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Modeling of plane Couette 3ow. Il. On the spreading of a turbulent spot
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In this paper, we study the spreading mechanism of turbulent spots in plane Couette Bow, where
RBuid is sheared between two parallel plates moving in opposite directions. The analysis of the
coherent structures on the border between the laminar and turbulent regions reveals the existence of
many vortices with wall-normal axes occupying the full gap between the plates. The streamwise
component of the velocity beld of these vortices is the streaks. Due to their self-advection, these
vortices move parallel to the plates. During their motions, they carry the other perturbation
components such as the streamwise and spanwise vorticB80®American Institute of Physics

DOI: 10.1063/1.2793143

I. INTRODUCTION given. In addition to the spanwise outBow observed in Ref.
8, they found a streamwise inRow toward the spot. They
Plane Couette BowPCF, shear Bow between two par- argued that the Bow outside the spot plays an important role
allel plates moving in opposite directions with velocities in the spreading of the spot. They stressed the fact, however,
+U,, experiences a transition to turbulence marked by thehat this spreading is driven by a nonlinear mechanism.

nucleation and growth dlurbulent spotsi.e., patches of tur- In their experimental investigations of the dynamics of
bulent Bow scattered amid laminar Bow and separated fromspots in the plane Poiseuille Row, Carlsenal? noted that
it by well-dePned frontse.g., Ref.1. the spots were accompanied by oblique waves at their lead-

This transition is not restricted to the PCF case but alsong edge wing tips. It was difbcult, however, to bnd out
occurs in other shear Bows with great practical interest, suctwhether the waves broke down and formed the new turbu-
as plane Poiseuilfeand boundary layer RowsDespite a lence on the wing tips, or whether they are overtaken by the
large body of numeric&f and laborator{™° experiments, existing turbulence.
many questions regarding such transition remain unan- The nature of these waves and their role in the spreading
swered, such as the mechanisms involved in the growth aff the spot were studied, using numerical simulations, by
turbulent spotd™*2 Henningsonet al’® Due to the modibcation of its stability

Based on experiments in boundary layer Bow, Gad-Elproperties by the presence of the spot, the surrounding Row
Hak et al® proposed a mechanism called growth by destabiis susceptible to unstable oblique TollmienBSchlichting
lization. The spot was observed to travel with a lower veloc-waves, which may grow and then break down into turbu-
ity than the surrounding RBow. Hence it acts as a blockagdence. However, the linear growth rate of these waves calcu-
and the laminar Bow Peld on the outskirts of this spot islated by Henningsdi is too small compared to the observed
accelerated. The base Row as well as its linear stability propane. Therefore, he suggested that the waves attain their large
erty are modiPed and the growth of inPnitesimal perturbagrowth rate by some additional mechanisms.
tions occurs. Furthermore, Alavyooret al'® compared spots in plane

Dauchot and Daviadddiscussed this mechanism in an Poiseuille and boundary layer Bows and pointed out the ab-
experimental study of the PCF. Externally applied perturbasence of waves at the wing tips of spots in the latter case.
tions that trigger turbulent spots were made by injecting tur-According to these authors, this indicates that if the same
bulent jets into the laminar Bow. They found velocity proPlesspreading mechanism is at work in both cases, then the
indicating that the Row is accelerated outside the spot, supvaves are of no importance for the spreading itself, whereas
porting the mechanism of Re8. But a direct demonstration if these waves play an important role in the spreading of
of this mechanism has not yet appeared. spots in plane Poiseuille Bow, then the spreading mecha-

Tillmark® experimentally analyzed the Bow beld in the nisms are different and depend on the Bow conbgurations.
vicinity of the spot in the PCF. He found that, in the span-Hence, the role of the waves in the breakdown process and in
wise direction, the spot forces the Buid outwards, giving risehe spreading mechanism of the turbulent domain remains
to a spanwise outBow Pplling all of the gap between the twaunclear and needs further study, as noted by Henningson.
plates. The Bow outside the spot is hence modiPed and he Therefore, the question of which mechanism is involved
suggested that the spanwise growth of turbulent spots can g the spreading of spots in shear Rows is to a large extent
due to the destabilization mechanism of Gad-El-talal> open, and despite a large body of experiments, a simple in-
In the numerical study of Schumacher and Eckhaaltnore tuitive physical picture has been lacking.
complete picture of the Row on the outskirts of the spot was ~ An attempt to tackle such a question led us to derive a

model for PCF, presented in Ref6. The outline of this
2Electronic mail: maher@ladhyx.polytechnique.fr paper is as follows. In Sec. Il, the model is introduced and
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some numerical results on the dynamics of turbulent spotB. Coherent structures on the front
are described. Then the structure of the Bow at the boundary A standard Fourier pseudospectral method with periodic

between laminar and turbulent domains is analyzed and thl?oundary conditions in the streamwise and spanwise direc-

spreaQ|ng mechgmsm IS eluc_ldated n sec. Il Th|s mgchaﬂons has been implemented for the integration of the equa-
nism is further illustrated using a simple one—dmensmna&

del Th . its of thi din's Iions of the model A4 BDA6 . A second-order Adamsb
Model. The main results of this paper areé assessed IN SeC. Iy qhtorth scheme is used for the advancement in time.

Simulations were performed in a domain of sidg L,
= 32 32 with space stepsx= z=0.125 and t=0.001.
I. GROWTH OF A TURBULENT SPOT With this resolution, small-scale in-plane structures such as
A. The model streaks and streamwise vortices with a streamwise length
' about 4 and a spanwise extent about dre resolved with
In Part I Ref. 16, a model for the transitional plane 16 collocation points in the spanwise direction and 32 in the
Couette Bow has been derived from the NavierDStokes equstreamwise direction. Regarding the time increment, smaller
tions using the Galerkin method. First, lengths were scaledime steps did not produce results different from those shown
by the half-gap between the platesand velocities byJ,,. here during comparable time lengths.
Second, the streamwise& , wall-normal y , and spanwise As an initial condition, we take localized functions,,
z velocity components were expanded, respectively, as pand 4,

uxzty =U y +UO A ROy +Ul Xzt Rly ' 1 Ox,z,t:O = 1X,Z,t:0
vXzty =V Xzt Sy, 2 = 1x2t=0
= Aexp 7!

wXzty =Wy Xzt Ry +W; X,zt Ry vy, ) . . .
0 ! ! whereA is an amplitude and is related to the size of the

whereU y =U,y for y 1,1 is the dimensionless base initial turbulent domairt®
Bow Up=1 and the perturbation components &arg W, Tracking the growth of a turbulent spot can be done by
U,, Wy, andV,. They-dependent functions satisfy the no-slip using one component of the velocity or vorticity belds at a
boundary conditions on the platgs =1 and are polynomi- giveny plane. Of particular benebt for our present study is
als, Ryy =B 1ey?, R, y=Cyley?, and S,y =A1 the wall-normal vorticity associated to the drift Row
+ y?2 2 whereA, B, andC are constants. The model consists Uy, W, . Figure 1 displays gray-level snapshots of, |
of a set of three partial differential equations governing the= \Wye ,Uqy, where ,= ,,+ ,, at different times after ini-
stream functions o and ; and the velocity potential ; of tiation. The spot grows and contaminates the laminar domain
the velocity componentdy, Wy, Uy, V1, Wy, and are givenin  att 210.
the Appendix. The control parameter is the Reynolds number  Flow structures at the boundaries between the laminar
R=Uyh/ , where is the kinematic viscosity. and turbulent domains are the elements needed for under-
The derivation of models truncated at higher orders isstanding the spreading mechanism of the spots. Arrows in
possible, however we will have to settle with the presentrig. 1 att=156 show two adjacent patches with opposite
model. In fact, the use of such a low-dimensional model carsigned vorticity , 4 lying on the front propagating to the
be justibPed by some features of the PCF. First, the considere@yht. As shown in Fig.2, these patches correspond to two
Reynolds numbers are close to the stability thresiiRld counter-rotating vorticesUy, W, . First, streamwise streaks
175 Ref. 16 . For such numbers, the turbulent structuresU, are easily identibed as regions whet® W,. The
are observed to Pl the entire gap between the plates, sign of Uy is alternating in the spanwise direction between
e.g., Ref10. Second, the correction to the laminar proble ispositive and negative values, so that when the centers of the
already contained in the model and is represented by theortices are aligned along thedirection, the distance be-
streamwise velocity componeht;R;. This component was tween the centers corresponds roughly to the width of the
shown to be important in the generation of the quadrupolastreak. This distance varies fronh 10 3h, as can be seen
large-scale Roi? from Fig. 2. Second, as may be inferred from the sense of
Some prerequisites in relation to the previous pRef.  rotation of both vortices, this dipole is propagating to the
16 are now introduced. The wall-normal velocity associatedright. Before studying the origin and the consequence of this
with the streamwise vortices is represented\y This ve-  motion, it is instructive to track the expansion of the turbu-
locity induces the streald, through the lift-up mechanism. lent spot with the remaining 3ow velocity components.
In the half-space/ 0, regions wherédJ, is positive nega- Figure 3 displays the spatial distribution of the wall-
tive correspond to highlow speed streaks. In the other normal velocityV, and the Row PbeldU,,W, , correspond-
half-spacey 0, the situation is reversed. Then, to aning to the region in Fig2. The reconstruction of the total
x-dependent streak), corresponds to a spanwise velocity Bow beld( U;,W; R, y ,V4S; y) in this region reveals a
componentW, so that the two-dimensional BowJ,, W, crescent vortex. Its legs are two streamwise vortices that re-
satisbes the continuity equatioUy+ ,Wy=0. Since this generate the streakd, through the lift-up effect. There are
Row has a Poiseuille-like cross-stream proRgy , it is  two kinds of crescent vortices. During the spreading of the
termed drift-RBow herein. spot, both kinds are present inside the turbulent domain, but



104108-3 Modeling of plane Couette Row. II. Phys. Fluids 19, 104108 2007

15 20 25 30
X

FIG. 1. Growth of a turbulent spot witR=200 in a domain with.,, L,=32 32. Wall-normal vorticity , ,in gray levels. From left to right and top to
bottom:t=20,70,156,210.

more interestingly, the crescent vortices present in the fronturbation components by these dipolegcond pointis in-
propagating to the rightin the streamwise direction or vestigated using a model in Sec. Il B.

roughly in the oblique directiorare of the brst kind, as is the

one shown in Fig3, while the other kind populates the front A. Origin of the dipole motion ~ My, W,f

propagating to the left. This observation is explained later
on. The generation mechanism of these vortices is the subjef‘dn
of a forthcoming paper.

Let us consider the governing equation for the stream-
ction  of the drift Bow Uy, Wy , given in the Appen-
dix, which can be rewritten as

. r1 .

t 2° 0 2 0=JdotIi+IptI3tIstds, 4

Ill. THE SPREADING OF THE TURBULENT SPOT - .
where the wall-normal vorticity of the RBowUg,W, is

The numerical simulations of the model have been used,Wy* ,Upy= , 4. On the right hand siderhs we have
to identify elementary processes involved in the spreading
mechanism. The dipoledJy, W, carry, during their propa- Jo="+
gation, the perturbation components,,V,;,Wy, ... in the
X,z plane. This spreading mechanism has two points to be
examined. The Prst concerns the origin of the motion of the
dipoles while the second deals with the consequence of such
motion.

Elements of proof for both points can be given by study-
ing the contribution of the advective terbly, ,f+W;, ,f in
the governing equation df where the quantity can be the J3= 2% Ui, 2 1° Wiy 2 1,
wall-normal vorticities , o, » 1, or the velocityV,, or
the streamwise vorticity, etc. However, since this method
produces data sets requiring a lot of posttreatment, it will be
used only in Sec. Il A to study the origin of the motion of 3
the dipoles Uy, W, Prst point. The entrainment of the per- Js=a;3Up ; 2 1

1Uox 2 0tWoz 2 0>
_ 2
Ji=ea; Up+ U 5 4,
a

o= 5, + Vi, g,

b= Wi, o 4,
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The vorticity , ¢ results from the projection ovéty y of
the three-dimensional wall-normal vorticitywe ,u. In the
same way, both termg, and J; come from the projection
overR, y of the termu , ,we ,u inthe equation govern-
ing the vorticity ,we ,u. The projection oveR; y of ,w

e ,u gives the vorticity , = W ,U;.

Note that by setting the Bow componelts W;, andU,
to zero, all the terms in the rhs of Egl vanish excepd,.
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FIG. 2. The Bow Uy, W, represented by arrows. From
left to right and top to bottomt=154, 156, 160, and

Hence, the equation governing the drift Bow reduces to the
two-dimensional NavierbStokes equation, with an additional
viscous dampind@R? , induced by the friction of this Row
on the plates. The terr, represents the advection of the
two-dimensional Bow Uy, W, Ry for its own vorticity

2 oRo

The second terml]; accounts for the generation of
» oRg through the shearing of the vorticity, R; by the
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FIG. 3. The isocontours of/; left
and the RBow PeldU,,W,; right at
t=156. This RBow distribution repre-
sents a crescent vortex.


















