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Modeling of plane Couette 3ow. Il. On the spreading of a turbulent spot
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In this paper, we study the spreading mechanism of turbulent spots in plane Couette Bow, where
RBuid is sheared between two parallel plates moving in opposite directions. The analysis of the
coherent structures on the border between the laminar and turbulent regions reveals the existence of
many vortices with wall-normal axes occupying the full gap between the plates. The streamwise
component of the velocity beld of these vortices is the streaks. Due to their self-advection, these
vortices move parallel to the plates. During their motions, they carry the other perturbation
components such as the streamwise and spanwise vorticB80®American Institute of Physics

DOI: 10.1063/1.2793143

I. INTRODUCTION given. In addition to the spanwise outBow observed in Ref.
8, they found a streamwise inRow toward the spot. They
Plane Couette BowPCF, shear Bow between two par- argued that the Bow outside the spot plays an important role
allel plates moving in opposite directions with velocities in the spreading of the spot. They stressed the fact, however,
+U,, experiences a transition to turbulence marked by thehat this spreading is driven by a nonlinear mechanism.

nucleation and growth dlurbulent spotsi.e., patches of tur- In their experimental investigations of the dynamics of
bulent Bow scattered amid laminar Bow and separated fromspots in the plane Poiseuille Row, Carlsenal? noted that
it by well-dePned frontse.g., Ref.1. the spots were accompanied by oblique waves at their lead-

This transition is not restricted to the PCF case but alsong edge wing tips. It was difbcult, however, to bnd out
occurs in other shear Bows with great practical interest, suctwhether the waves broke down and formed the new turbu-
as plane Poiseuilfeand boundary layer RowsDespite a lence on the wing tips, or whether they are overtaken by the
large body of numeric&f and laborator{™° experiments, existing turbulence.
many questions regarding such transition remain unan- The nature of these waves and their role in the spreading
swered, such as the mechanisms involved in the growth aff the spot were studied, using numerical simulations, by
turbulent spotd™*2 Henningsonet al’® Due to the modibcation of its stability

Based on experiments in boundary layer Bow, Gad-Elproperties by the presence of the spot, the surrounding Row
Hak et al® proposed a mechanism called growth by destabiis susceptible to unstable oblique TollmienBSchlichting
lization. The spot was observed to travel with a lower veloc-waves, which may grow and then break down into turbu-
ity than the surrounding RBow. Hence it acts as a blockagdence. However, the linear growth rate of these waves calcu-
and the laminar Bow Peld on the outskirts of this spot islated by Henningsdi is too small compared to the observed
accelerated. The base Row as well as its linear stability propane. Therefore, he suggested that the waves attain their large
erty are modiPed and the growth of inPnitesimal perturbagrowth rate by some additional mechanisms.
tions occurs. Furthermore, Alavyooret al'® compared spots in plane

Dauchot and Daviadddiscussed this mechanism in an Poiseuille and boundary layer Bows and pointed out the ab-
experimental study of the PCF. Externally applied perturbasence of waves at the wing tips of spots in the latter case.
tions that trigger turbulent spots were made by injecting tur-According to these authors, this indicates that if the same
bulent jets into the laminar Bow. They found velocity proPlesspreading mechanism is at work in both cases, then the
indicating that the Row is accelerated outside the spot, supvaves are of no importance for the spreading itself, whereas
porting the mechanism of Re8. But a direct demonstration if these waves play an important role in the spreading of
of this mechanism has not yet appeared. spots in plane Poiseuille Bow, then the spreading mecha-

Tillmark® experimentally analyzed the Bow beld in the nisms are different and depend on the Bow conbgurations.
vicinity of the spot in the PCF. He found that, in the span-Hence, the role of the waves in the breakdown process and in
wise direction, the spot forces the Buid outwards, giving risehe spreading mechanism of the turbulent domain remains
to a spanwise outBow Pplling all of the gap between the twaunclear and needs further study, as noted by Henningson.
plates. The Bow outside the spot is hence modiPed and he Therefore, the question of which mechanism is involved
suggested that the spanwise growth of turbulent spots can g the spreading of spots in shear Rows is to a large extent
due to the destabilization mechanism of Gad-El-talal> open, and despite a large body of experiments, a simple in-
In the numerical study of Schumacher and Eckhaaltnore tuitive physical picture has been lacking.
complete picture of the Row on the outskirts of the spot was ~ An attempt to tackle such a question led us to derive a

model for PCF, presented in Ref6. The outline of this
2Electronic mail: maher@ladhyx.polytechnique.fr paper is as follows. In Sec. Il, the model is introduced and
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some numerical results on the dynamics of turbulent spotB. Coherent structures on the front
are described. Then the structure of the Bow at the boundary A standard Fourier pseudospectral method with periodic

between laminar and turbulent domains is analyzed and thl?oundary conditions in the streamwise and spanwise direc-

spreaQ|ng mechgmsm IS eluc_ldated n sec. Il Th|s mgchaﬂons has been implemented for the integration of the equa-
nism is further illustrated using a simple one—dmensmna&

del Th . its of thi din's Iions of the model A4 BDA6 . A second-order Adamsb
Model. The main results of this paper areé assessed IN SeC. Iy qhtorth scheme is used for the advancement in time.

Simulations were performed in a domain of sidg L,
= 32 32 with space stepsx= z=0.125 and t=0.001.
I. GROWTH OF A TURBULENT SPOT With this resolution, small-scale in-plane structures such as
A. The model streaks and streamwise vortices with a streamwise length
' about 4 and a spanwise extent about dre resolved with
In Part I Ref. 16, a model for the transitional plane 16 collocation points in the spanwise direction and 32 in the
Couette Bow has been derived from the NavierDStokes equstreamwise direction. Regarding the time increment, smaller
tions using the Galerkin method. First, lengths were scaledime steps did not produce results different from those shown
by the half-gap between the platesand velocities byJ,,. here during comparable time lengths.
Second, the streamwise& , wall-normal y , and spanwise As an initial condition, we take localized functions,,
z velocity components were expanded, respectively, as pand 4,

uxzty =U y +UO A ROy +Ul Xzt Rly ' 1 Ox,z,t:O = 1X,Z,t:0
vXzty =V Xzt Sy, 2 = 1x2t=0
= Aexp 7!

wXzty =Wy Xzt Ry +W; X,zt Ry vy, ) . . .
0 ! ! whereA is an amplitude and is related to the size of the

whereU y =U,y for y 1,1 is the dimensionless base initial turbulent domairt®
Bow Up=1 and the perturbation components &arg W, Tracking the growth of a turbulent spot can be done by
U,, Wy, andV,. They-dependent functions satisfy the no-slip using one component of the velocity or vorticity belds at a
boundary conditions on the platgs =1 and are polynomi- giveny plane. Of particular benebt for our present study is
als, Ryy =B 1ey?, R, y=Cyley?, and S,y =A1 the wall-normal vorticity associated to the drift Row
+ y?2 2 whereA, B, andC are constants. The model consists Uy, W, . Figure 1 displays gray-level snapshots of, |
of a set of three partial differential equations governing the= \Wye ,Uqy, where ,= ,,+ ,, at different times after ini-
stream functions o and ; and the velocity potential ; of tiation. The spot grows and contaminates the laminar domain
the velocity componentdy, Wy, Uy, V1, Wy, and are givenin  att 210.
the Appendix. The control parameter is the Reynolds number  Flow structures at the boundaries between the laminar
R=Uyh/ , where is the kinematic viscosity. and turbulent domains are the elements needed for under-
The derivation of models truncated at higher orders isstanding the spreading mechanism of the spots. Arrows in
possible, however we will have to settle with the presentrig. 1 att=156 show two adjacent patches with opposite
model. In fact, the use of such a low-dimensional model carsigned vorticity , 4 lying on the front propagating to the
be justibPed by some features of the PCF. First, the considere@yht. As shown in Fig.2, these patches correspond to two
Reynolds numbers are close to the stability thresiiRld counter-rotating vorticesUy, W, . First, streamwise streaks
175 Ref. 16 . For such numbers, the turbulent structuresU, are easily identibed as regions whet® W,. The
are observed to Pl the entire gap between the plates, sign of Uy is alternating in the spanwise direction between
e.g., Ref10. Second, the correction to the laminar proble ispositive and negative values, so that when the centers of the
already contained in the model and is represented by theortices are aligned along thedirection, the distance be-
streamwise velocity componeht;R;. This component was tween the centers corresponds roughly to the width of the
shown to be important in the generation of the quadrupolastreak. This distance varies fronh 10 3h, as can be seen
large-scale Roi? from Fig. 2. Second, as may be inferred from the sense of
Some prerequisites in relation to the previous pRef.  rotation of both vortices, this dipole is propagating to the
16 are now introduced. The wall-normal velocity associatedright. Before studying the origin and the consequence of this
with the streamwise vortices is represented\y This ve-  motion, it is instructive to track the expansion of the turbu-
locity induces the streald, through the lift-up mechanism. lent spot with the remaining 3ow velocity components.
In the half-space/ 0, regions wherédJ, is positive nega- Figure 3 displays the spatial distribution of the wall-
tive correspond to highlow speed streaks. In the other normal velocityV, and the Row PbeldU,,W, , correspond-
half-spacey 0, the situation is reversed. Then, to aning to the region in Fig2. The reconstruction of the total
x-dependent streak), corresponds to a spanwise velocity Bow beld( U;,W; R, y ,V4S; y) in this region reveals a
componentW, so that the two-dimensional BowJ,, W, crescent vortex. Its legs are two streamwise vortices that re-
satisbes the continuity equatioUy+ ,Wy=0. Since this generate the streakd, through the lift-up effect. There are
Row has a Poiseuille-like cross-stream proRgy , it is  two kinds of crescent vortices. During the spreading of the
termed drift-RBow herein. spot, both kinds are present inside the turbulent domain, but
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15 20 25 30
X

FIG. 1. Growth of a turbulent spot witR=200 in a domain with.,, L,=32 32. Wall-normal vorticity , ,in gray levels. From left to right and top to
bottom:t=20,70,156,210.

more interestingly, the crescent vortices present in the fronturbation components by these dipolegcond pointis in-
propagating to the rightin the streamwise direction or vestigated using a model in Sec. Il B.

roughly in the oblique directiorare of the brst kind, as is the

one shown in Fig3, while the other kind populates the front A. Origin of the dipole motion ~ My, W,f

propagating to the left. This observation is explained later
on. The generation mechanism of these vortices is the subjef‘dn
of a forthcoming paper.

Let us consider the governing equation for the stream-
ction  of the drift Bow Uy, Wy , given in the Appen-
dix, which can be rewritten as

. r1 .

t 2° 0 2 0=JdotIi+IptI3tIstds, 4

Ill. THE SPREADING OF THE TURBULENT SPOT - .
where the wall-normal vorticity of the RBowUg,W, is

The numerical simulations of the model have been used,Wy* ,Upy= , 4. On the right hand siderhs we have
to identify elementary processes involved in the spreading
mechanism. The dipoledJy, W, carry, during their propa- Jo="+
gation, the perturbation components,,V,;,Wy, ... in the
X,z plane. This spreading mechanism has two points to be
examined. The Prst concerns the origin of the motion of the
dipoles while the second deals with the consequence of such
motion.

Elements of proof for both points can be given by study-
ing the contribution of the advective terbly, ,f+W;, ,f in
the governing equation df where the quantity can be the J3= 2% Ui, 2 1° Wiy 2 1,
wall-normal vorticities , o, » 1, or the velocityV,, or
the streamwise vorticity, etc. However, since this method
produces data sets requiring a lot of posttreatment, it will be
used only in Sec. Il A to study the origin of the motion of 3
the dipoles Uy, W, Prst point. The entrainment of the per- Js=a;3Up ; 2 1

1Uox 2 0tWoz 2 0>
_ 2
Ji=ea; Up+ U 5 4,
a

o= 5, + Vi, g,

b= Wi, o 4,
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The vorticity , ¢ results from the projection ovéty y of
the three-dimensional wall-normal vorticitywe ,u. In the
same way, both termg, and J; come from the projection
overR, y of the termu , ,we ,u inthe equation govern-
ing the vorticity ,we ,u. The projection oveR; y of ,w

e ,u gives the vorticity , = W ,U;.

Note that by setting the Bow componelts W;, andU,
to zero, all the terms in the rhs of Egl vanish excepd,.
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FIG. 2. The Bow Uy, W, represented by arrows. From
left to right and top to bottomt=154, 156, 160, and

Hence, the equation governing the drift Bow reduces to the
two-dimensional NavierbStokes equation, with an additional
viscous dampind@R? , induced by the friction of this Row
on the plates. The terr, represents the advection of the
two-dimensional Bow Uy, W, Ry for its own vorticity

2 oRo

The second terml]; accounts for the generation of
» oRg through the shearing of the vorticity, R; by the

aa g
e L L L L sttt
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FIG. 3. The isocontours of/; left
and the RBow PeldU,,W,; right at
t=156. This RBow distribution repre-
sents a crescent vortex.
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FIG. 4. Color online Left: Distribu-
tion of the wall-normal vorticity ,

at t=156. The two patches of, |
with positive and negative values cor-
respond to the dipole depicted in Fig.
2. Right: The spatial distribution aof,
presents two patches of positive and
negative values in front of , .

velocity component =U y +U;R; y . In regions wherdJ;  This is indeed the case as attested to by Bijgwhere we
is negative U;R; represents a correction to the base Row smplotted , ( between two successive instants as a function
that thisu has locally art shape, similar to the mean proble of x along the streamwise the redashbdottedine for z
of the turbulent plane Couette RAWIn the following, the 9 and the greendashed line for z 10 in Fig. 4 to-
scalaer:Ub+ ,/a;U; as well asu are termed the cor- gether with the whole rhs of Eq4 . The termJ, represents
rected base Row. Note Pnally that the lift-up effect is reprethe largest contribution to this rhs, which is negatipesi-
sented by the ternds. Further interpretations of the terms in tive in front of the negativepositive patch of , so that
the rhs will be introduced on demand to analyze their differ-this vorticity propagates to the right. From a physical point
ent roles. of view, this propagation can be explained as the effect of the
Consider now the dipole depicted at successive times iinduced velocity of one vortex on the other in accordance to
Fig. 2. Its wall-normal vorticity ,  consists of two adja- the BiotDSavart law.
cent patches with opposite signs as shown in Eideft . In In the following, we study the contributions, albeit
front of each one, there is a same-signed patch,ajiven in ~ weaker, of the other terms. Such study will give a clear pic-
the right panel of this bgure. This distribution &f is remi-  ture of the roles of these terms.
niscent of the distribution of the nonlinear term, in the two- First, the termJ, acts against the propagation of the
dimensional NavierDStokes equation, in front of a propagatdipole by damping the vorticity , . Indeed, this term is
ing dipole. Hence, the origin of the motion of the consideredpositive negative where , , is negative positive, as
dipole would be the self-advection of the RoWw,, W, if J;  shown in Fig.5. The origin of such behavior is as follows.
is preponderant over the other terms in the rhs of Bg.  Once the streakt, are regenerated by the streamwise vor-

FIG. 5. Color online Different quantities as functions of coordinat@long the dash-dotted red linkeft panel and dashed green lineight panel in Fig.
4. The values of , att=156 in black dashed-lineand att=162 in solid red line. The total rhs of Eq.4 in dashed magentd, in dash-dotted blue line
andJ, in solid green line. The arrows indicate the sense of propagation.
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tices, they are sheared by the base Rlimear transportand In the following, the consequence of the motion of the
induce the velocity component; according to U, dipoles on the other perturbation components is studied us-
* a;U, U,. ing a set of one-dimensional partial differential equations.

Within the formulation of the equations in terms of
stream functions, this generation mechanism is representeé®l Entrainment of the perturbations: An illustrative
by the linear term &;U, , , o in the equation governing model

> 1 Ab . Hence, the distribution of the induced vorticity
, 1 through the shearing of the vorticity, by the base
Bow is roughly givenby , | ea;Uy x » o withU,=1.
It follows that

A simple model is now derived to illustrate the entrain-
ment of the perturbations in thedirection through the mo-
tion of the dipoles Uy, W, . Thez dependence of the pertur-
bations is frozen on some Fourier modes. The symmetries of
the problem are then used to simplify the expansions of the

Ji=*aUpy 2 1 Upxe 2 0 Pelds by choosing a set of functions satisfying a particular

symmetry. This choice is driven by the fact that the wall-
showing thatJ; behaves like a dissipative termwith U, ng(rjr’qal vorticity of a dipole propagating in thedirection is
0. odd inz

Consider then the ter,, which involves the quantities Hence, the Pelds o, 4, and , for such a solution
V,and , ;. On the right of both patches of positive and Nave these Fourier expansions:
negative values of , , the velocityV; remains positive

crescent contouwhereas , ; <Uy , » o changesits o= A xtsinnz,
sign. It follows that in front of the dipoleJ, and Jy have n 1
opposite-signed distributions, thus the former term acts

against the progression of the dipole.

The remaining termg,, J,, andJs are now considered. 1= Bpxtsinn z,
The head of the crescent vortex is a spanwise vortex, where ni
the Bow U;,W; is dominated byU; W; andU; O

althoughU; 0 in the present caseHence, lumping the

three terms and neglecting the contributionvdf yields 1=  Cyxtcosn z,
n O

J3+J4+ 35 alg Up+ a—ZUl 72 1 where =2 /L, is the spanwise fundamental.

1 A stream-function of a dipoleUy, W, can be repre-
sented by the brst modeg x,z,t =A; x,t sin z. How-
ever, due to the periodicity, this dipole cannot propagate in
the x direction. To remedy this, it is sufbcient to include the
econd harmonic in this expansiol, x,t sin2 z. The su-

which accounts for the lift-up effect, i.e., the extraction of the
energy from the corrected base BoWw,+ ,/a;U; by the
wall-normal velocityV,. Therefore, the quantityz+J,+J5 is

a source term for the streaks and thus for their WaII—normaEerpoSition of these two modes yields a modulated array of

vortfty 2 O.I ion b \vzing the different t h vortices in the spanwise direction.
S a conclusion, by analyzing the differentterms on e 1o, tor the stream-function 1, we have to include the

:hs O.f Eq' 4d, _‘Fhltshshdc_)rtt _s;u?y Sho}y\ﬁ] thd?‘:f the tdomln_ar_n Prst two modes, since the vorticity,  is linearly gener-
ermisJoand i the distributions of the different remaining .4 from , o through the linear terma,Uy, , » o Eq.

terms can be determined since the involved quantities 5
Uq,Uq,Vy, ... are correlated through the cycle of self-
sustained mechanisms for wall-bounded turbulence.

The propagation of the vorticetly, W, is hence due to
their self-advectionthe termJ, . While some of these terms
enhance the propagation, suchJds J,+Js, Which intensi-
bes the vorticity of the dipole, other terms act against thi

propagation by either weakening this vorticity, suchlgsor With the retained modes for , and 5, these modes are 1,

by damping the contribution alo, such asl,. cos z,cos2 z,and cos3 z . Finally, the expansions read
Note, however, that the preponderance of one term over

the others is not permanent. For example, it is clear that

during the linear growth of the vorticity , o by the lift-up 0=ALXxtsin z +A; xtsin2 z, 5
effect, the nonlinear contribution aof, is negligible com-
pared to that ofls. In other words, arguing that a term domi-
nates another one necessitates the explicit reference to which
mechanism in the cycle is occurring. In this study, we were
only concerned about the origin of the propagation of the
dipoles once they are generated and about the roles of the
different terms on the rhs of Eg4 in this propagation. +C;y x,tcos3 z. 7

Last, the expansion of the potential velocity, which is
related to the wall-normal velocity; of the vortices, is trun-
cated. The nonlinear interactions of the in-plarez Row
components induce thig, through the terms ©; ,W, and
Wy ,U;. Accordingly, we have to keep the Fourier modes
Sgenerated by these terms withy=¢ , ; and Wp= , .

1=Byxtsin z+Byxtsin2 z, 6

1=Coxt +Cy x,tcos z +C, x,t cos2 z
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FIG. 6. The propagating dipole depicted by the Ry, W, att=0.1 top
andt=5 bottom. R=200.

Numerical results

The numerical integration of the illustrative model can
be easily done using the code already developed for the no-
slip model. Between two successive time steps, all the Fou-
rier modes of the three belds are set to zero except the re-
tained modes in the expansions above.
As an initial condition, we take A; x,0
=e4/5 2e2x %’ A x,0 =+ 1A X,0, Cp=C,=C,=C;
=0, B;x,0=+4/9 3 & **™ and B,x,0=+1B, _ _ _ _
x,0 . The streamwise length of the computational domain i§; ('e?ti'cg Viﬁ;l?;"&f”%}g gg';'”&tetgxfz g.fﬁf?”;n"(;’g?’;’hge[ggvege%’ Its
L,=12.8 withx;=L,/2 and the Reynolds number i&=200. U,,W, is given below in Fig9.
Choosing =2 /L, with L,=3.2 yields a strealJ, with a
spanwise width of about L,/2=1.6. With the retained value
of , we haveUy x,z,0 O1 andU;x,z,0 O1. respond to the negativgositive regions ofU,. Hence dur-
First, the dipole Uy, W, depicted in Fig6 is propagat- ing its motion, the dipoleUy, W, carries the crescent vor-
ing to the left, as could be inferred from the sense of rotatiortex, which continues to regenerate it through the lift-up
of both vortices. This propagation is also tracked by its vor-effect.
ticity , o as shown in Fig7. Second, during its propaga- Afterwards, the wall-normal vorticity , , associated
tion, this dipole carries the other Bow components. Indeedwith these streaks is sheared by the base Bow and a vorticity
Fig. 8 illustrates the generation and the entrainment of a , ; is induced. Its distribution is roughly given by, ;
crescent vortex to the left, depicted by the wall-normal ve- «a;U, , » o, as shown in Figl0 by the arrows. In turn,
locity V4. The corresponding Row Peltl,, W, is given in  this vorticity damps the progression of the dipotke term
Fig. 9. The legs of this crescent are two streamwise vorticed; .
characterized by two patches of streamwise vorticity Finally we have stated in Sec. Il that, for a given spot,
= W;* ,V,, as shown in Figl10. During their propagation each front was populated by a particular kind of crescent
to the left, they regenerate the streaks and produce positiwrtex. The reason behind this distribution is simple. De-
Reynolds stressldyV;: positive negative patches o/, cor-  pending on the sense of rotation of the dipolg,,W, , a
spanwise vortex is deformed by this dipole and gives a cres-
cent vortex of the prst or the second kind. If it is of the brst
kind such as the one depicted in F), it is advected to the
left, whereas if it is of the second kind, it is advected to the
right such as the one depicted in FRg).

FIG. 9. The Bow beldU,,W, att=5. This Bow Peld together with the
FIG. 7. The wall-normal vorticity , o att=0.1 top andt=5 bottom. corresponding/; represent a crescent vortex.
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FIG. 10. Top: The streamwise vorticity,. Bottom: The wall-normal vor-
ticity , ,att=5.

As a conclusion, this model illustrates well the entrain-
ment of the Bow quantities by a propagating dipdlg, W, .
The interactions between the Bow components encountered
in the preceding section. such as the Iift-up effect. are welf!CG- 11. Color online General view of the spreading mechanism, with the
tured by thi del ,It t | limitati is th ,t the di role of the large-scale Bow outside the spot. The outow contributes in the
cap We y this moael. Its na ura_l imi a |on_ 1S _a e I'spreading of the spot in the spanwise direction, whereas the inf3ow|acts
pole is allowed to propagate only in thedirection, since its | against the progression of the small-scale dipdlésW, in thex direction.

z dependence is frozen. Red-solid blue-dashedcontours indicate regions of positiveegative val-
ues enhanced online

IV. DISCUSSION AND CONCLUSION

In this paper, the spreading of a turbulent spot was intoward the core of the spot, thus acting against their progres-
vestigated. The contamination of the laminar domain by thesion in the streamwise direction, as illustrated in Higj.
turbulent domain is a consequence of the motion in the hori-  In contrast, the large-scale outR&, contributes to the
zontal plane of wall-normal vortices spanning all of the gapspreading of the spot in the spanwise direction by advecting
between the two plates. the perturbations in the core of the spot outwards. This out-

First, we have shown that the dynamic of these dipoles iow W, acting in both spanwise directions would explain the
governed by their self-advection. Second, during their mospot-splitting phenomenon, occurring at Reynolds numbers
tion, these dipoles carry the other perturbation componentslose to the transitional and observed in experimental studies
and continue to interact with them. For instance, the carriedsee, e.g., Refl and in other shear Rows experiencing a
crescent vortex continues to regenerate the streaks by theansition to turbulence by nucleation of spots, such as plane
lift-up mechanism. As a consequence of this entrainment byPoiseuille Row Its existence in these shear Bows was dis-
the dipoles, the front propagating to the right is populated bycussed in Refl6.
crescent vortices of the brst kind, whereas the one propagat- Despite its limited cross-stream resolution, our model for
ing to the left is populated by crescent vortices of the secon®CF gives valuable hints about the spreading mechanism of
kind. The core of the spot, however, is blled with both kinds,turbulent spots. First, the presented mechanism still holds
as shown in Figll when we increase the wall-normal resolution. Second, the

Furthermore, our aim is to present the elementary buildmodels derived in Refll for PCF with free-slip boundary
ing block of the spreading mechanism, which is the motionconditions on the plates for different resolutionsyiexhibit
of the dipoles. For this reason, we did not study the interacthe same spreading mechanism as in the no-slip case. Third,
tions of these blocks, for instance when two dipoles movingevidence of the presence of the dipoles on the front can be
in opposite directions encounter one another and then propabtained from laboratory experiments by measuring the wall-
gate in the spanwise direction, as shown in Hifj. More-  normal vorticity either at the midplane or by averaging it
over, depending on the sense of their rotation, the dipolesver the gap. The experimental investigation of Schrsder and
propagate in thex,z plane toward thex direction but also  Kompenhau¥ is an example of such studies but in other
toward the oblique direction, since they are not all symmetriavall Bow of more practical interest than PCF. Their Figs. 6
in z. Figure2 for t=156 gives an example of such a dipole and 13 describe the result of an ensemble average of the
forz 11x 21. Its vorticity is shown in Fig4. wall-normal vorticity of spots in boundary-layer Row and

We have seen in Refl6 that on the outskirts of the show small adjacent regions of opposite-signed vorticity.
turbulent spot, there is a quadrupolar large-scale Row de- Moreover, postprocessing techniques have to be devel-
noted by Uy, W, . Some possible consequences of this Rowoped to quantify the contribution of the proposed mechanism
on the spreading of the spot can be provided by the presemd the spreading of the turbulent spot. The attributes of the
study. The large-scale streamwise inf3dycould hinder this  vortical structures at the boundary, such as length scale and
spreading since it pushes the small-scale dipolég W, drift velocity, as well as their variation with the Reynolds
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number, could be investigated by these techniques, rather,« R ,o 2 o 2 ,
than using instantaneous 3ow visualization.

Clearly, further studies investigating the internal struc-
tures of turbulent spots and especially the substructures on . .
the edge of the spot are needed to conclusively comment \p{here R is the Reynolds number and, is the two-
the spreading mechanism presented in this paper and its Oglmenswnal Laplacian + ,, The nonlinear termsNy,,
currence in a real turbulent spot. The experimental works ofWer Nu;» Nw,, andNy, as well as the values of the positive
Perry® and of Sankararet al,’®% who investigated the constantsa;, o . can be found in Reflé.
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