 0 by the lift-up
effect, the nonlinear contribution ofJ0 is negligible com-
pared to that ofJ5. In other words, arguing that a term domi-
nates another one necessitates the explicit reference to which
mechanism in the cycle is occurring. In this study, we were
only concerned about the origin of the propagation of the
dipoles once they are generated and about the roles of the
different terms on the rhs of Eq.�4� in this propagation.

In the following, the consequence of the motion of the
dipoles on the other perturbation components is studied us-
ing a set of one-dimensional partial differential equations.

B. Entrainment of the perturbations: An illustrative
model

A simple model is now derived to illustrate the entrain-
ment of the perturbations in thex direction through the mo-
tion of the dipoles�U0,W0� . Thez dependence of the pertur-
bations is frozen on some Fourier modes. The symmetries of
the problem are then used to simplify the expansions of the
Þelds by choosing a set of functions satisfying a particular
symmetry. This choice is driven by the fact that the wall-
normal vorticity of a dipole propagating in thex direction is
odd in z.

Hence, the Þelds� 0, � 1, and � 1 for such a solution
have these Fourier expansions:

� 0 = 

n� 1

An�x,t�sin�n� z� ,

� 1 = 

n� 1

Bn�x,t�sin�n� z� ,

� 1 = 

n� 0

Cn�x,t�cos�n� z� ,

where� =2� /Lz is the spanwise fundamental.
A stream-function of a dipole�U0,W0� can be repre-

sented by the Þrst mode� 0�x,z,t� =A1�x,t�sin� � z� . How-
ever, due to thez periodicity, this dipole cannot propagate in
the x direction. To remedy this, it is sufÞcient to include the
second harmonic in this expansion,A2�x,t�sin�2� z� . The su-
perposition of these two modes yields a modulated array of
vortices in the spanwise direction.

Then for the stream-function� 1, we have to include the
Þrst two modes, since the vorticity	 2� 1 is linearly gener-
ated from	 2� 0 through the linear term •a1Ub� x	 2� 0 �Eq.
�A5��.

Last, the expansion of the potential velocity� 1, which is
related to the wall-normal velocityV1 of the vortices, is trun-
cated. The nonlinear interactions of the in-plane�x,z� ßow
components induce thisV1 through the terms •U1� zW0 and
W0� zU1. Accordingly, we have to keep the Fourier modes
generated by these terms withU1=• � z� 1 and W0= � x� 0.
With the retained modes for� 0 and� 1, these modes are 1,
cos� � z� , cos�2� z� , and cos�3� z� . Finally, the expansions read

� 0 = A1�x,t�sin� � z� + A2�x,t�sin�2� z� , �5�

� 1 = B1�x,t�sin� � z� + B2�x,t�sin�2� z� , �6�

� 1 = C0�x,t� + C1�x,t�cos� � z� + C2�x,t�cos�2� z�

+ C3�x,t�cos�3� z� . �7�
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Numerical results

The numerical integration of the illustrative model can
be easily done using the code already developed for the no-
slip model. Between two successive time steps, all the Fou-
rier modes of the three Þelds are set to zero except the re-
tained modes in the expansions above.

As an initial condition, we take A1�x,0�
=•4/5 � 2e•2 �x• xC�2, A2�x,0� =• 1

2A1�x,0� , C0=C1=C2=C3

=0, B1�x,0� =•4/9� � 3� e• �x• xC�2/6, and B2�x,0� =• 1
2B1

�x,0� . The streamwise length of the computational domain is
Lx=12.8 withxC=Lx/2 and the Reynolds number isR=200.
Choosing� =2� /Lz with Lz=3.2 yields a streakU0 with a
spanwise width of about	 Lz/2=1.6. With the retained value
of � , we haveU0�x,z,0� 	 O�1� andU1�x,z,0� 	 O�1� .

First, the dipole�U0,W0� depicted in Fig.6 is propagat-
ing to the left, as could be inferred from the sense of rotation
of both vortices. This propagation is also tracked by its vor-
ticity 	 2� 0 as shown in Fig.7. Second, during its propaga-
tion, this dipole carries the other ßow components. Indeed,
Fig. 8 illustrates the generation and the entrainment of a
crescent vortex to the left, depicted by the wall-normal ve-
locity V1. The corresponding ßow Þeld�U1,W1� is given in
Fig. 9. The legs of this crescent are two streamwise vortices
characterized by two patches of streamwise vorticity� x
=  W1• � zV1, as shown in Fig.10. During their propagation
to the left, they regenerate the streaks and produce positive
Reynolds stress •U0V1: positive�negative� patches ofV1 cor-

respond to the negative�positive� regions ofU0. Hence dur-
ing its motion, the dipole�U0,W0� carries the crescent vor-
tex, which continues to regenerate it through the lift-up
effect.

Afterwards, the wall-normal vorticity	 2� 0 associated
with these streaks is sheared by the base ßow and a vorticity
	 2� 1 is induced. Its distribution is roughly given by	 2� 1
� • a1Ub� x	 2� 0, as shown in Fig.10 by the arrows. In turn,
this vorticity damps the progression of the dipole�the term
J1� .

Finally we have stated in Sec. II that, for a given spot,
each front was populated by a particular kind of crescent
vortex. The reason behind this distribution is simple. De-
pending on the sense of rotation of the dipole�U0,W0� , a
spanwise vortex is deformed by this dipole and gives a cres-
cent vortex of the Þrst or the second kind. If it is of the Þrst
kind �such as the one depicted in Fig.8�, it is advected to the
left, whereas if it is of the second kind, it is advected to the
right �such as the one depicted in Fig.3�.

FIG. 6. The propagating dipole depicted by the ßow�U0,W0� at t=0.1 �top�
andt=5 �bottom�. R=200.

FIG. 7. The wall-normal vorticity	 2� 0 at t=0.1 �top� andt=5 �bottom�.

FIG. 8. Generation and entrainment of a crescent vortex, depicted by its
vertical velocityV1. From top to bottom,t=0.1, 1, 3, and 5. The ßow Þeld
�U1,W1� is given below in Fig.9.

FIG. 9. The ßow Þeld�U1,W1� at t=5. This ßow Þeld together with the
correspondingV1 represent a crescent vortex.
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As a conclusion, this model illustrates well the entrain-
ment of the ßow quantities by a propagating dipole�U0,W0� .
The interactions between the ßow components encountered
in the preceding section, such as the lift-up effect, are well
captured by this model. Its natural limitation is that the di-
pole is allowed to propagate only in thex direction, since its
z dependence is frozen.

IV. DISCUSSION AND CONCLUSION

In this paper, the spreading of a turbulent spot was in-
vestigated. The contamination of the laminar domain by the
turbulent domain is a consequence of the motion in the hori-
zontal plane of wall-normal vortices spanning all of the gap
between the two plates.

First, we have shown that the dynamic of these dipoles is
governed by their self-advection. Second, during their mo-
tion, these dipoles carry the other perturbation components
and continue to interact with them. For instance, the carried
crescent vortex continues to regenerate the streaks by the
lift-up mechanism. As a consequence of this entrainment by
the dipoles, the front propagating to the right is populated by
crescent vortices of the Þrst kind, whereas the one propagat-
ing to the left is populated by crescent vortices of the second
kind. The core of the spot, however, is Þlled with both kinds,
as shown in Fig.11.

Furthermore, our aim is to present the elementary build-
ing block of the spreading mechanism, which is the motion
of the dipoles. For this reason, we did not study the interac-
tions of these blocks, for instance when two dipoles moving
in opposite directions encounter one another and then propa-
gate in the spanwise direction, as shown in Fig.11. More-
over, depending on the sense of their rotation, the dipoles
propagate in the�x,z� plane toward thex direction but also
toward the oblique direction, since they are not all symmetric
in z. Figure2 �for t=156� gives an example of such a dipole
�for z� 11,x� 21�. Its vorticity is shown in Fig.4.

We have seen in Ref.16 that on the outskirts of the
turbulent spot, there is a quadrupolar large-scale ßow de-
noted by�U0,W0� . Some possible consequences of this ßow
on the spreading of the spot can be provided by the present
study. The large-scale streamwise inßowU0 could hinder this
spreading since it pushes the small-scale dipoles�U0,W0�

toward the core of the spot, thus acting against their progres-
sion in the streamwise direction, as illustrated in Fig.11.

In contrast, the large-scale outßowW0 contributes to the
spreading of the spot in the spanwise direction by advecting
the perturbations in the core of the spot outwards. This out-
ßow W0 acting in both spanwise directions would explain the
spot-splitting phenomenon, occurring at Reynolds numbers
close to the transitional and observed in experimental studies
�see, e.g., Ref.1� and in other shear ßows experiencing a
transition to turbulence by nucleation of spots, such as plane
Poiseuille ßow.2 Its existence in these shear ßows was dis-
cussed in Ref.16.

Despite its limited cross-stream resolution, our model for
PCF gives valuable hints about the spreading mechanism of
turbulent spots. First, the presented mechanism still holds
when we increase the wall-normal resolution. Second, the
models derived in Ref.11 for PCF with free-slip boundary
conditions on the plates for different resolutions iny exhibit
the same spreading mechanism as in the no-slip case. Third,
evidence of the presence of the dipoles on the front can be
obtained from laboratory experiments by measuring the wall-
normal vorticity either at the midplane or by averaging it
over the gap. The experimental investigation of Schršder and
Kompenhaus17 is an example of such studies but in other
wall ßow of more practical interest than PCF. Their Figs. 6
and 13 describe the result of an ensemble average of the
wall-normal vorticity of spots in boundary-layer ßow and
show small adjacent regions of opposite-signed vorticity.

Moreover, postprocessing techniques have to be devel-
oped to quantify the contribution of the proposed mechanism
to the spreading of the turbulent spot. The attributes of the
vortical structures at the boundary, such as length scale and
drift velocity, as well as their variation with the Reynolds

FIG. 10. Top: The streamwise vorticity� x. Bottom: The wall-normal vor-
ticity 	 2� 1 at t=5.

FIG. 11. �Color online� General view of the spreading mechanism, with the
role of the large-scale ßow outside the spot. The outßow contributes in the
spreading of the spot in the spanwise direction, whereas the inßow acts
against the progression of the small-scale dipoles�U0,W0� in thex direction.
Red-solid�blue-dashed� contours indicate regions of positive�negative� val-
ues�enhanced online�.
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number, could be investigated by these techniques, rather
than using instantaneous ßow visualization.

Clearly, further studies investigating the internal struc-
tures of turbulent spots and especially the substructures on
the edge of the spot are needed to conclusively comment on
the spreading mechanism presented in this paper and its oc-
currence in a real turbulent spot. The experimental works of
Perry18 and of Sankaranet al.,19,20 who investigated the
structure of a spot in boundary layer ßow, as well as the
numerical investigation of Singer21 and the recent experi-
ments of Makita and Nishizawa22 are examples of such stud-
ies.

Finally, the present discussion of the spreading mecha-
nism and the ßow patterns at the boundaries could be a step-
ping stone for a quantitative estimation and derivation of the
front propagation speedvfr. The formulavfr � � /2� r, where
� is the recirculation of the vortices�U0,W0� andr is related
to the streak spacing, could be a good starting point.

APPENDIX: EQUATIONS OF THE MODEL

Inserting the expansions�1�Ð�3� in the NavierÐStokes
and continuity equations and following the Galerkin method
prescription yields the governing equations of the amplitudes
U0, W0, U1, V1, andW1. For instance, the continuity equation
gives the following relations:

� xU0 + � zW0 = 0, � xU1 + � zW1 =  V1, �A1�

with  =� 3. Then, deÞning the appropriate stream-functions
� 0 and� 1 and the velocity potential� 1 as follows:

U0 = • � z� 0, W0 = � x� 0, �A2�

and

U1 = � x� 1 • � z� 1, W1 = � z� 1 + � x� 1,  V1 = 	 2� 1,

�A3�

and using the governing equations of the velocity amplitudes
�U0, W0, U1, W1, andV1� together with the continuity equa-
tions �A1� yield three partial derivative equations governing
the evolution of the Þelds� 0, � 1, and� 1, which constitute
our no-slip model. These equations are

� � t • R•1 � 	 2 • � 0�� 	 2� 0 = � � zNU0
• � xNW0

� + a1� 3
2Ub� z	 2� 1

• Ub� x	 2� 1� , �A4�

� � t • R•1 � 	 2 • � 1�� 	 2� 1 = � � zNU1
• � xNW1

� • a1Ub� x	 2� 0,

�A5�

� � t • R•1 � 	 2 •  2��� 	 2 •  2� 	 2� 1

=  2� � xNU1
+ � zNW1

� + 45
2 R•1 	 2� 1 •  	 2NV1

, �A6�

where R is the Reynolds number and	 2 is the two-
dimensional Laplacian� xx+ � zz. The nonlinear termsNU0

,
NW0

, NU1
, NW1

, andNV1
as well as the values of the positive

constants�a1, � 0. . .� can be found in Ref.16.
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